欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 448-462.doi: 10.3724/SP.J.1006.2022.11003

• 耕作栽培·生理生化 • 上一篇    下一篇

基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价

王洋洋1(), 贺利1, 任德超2, 段剑钊1, 胡新2, 刘万代1,*(), 郭天财1, 王永华1, 冯伟1,*()   

  1. 1河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室,河南郑州 450046
    2商丘市农林科学研究院小麦研究所,河南商丘476000
  • 收稿日期:2021-01-07 接受日期:2021-04-26 出版日期:2022-02-12 网络出版日期:2021-06-09
  • 通讯作者: 刘万代,冯伟
  • 作者简介:E-mail: wyy65wyy@163.com
  • 基金资助:
    本研究由“十三五”国家重点研发计划项目“粮食丰产增效科技创新”(2017YFD0300204);国家现代农业产业技术体系建设专项资助(CARS-03)

Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis

WANG Yang-Yang1(), HE Li1, REN De-Chao2, DUAN Jian-Zhao1, HU Xin2, LIU Wan-Dai1,*(), GU Tian-Cai1, WANG Yong-Hua1, FENG Wei1,*()   

  1. 1Agronomy College of Henan Agriculture University / State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, Henan, China
    2Wheat Research Institute, Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, Henan, China
  • Received:2021-01-07 Accepted:2021-04-26 Published:2022-02-12 Published online:2021-06-09
  • Contact: LIU Wan-Dai,FENG Wei
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300204);the China Agriculture Research System(CARS-03)

摘要:

探讨不同水分条件下拔节期低温对小麦生理代谢的影响,构建综合生理指数精确评价冻害程度, 对农业减损增效和宏观管理具有重要意义。以弱春性的偃展4110和兰考198以及半冬性的郑麦366和丰德存21为材料,在低温处理前1周进行灌水和不灌水处理,于雌雄蕊分化期将盆栽小麦移至低温模拟室进行低温处理,分别为正常(CK)、-2℃ (T1)、-4℃ (T2)、-6℃ (T3)、-8℃ (T4)和-10℃ (T5)。在处理结束后第2天测定小麦生理指标和荧光参数,在成熟期收获小麦产量。结果表明,不同品种、水分和低温胁迫及其互作对小麦拔节期生理指标及荧光参数均具有显著影响。随着低温胁迫加重,叶片含水量、叶绿素a含量及荧光参数qpFv/FmFv/Fo呈持续下降趋势,而可溶性蛋白、脯氨酸和可溶性糖含量及SOD活性表现先升后降特征,但MDA含量则相反。灌水处理在一定程度上缓解了低温胁迫对植株生理代谢的影响,低温对半冬性品种的影响相对较小。利用主成分分析将测定参数转化成4个独立的综合指标,且反映了88.55%的原始信息,并构建出冻害生理综合指数(FIPCI)。聚类分析热图显示的颜色越深,生理指标响应程度越大。依据生理指标聚类热图及FIPCI值将冻害划分为5个级别,且其与产量损失率具有较好的一致性。不同水分处理的产量损失率自T3温度开始差异较大,不灌水和灌水处理分别降低了30.4%~44%和21.0%~29.2%。同一水分条件下,产量损失率在品种间差异为LK198>YZ4110>ZM366>FDC21,半冬性品种低于弱春性品种。综合聚类热图和各处理产量,未受冻(CK)和轻度冻害(T1)的产量损失率低于10%,中度冻害(不灌水的T2、灌水的T2和T3)的产量损失率为10%~30%,重度冻害(不灌水的T3、灌水的T4)的产量损失率为30%~50%,特重度冻害(不灌水的T4和T5、灌水的T5)的产量损失率高于50%。可见,低温前灌水有利于缓解低温胁迫造成的伤害,在一定程度上降低了产量损失。利用主成分-聚类分析构建综合生理冻害指数及模型,可以准确评价小麦晚霜冻害的程度,为灾后产量恢复及决策管理提供科学依据。

关键词: 冬小麦, 晚霜冻害, 生理指标, 荧光参数, 主成分分析, 综合生理指数

Abstract:

To investigate the effect of low temperature at jointing stage on wheat physiological metabolism under different water conditions, a comprehensive physiological index is constructed to accurately evaluate the degree of freezing injury, which is of great significance to agricultural loss reduction, efficiency increase and macro management. Irrigation (W1) and no irrigation (W0) treatments were carried out one week before low temperature treatment using the weak-spring Yanzhan 4110 and Lankao 198, semi-winter Zhengmai 366 and Fengdecun 21 as the experimental materials. At the female and male ear differentiation stages, potted wheat was moved to the low temperature simulation room for low temperature treatment with six levels of normal (CK), -2℃ (T1), -4℃ (T2), -6℃ (T3), -8℃ (T4), and -10℃ (T5), respectively. The physiological indexes and fluorescence parameters were measured on the second day after treatment, and wheat yield was harvested at maturity stage. The results revealed that different varieties, water and low temperature stress, and their interactions had significant effects on wheat physiological indexes and fluorescence parameters at jointing stage. With the aggravation of low temperature stress, leaf water content, chlorophyll a content and fluorescence parameters qp, Fv/Fm, and Fv/Fo showed the continuous downward trends, the contents of soluble protein, proline, soluble sugar, and SOD activity first increased and then decreased, but the content of MDA demonstrated the opposite trend. Irrigation treatment alleviated the influence of low temperature stress on plant physiological metabolism, and the effect of low temperature on semi-winter varieties was relatively lower. Four independent comprehensive indexes were transformed by the principal component analysis, which reflected 88.55% of the original information, and the physiological comprehensive index of freezing injury (FICEI) was constructed. The depth of color in heat map indicated the darker the color, the greater the performance degree of indicators. According to the FIPCI value, the freezing injury was divided into five levels, which was consistent with the yield loss rate. Especially under T3 treatment, the yield loss rate of each variety reduced by 30.4%-44.0% under no irrigation, reduced by 21.0%-29.2% under irrigation treatment. Under the same irrigation condition, yield loss rate of different varieties was LK198>YZ4110>ZM366>FDC21, and the yield loss rate of semi-winter varieties was lower than that of weak spring varieties. According to the results of heat map clustering and the yield of each treatment, the yield loss rate was less than 10% for CK and T1, 10%-30% for W0T2, W1T2 and W1T3, 30%-50% for W0T3 and W1T4, more than 50% for W0T4, W0T5 and W1T5. Irrigating before low temperature was conducive to alleviating the damage caused by low temperature stress and reducing the yield loss. Physiological comprehensive freezing injury index and model constructed by principal component-cluster analysis can accurately evaluate the degree of wheat late frost damage, and provide scientific basis for yield recovery and decision-making management after disaster.

Key words: winter wheat, late frost damage, physiological indicators, fluorescence parameters, principal component analysis, integrated physiological index

表1

冻害生理指标及叶绿素荧光参数方差分析"

处理
Treatment
含水量
Leaf water content (%)
叶绿素a
Chl a
(mg g-1 )
脯氨酸
Proline
(μg g-1)
丙二醛MDA
(μg g-1)
光化学
淬灭系数
qp
PS II最大光学效率
Fv/Fm
PS II潜在活性
Fv/Fo
可溶性
蛋白
Soluble protein
(mg g-1)
可溶性糖
Soluble
sugar
(mg g-1)
超氧化物歧化酶
SOD
(U g-1)
F-
value
(0.05)
F-
value
(0.01)
2018-2019
灌水Irr 36.8** 4.4* 4.0* 2.2 2.0 0.8 3.0 8.2** 1.3 76.0** 3.9 6.9
品种Cul 2.6* 1.9 2.0 1.3 1.8 2.4 2.4 24.8** 6.2* 10.5** 2.5 3.5
温度Tem 21.4** 46.3** 72.8** 44.8** 166.0** 69.1** 257.1** 19.8** 57.9** 40.2** 2.3 3.2
Irr × Cul 7.2** 2.9* 1.9 1.7 1.0 1.7 1.5 16.6** 3.1* 29.6** 2.5 3.5
Irr × Tem 45.1** 25.6** 48.2** 23.4** 85.6** 35.6** 119.7** 19.4** 29.9** 23.8** 2.3 3.2
Cul × Tem 6.8** 23.8** 45.8** 14.1** 123.2** 47.6** 149.8** 20.2** 17.1** 5.1** 1.7 2.0
Irr × Cul × Tem 113.3** 407.6** 319.9** 403.4** 796.0** 786.1** 966.6** 238.2** 223.0** 448.5** 1.7 2.0
2019-2020
灌水Irr 6.2* 17.8** 6.9** 3.2 8.5** 2.3 0.1 2.2 23.1** 15.3** 3.9 6.9
品种Cul 6.1* 0.9 1.0 0.4 1.6 0.3 0.7 3.1* 19.5** 11.3** 2.5 3.5
温度Tem 118.8** 106.7** 158.8** 235.6** 188.8** 435.1** 550.3** 11.4** 39.5** 35.1** 2.3 3.2
Irr × Cul 5.4* 3.2* 1.5 0.7 2.0 0.5 0.4 11.5* 5.3* 8.1* 2.5 3.5
Irr × Tem 106.8** 126.2** 168.6** 232.5** 196.4** 469.6** 248.9** 16.61** 56.7** 36.9** 2.3 3.2
Cul × Tem 42.3** 30.8** 49.9** 63.6** 54.7** 103.1** 189.6** 19.0** 12.9** 19.0** 1.7 2.0
Irr × Cul × Tem 333.2** 408.8** 519.1** 535.0** 209.5** 306.8** 402.0** 206.4** 54.5** 287.5** 1.7 2.0

图1

低温胁迫对冬小麦叶片含水量及叶绿素a含量的影响 W0: 不灌水处理; W1: 灌水处理。"

图2

低温胁迫对冬小麦渗透调节物质含量的影响 W0: 不灌水处理; W1: 灌水处理。"

图3

低温胁迫对冬小麦叶片SOD活性及MDA含量的影响 W0: 不灌水处理; W1: 灌水处理。"

图4

低温胁迫对冬小麦叶片qp、Fv/Fm和Fv/Fo的影响 W0: 不灌水处理; W1: 灌水处理。"

表2

冬小麦生理指标及荧光参数间相关系数"

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 1
X2 0.762** 1
X3 0.115 0.153* 1
X4 0.687** 0.707** 0.395** 1
X5 0.761** 0.787** 0.201* 0.753** 1
X6 0.771** 0.839** 0.194* 0.736** 0.921** 1
X7 0.785** 0.780** 0.122 0.687** 0.914** 0.896** 1
X8 -0.782** -0.792** -0.259** -0.730** -0.798** -0.801** -0.808** 1
X9 0.271** 0.223** 0.402** 0.486** 0.373** 0.344** 0.332** -0.367** 1
X10 0.464** 0.462** 0.358** 0.584** 0.507** 0.565** 0.519** -0.583** 0.399** 1

表3

冬小麦生理指标及荧光参数的主成分分析"

成分
Component
初始特征值 Initial eigenvalues 提取载荷平方和 Extraction eigenvalues
总计
Total
方差百分比
Variance (%)
累积
Cumulative (%)
总计
Total
方差百分比
Variance (%)
累积
Cumulative (%)
1 6.366 63.658 63.658 6.366 63.658 63.658
2 1.357 13.574 77.232 1.357 13.574 77.232
3 0.603 6.028 83.259 0.603 6.028 83.259
4 0.529 5.290 88.550 0.529 5.290 88.550
5 0.325 3.253 91.803
6 0.265 2.655 94.458
7 0.224 2.241 96.699
8 0.182 1.822 98.521
9 0.087 0.868 99.389
10 0.061 0.611 100

图5

不同水分及低温处理条件下植株生理指标之间的关系 X1、X2、X3、X4、X5、X6、X7、X8、X9和X10分别代表叶绿素a、叶含水量、可溶性糖、脯氨酸、qp、Fv/Fm、Fv/Fo、MDA、SOD和可溶性蛋白。"

表4

10个参数相互矩阵的特征向量分析表"

指标 Index CI1 CI2 CI3 CI4
叶绿素a Chlorophyll a 0.852 -0.231 -0.004 0.052
叶片含水量 Leaf water content 0.868 -0.239 -0.123 0.108
可溶性糖 Soluble sugar 0.319 0.786 -0.414 0.296
脯氨酸 Proline 0.859 0.187 -0.029 0.076
光化学淬灭系数 qp 0.926 -0.141 0.068 0.100
PS II最大光学效率 Fv/Fm 0.933 -0.156 0.006 0.020
PS II潜在活性 Fv/Fo 0.911 -0.216 0.082 0.014
丙二醛 MDA -0.903 0.056 0.057 0.010
超氧化物歧化酶 SOD 0.472 0.625 0.610 0.035
可溶性蛋白 Soluble protein 0.670 0.330 -0.169 -0.640

表5

各主成分参数变量的权重、综合公式Y权重、FIPCI权重"

指标
Index
CI1 CI2 CI3 CI4 Y权重
Y weight
FIPCI权重FIPCI weight
叶绿素a Chlorophyll a 0.337681 -0.198300 -0.005150 0.071495 0.216279 0.118316
叶片含水量Leaf water content 0.344022 -0.205170 -0.158400 0.148490 0.213953 0.117044
可溶性糖Soluble sugar 0.126432 0.674734 -0.533140 0.406971 0.182342 0.099751
脯氨酸Proline 0.340455 0.160528 -0.037350 0.104493 0.273059 0.149378
光化学淬灭系数qp 0.367010 -0.121040 0.087569 0.137490 0.259461 0.141939
PS II最大光学效率Fv/Fm 0.369784 -0.133920 0.007727 0.027498 0.247476 0.135383
PS II潜在活性Fv/Fo 0.361065 -0.185420 0.105598 0.019249 0.239482 0.131009
丙二醛MDA -0.357890 0.048073 0.073403 0.013749 -0.244100 -0.133540
超氧化物歧化酶SOD 0.187072 0.536525 0.785545 0.048122 0.273080 0.149390
可溶性蛋白Soluble protein 0.265547 0.283285 -0.217630 -0.879940 0.166942 0.091326

图6

生理生化特性的热图分析 1、2、3和4分别为品种YZ4110、LK198、ZM366和FDC21; X1、X2、X3、X4、X5、X6、X7、X8、X9和X10分别为叶绿素a、叶含水量、可溶性糖、脯氨酸、qp、Fv/Fm、Fv/Fo、MDA、SOD和可溶性蛋白。处理同图1。"

表6

不同品种、水分及低温胁迫条件下FIPCI值、产量及产量损失率"

处理
Treatment
冻害生理综合指数
FIPCI
平方产量
Yield (g m-2)
产量损失率
Rate of loss of yield (%)
YZ4110 LK198 ZM366 FDC21 YZ4110 LK198 ZM366 FDC21 YZ4110 LK198 ZM366 FDC21
W0-CK 0.415 0.394 0.421 0.458 938.0 902.9 941.6 854.4 0 a 0 a 0 a 0 a
W0-T1 0.607 0.622 0.65 0.672 840.0 834.6 895.1 819.2 7.1 b 7.5 b 4.6 b 4.1 b
W0-T2 0.898 0.916 0.994 0.993 698.6 636.3 763.4 705.6 25.6 c 29.6 c 19.0 c 17.3 c
W0-T3 -0.181 -0.251 -0.137 -0.143 526.4 485.6 609.1 593.6 44.0 d 46.2 d 35.3 d 30.4 d
W0-T4 -1.294 -1.334 -1.109 -1.016 352.8 235.7 331.2 272.0 62.4 e 73.9 e 64.8 e 68.1 e
W0-T5 -1.341 -1.449 -1.387 -1.257 147.0 50.2 97.1 124.8 84.3 f 94.4 f 89.7 f 85.4 f
W1-CK 0.384 0.407 0.438 0.418 971.6 966.0 996.8 979.2 0 a 0 a 0 a 0 a
W1-T1 0.717 0.674 0.777 0.818 950.6 936.6 980.0 961.2 2.2 a 3.1 a 1.7 a 1.8 a
W1-T2 1.093 1.090 1.192 1.299 793.8 810.6 870.8 855.6 18.4 b 16.1 b 12.7 b 12.6 b
W1-T3 1.129 1.192 1.299 1.351 718.2 684.6 788.2 756.0 26.1 c 29.2 c 21.0 c 22.8 c
W1-T4 -0.354 -0.416 -0.328 -0.225 520.8 487.2 575.4 603.6 46.4 d 49.5 d 42.3 d 38.4 d
W1-T5 -1.267 -1.470 -1.199 -1.054 233.8 166.6 250.6 285.6 75.9 f 82.7 f 74.8 f 70.8 f

图7

低温胁迫下小麦植株生理指标之间的关系 ROS、SOD、MDA、PRO、SP、SS、LWC、Chl a、Fv/Fm、Fv/Fo和qp分别代表活性氧、SOD酶、MDA、脯氨酸、可溶性蛋白、可溶性糖、叶片含水量、叶绿素a、Fv/Fm、Fv/Fo和qp。"

[1] Kodra E, Steinhaeuser K, Ganguly A R. Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett, 2011,38:1-5.
[2] Sanghera G S, Wani S H, Wasim H, Singh N B. Engineering cold stress tolerance in crop plants. Curr Genomics, 2011,12:30-43.
[3] Vavrus S, Walsh J E, Chapman W L, Portis D. The behaviour of extreme cold air outbreaks under greenhouse warming. Int J Climatol, 2006,26:1133-1147.
[4] 冯玉香, 何维勋, 孙忠富, 钟秀丽. 我国冬小麦霜冻害的气候分析. 作物学报, 1999,25:335-340.
Feng Y X, HE W X, Sun Z F, Zhong X L. Climatological study on frost damage of winter wheat in China. Acta Agron Sin, 1999,25:335-340 (in Chinese with English abstract).
[5] 孟雷, 武永峰, 胡新, 吕国华, 任德超, 宋吉青. 土壤表层湿度影响下冬小麦晚霜冻害及冠层光谱检测. 光谱学与光谱分析, 2017,37:1482-1488.
Meng L, Wu Y F, Hu X, Lyu G H, Ren D C, Song J Q. Using hyperspectral data for detecting late frost injury to winter wheat under different topsoil moistures. Spectrosc Spect Anal, 2017,37:1482-1488 (in Chinese with English abstract).
[6] Furumoto M. Cold signaling and cold response in plants. Int J Mol, 2013, 2013,14:5312-5337.
[7] 王秀田, 卢秋巍, 苍晶, 包雨卓, 孟德义, 于晶, 徐庆华, 赵虎, 李想, 相智也, 谢波. 低温驯化对冬小麦叶绿素荧光特性及抗氧化酶活性的影响. 植物生理学报, 2016,52:1959-1969.
Wang X T, Lu Q W, Cang J, Bao Y Z, Meng D Y, Yu J, Xu Q H, Zhao Hu, Li X, Xiang Z Y, Xie B. Effects of cold acclimation on chlorophyll fluorescence characteristics and antioxidant enzyme activity in winter wheat. Acta Phytophysiol Sin, 2016,52:1959-1969 (in Chinese with English abstract).
[8] 王晓楠, 付连双, 李卓夫, 孙艳丽, 王玉波, 刘灿, 王金伟, 陈禹兴. 低温驯化及封冻后不同抗寒性小麦品种的形态建成及生理基础分析. 作物学报, 2009,35:1313-1319.
Wang X N, Fu L S, Li Z F, Sun Y L, Wang Y B, Liu C, Wang J W, Chen Y X. Morphogenesis and physiological basis in wheat cultivars with different levels of cold-resistance during cold acclimation and freezing period. Acta Agron Sin, 2009,35:1313-1319 (in Chinese with English abstract).
[9] 王瑞霞, 闫长生, 张秀英, 孙果忠, 钱兆国, 亓晓蕾, 牟秋焕, 肖世和. 春季低温对小麦产量和光合特性的影响. 作物学报, 2018,44:288-296.
Wang R X, Yan C S, Zhang X Y, Sun G Z, Qian Z G, Qi X L, Mou Q H, Xiao S H. Effect of low temperature in spring on yield and photosynthetic characteristics of wheat. Acta Agron Sin, 2018,44:288-296 (in Chinese with English abstract).
[10] Van Kooten O. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res, 1990,25:147-150.
[11] 刘艳阳, 李俊周, 陈磊, 崔党群. 低温胁迫对小麦叶片细胞膜脂质过氧化产物及相关酶活性的影响. 麦类作物学报, 2006,26:70-73.
Liu Y Y, Li J Z, Chen L, Cui D Q. Effect of low temperature stress on peroxidation product of membrane lipids and activity of related enzymes in wheat seedling leaves. J Triticeae crops, 2006,26:70-73(in Chinese with English abstract).
[12] 刘慧英, 朱祝军, 吕国华, 钱琼秋. 低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究. 中国农业科学, 2003,36:1325-1329.
Liu H Y, Zhu Z J, Lyu G H, Qian Q Q. Study on relationship between physiological change and chilling tolerance in grafted watermelon seedling under low temperature stress. Sci Agric Sin, 2003,36:1325-1329 (in Chinese with English abstract).
[13] 李春燕, 陈思思, 徐雯, 李东升, 顾骁, 朱新开, 郭文善, 封超年. 苗期低温胁迫对扬麦16叶片抗氧化酶和渗透调节物质的影响. 作物学报, 2011,37:2293-2298.
Li C Y, Chen S S, Xu W, Li D S, Gu X, Zhu X K, Guo W S, Feng C N. Effect of the low temperature at seedling stage on antioxidation enzymes and cytoplasmic osmoticum of leaves in wheat cultivar Yangmai 16. Acta Agron Sin, 2011,37:2293-2298 (in Chinese with English abstract).
[14] 王晓楠, 付连双, 李卓夫, 孙艳丽, 王玉波, 刘灿, 王金伟, 陈禹兴. 低温驯化及封冻后不同抗寒性小麦品种的形态建成及生理基础分析. 作物学报, 2009,35:1313-1319.
Wang X N, Fu L S, Li Z F, Sun Y L, Wang Y B, Liu C, Wang J W, Chen Y Y. Morphogenesis and physiological basis in wheat cultivars with different levels of cold-resistance during cold acclimation and freezing period. Acta Agron Sin, 2009,35:1313-1319 (in Chinese with English abstract).
[15] 王树刚, 王振林, 王平, 王海伟, 李府, 黄玮, 武玉国, 尹燕枰. 不同小麦品种对低温胁迫的反应及抗冻性评价. 生态学报, 2011,31:1064-1072.
Wang S G, Wang Z L, Wang P, Wang H W, Li F, Huang W, Wu Y G, YIN Y P. Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress. Acta Ecol Sin, 2011,31:1064-1072 (in Chinese with English abstract).
[16] 杨梅, 郭军战. 不同果桑品种对低温胁迫的反应及抗寒性评价. 北方园艺, 2012, ( 4):29-32.
Yang M, Guo J Z. Evaluation of mulberry cold resistance based on the responses of the physiological indices to low temperature stress. Nor Hortic, 2012, ( 4):29-32 (in Chinese with English abstract).
[17] 徐澜, 高志强, 安伟, 原亚琦, 李彦良. 冬麦春播小麦穗分化阶段对低温胁迫的响应及耐寒性. 应用生态学报, 2015,26:1679-1686.
Xu L, Gao Z Q, An W, Yuan Y Q, Li Y L. Low-temperature response and cold tolerance at spike differentiation stage of winter wheat varieties sowed in spring. Chin J Appl Ecol, 2015,26:1679-1686 (in Chinese with English abstract).
[18] 张瑞栋, 肖梦颖, 徐晓雪, 姜冰, 邢艺凡, 陈小飞, 李邦, 艾雪莹, 周宇飞, 黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定. 作物学报, 2020,46:889-901.
Zhang R D, Xiao M Y, Xu X X, Jiang B, Xing Y F, Chen X F, Li B, Ai X Y, Zhou Y F, Huang R D. Responses of sorghum hybrids to germination temperatures and identification of low temperature resistance. Acta Agron Sin, 2020,46:889-901 (in Chinese with English abstract).
[19] 白志英, 李存东, 孙红春, 赵金锋. 小麦代换系抗旱生理指标的主成分分析及综合评价. 中国农业科学, 2008,41:4264-4272.
Bai Z Y, Li C D, Sun H C, Zhao J F. Principal component analysis and comprehensive evaluation on physiological indices of drought resistance in wheat substitution. Sci Agric Sin, 2008,41:4264-4272 (in Chinese with English abstract).
[20] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 184-185, 195-197, 261-263.
Li H S, The Experiment Principle and Technique on Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 184-185, 195-197, 261-263(in Chinese).
[21] 中国科学院上海植物生理研究所, 上海植物生理学会. 现代植物生理学实验指南. 北京: 科学出版社, 1999. p 303.
Shanghai Institute of Plant Physiology and Shanghai Society for Plant Physiology. Modern Plant Physiology Laboratory Manual. Beijing: Science Press, 1999. p 303 (in Chinese).
[22] 侯福林. 植物生理学实验教程. 北京: 科学出版社, 2004. p 91.
Hou F L. Plant Physiology Experimental Course. Beijing: Science Press, 2004. p 91 (in Chinese).
[23] 冯美臣, 牛波, 杨武德, 肖璐洁. 晋中地区荞麦品质气候区划的GIS多元分析. 地球信息科学学报, 2012,14:807-813.
Feng M C, Niu B, Yang W D, Xiao L J, Climate regionalization of buckwheat quality index based on GIS multivariate analysis in Jinzhong prefecture. J Geo-Inf Sci, 2012,14:807-813 (in Chinese with English abstract).
[24] Kratsch H A, Wise R R. The ultrastructure of chilling stress. Plant Cell Environ, 2000,23:337-350.
[25] Wei C W, Huang J F, Wang X Z, Blackburn G A, Zhang Y, Wang S S, Mansaray L R. Hyperspectral characterization of freezing injury and its biochemical impacts in oilseed rape leaves. Remote Sens Environ, 2017,195:56-66.
[26] Dai F, Zhou M, Zhang G. The change of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance. Plant Physiol Bioch, 2007,45:915-921.
[27] Ploschuk E L, Bado L A, Salinas M, Wassner D F, Windauer L B, Insausti P. Photosynthesis and fluorescence responses of Jatropha curcas to chilling and freezing stress during early vegetative stages. Environ Exp Bot, 2014,102:18-26.
[28] Karimzadeh G, Darvishzadeh R, Jalali-Javaran M, Dehghani H. Cold-induced accumulation of protein in the leaves of spring and winter barley cultivars. Acta Biol Hung, 2005. 56:83-96.
[29] Gomes F P, Oliva M, Mielke M S, Almeida A A F, Aquino L A. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci Hortic(Amsterdam), 2010,126:379-384.
[30] Terzioglu S, Ekmekci Y. Variation of total soluble seminal root proteins of tetraploid wild and cultivated wheat induced at cold acclimation and freezing. Acta Physiol Plant, 2004,26:443.
[31] 张武君, 刘保财, 赵云青, 黄颖桢, 陈菁瑛. 金花茶对低温胁迫的生理响应及耐寒性分析. 核农学报, 2020,34:401-408.
Zhang W J, Liu B C, Zhao Y Q, Huang Y Z, Chen J Y. Physiological responses and cold resistance analysis of Camellia nitidissima chi under low-temperature stress. J Nucl Agric Sci, 2020,34:401-408 (in Chinese with English abstract).
[32] Silim S N, Guy R D, Lavender D P. Meflidide-induced drought resistance in seedlings of three conifer species. Can J Bot, 1993,71:1087-1092.
[33] Chu C C. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol, 2005,139:425-436.
[34] 姜丽娜, 张黛静, 宋飞, 刘佩, 樊婷婷, 余海波, 李春喜. 不同品种小麦叶片对拔节期低温的生理响应及抗寒性评价. 生态学报, 2014,34:4251-4261.
Jiang L N, Zhang D J, Song F, Liu P, Fan T T, Yu H B, Li C X. Evaluation of cold resistance of different wheat varieties based on physiological responses of leaves to low temperature at the jointing stage. Acta Ecol Sin, 2014,34:4251-4261 (in Chinese with English abstract).
[35] 孙擎, 杨再强, 高丽娜, 殷剑敏, 王学林, 李伶俐. 低温对早稻幼穗分化期叶片生理特性的影响及其与产量的关系. 中国生态农业学报, 2014,22:1326-1333.
Sun Q, Yang Z Q, Gao L N, Yin J M, Wang X L, Li L L. Effect of low temperature stress on physiological characteristics of flag leaf and its relationship with grain yield during panicle primordium differentiation stage of early rice. Chin J Eco-agric, 2014,22:1326-1333 (in Chinese with English abstract).
[36] 许莹, 马晓群, 王晓东, 杜世州. 安徽省冬小麦春霜冻害气象指标的研究. 气象, 2014,40:852-859.
Xu Y, Ma X Q, Wang X D, Du S Z. Study on meteorological index of spring frost damage to winter wheat in Anhui province. Meteorol Monthly, 2014,40:852-859 (in Chinese with English abstract).
[37] 曹娜, 陈小荣, 贺浩华, 朱昌兰, 才硕, 徐涛, 谢亨旺, 刘方平. 抽穗扬花期不同灌水处理对晚稻抵御低温、产量和生理特性的影响. 应用生态学报, 2017,28:3935-3944.
Effects of different irrigation treatments during heading and flowering stage on cold resistance, yield and physiological characteristics of late rice. Chin J Appl Ecol, 2017,28:3935-3944 (in Chinese with English abstract).
[38] 尹赜鹏, 刘雪梅, 商志伟, 任静, 宋兴舜. 不同干旱胁迫下欧李光合及叶绿素荧光参数的响应. 植物生理学报, 2011,47:452-458.
Yin Z P, Liu X M, Shang Z W, Ren J, Song X S. Response of photosynthesis and chlorophyl II fluorescence parameters to different drought stress in cerasus humilis bunge. Acta Phytophysiol Sin, 2011,47:452-458 (in Chinese with English abstract).
[39] 赵孟良, 郭怡婷, 孙世英, 任延靖. 低温胁迫下4种菊芋的耐寒性评价. 植物生理学报, 2020,56:1419-1431.
Zhao M L, Guo Y T, Sun S Y, Ren Y J. Evaluation of cold resistance of four Jerusalem artichoke (Helianthus tuberosus) under low temperature stress. Acta Phytophysiol Sin, 2020,56:1419-1431 (in Chinese with English abstract).
[40] 李春喜, 郭雪妮, 张黛静, 刘雪晴, 刘安琪, 王艳杰. 轻度干旱胁迫下黄淮麦区不同基因型小麦的响应分析. 生态环境学报, 2016,25:1446-1452.
Li C X, Guo X N, Zhang D J, Liu X Q, Liu A Q, Wang Y J. Response of different genotypes wheat to light drought stress in the Huang-huai plain. Ecol Environ Sci, 2016,25:1446-1452 (in Chinese with English abstract).
[41] Zou J, Hu W, LI Y X, He J Q, Zhu H H, Zhou Z G. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.). J Integr Agric, 2020,19:495-508.
[42] 王准, 张恒恒, 董强, 贵会平, 王香茹, 庞念厂, 李永年, 牛静, 靳丁沙, 汪苏洁, 张西岭, 宋美珍. 棉花耐低氮和氮敏感种质筛选及验证. 棉花学报, 2020,32:538-551.
Wang Z, Zhang H H, Dong Q, Gui H P, Wang X R, Pang N C, Li Y N, Niu J, Jin D S, Wang S J, Zhang X L, Song M Z. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm. Cotton Sci, 2020,32:538-551.
[43] 李霞, 孙志伟, 吕川根, 任承刚, 曹昆, 王超. 田间杂交水稻单年单点5种不同逆境的批量筛选及聚类分析. 中国生态农业学报, 2010,18:528-534.
Li X, Sun Z W, Lyu C G, Ren C G, Cao K, Wang C. Mass screening and cluster analysis for tolerance to stress of hybrid rice variety under field conditions. Chin J Eco-Agric, 2010,18:528-534 (in Chinese with English abstract).
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[3] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[4] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[5] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[6] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[7] 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052.
[8] 李晶岚,陈鑫欣,石翠翠,刘方惠,孙静,葛荣朝. OsRPK1基因过表达和RNA干涉对水稻苗期耐盐性的影响[J]. 作物学报, 2020, 46(8): 1217-1224.
[9] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
[10] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[11] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[12] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[13] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[14] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[15] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!