欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1169-1180.doi: 10.3724/SP.J.1006.2022.14058

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成

黄伟1,2(), 高国应1(), 吴金锋1,5, 刘丽莉1,5, 张大为1,5, 周定港1,5, 成洪涛2, 张凯旋3, 周美亮3, 李莓4, 严明理1,4,5,*()   

  1. 1湖南科技大学生命科学学院, 湖南湘潭 411201
    2中国农业科学院油料作物研究所, 湖北武汉 430062
    3中国农业科学院作物科学研究所, 北京 100081
    4湖南省作物研究所, 湖南长沙 410125
    5经济作物遗传改良与综合利用湖南省重点实验室, 湖南湘潭 411201
  • 收稿日期:2021-04-11 接受日期:2021-07-12 出版日期:2022-05-12 网络出版日期:2021-08-05
  • 通讯作者: 严明理
  • 作者简介:黄伟, E-mail: 2646213662@qq.com;
    高国应, E-mail: 1019982091@qq.com第一联系人:**同等贡献
  • 基金资助:
    国家重点研发计划项目(2016YFD0100202);国家自然科学基金项目(31971980);湖南省重点研发计划项目资助(2020NK2045)

Regulation of flavonoid synthesis by BjA09.TT8 and BjB08.TT8 genes in Brassica juncea

HUANG Wei1,2(), GAO Guo-Ying1(), WU Jin-Feng1,5, LIU Li-Li1,5, ZHANG Da-Wei1,5, ZHOU Ding-Gang1,5, CHENG Hong-Tao2, ZHANG Kai-Xuan3, ZHOU Mei-Liang3, LI Mei4, YAN Ming-Li1,4,5,*()   

  1. 1School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
    2Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
    3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
    5Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan 411201, Hunan, China
  • Received:2021-04-11 Accepted:2021-07-12 Published:2022-05-12 Published online:2021-08-05
  • Contact: YAN Ming-Li
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2016YFD0100202);National Natural Science Foundation of China(31971980);Key Research and Development Program of Hunan(2020NK2045)

摘要:

bHLH类转录因子TT8具有调控植物类黄酮合成的功能。本研究采用同源克隆法, 在芥菜型油菜紫叶芥中获得了2个TT8拷贝, 分别命名为BjA09.TT8BjB08.TT8, 它们分别编码521和517个氨基酸。定量表达分析表明, 这2个拷贝在叶中的表达量均显著高于茎和根中, 且都响应茉莉酸(JA)信号, 在50 μmol L-1的茉莉酸甲酯处理0.5 h后表达量均达到峰值; 利用毛状根体系过表达发现, BjA09.TT8BjB08.TT8分别可使紫叶芥和绿叶芥菜型油菜四川黄籽的毛状根中总黄酮含量升高, 同时对类黄酮合成基因Bj.CHS的表达具有促进作用, 说明二者在功能上具有冗余性。分别在野生型拟南芥和拟南芥tt8突变体中过表达BjA09.TT8BjB08.TT8发现, 过表达拟南芥植株叶片颜色变紫, 植株总黄酮和原花色素含量显著升高。本研究表明, BjA09.TT8BjB08.TT8基因能够促进芥菜型油菜类黄酮的合成, 为进一步解析芸薹属植物原花色素合成的调控机制提供了参考。

关键词: 芥菜型油菜, TT8, 调节, 类黄酮, 原花色素

Abstract:

bHLH transcription factors TT8 can effectively regulate the biosynthesis of plant flavonoids. In this study, two copies of TT8 were obtained in Brassica juncea by homologous cloning method, and named BjA09.TT8 and BjB08.TT8, which encoded 521 and 517 amino acids, respectively. Interestedly, qRT-PCR showed that the relative expression levels of the two copies in leaves were significantly higher than those in stems and roots, both responded to jasmonic acid (JA) signal, and the relative expression levels of Bju.TT8 reached maximum after 50 µmol L-1methyl jasmonate treatment for 0.5 hour. Furthermore, we found that both Bj.TT8 can increase the contents of total flavonoids in hairy roots of purple leaf mustard and green leaf mustard cultiver Sichuan Yellow Seed by hairy root system overexpression assay. It promoted the expression of flavonoid synthesis Bj.CHS, indicating they acted as redundant function. Over expression of BjA09.TT8 and BjB08.TT8 of wild-type Arabidopsis and Arabidopsis tt8 mutant revealed that the leaf colour of overexpressed Arabidopsis plant turned purple. Moreover, the contents of total flavonoid and proanthocyanidins increased significantly. In summary, BjA09.TT8 and BjB08.TT8 genes could promote the synthesis of flavonoids in Brassica juncea, which provided a reference for further analysis of the regulatory mechanism of proanthocyanidin synthesis in Brassica.

Key words: Brassica juncea, TT8, regulate, flavonoid, proanthocyanidin

表1

本研究所用试验引物"

引物名称
Primer name
引物序列
Primer sequences (5°-3°)
引物用途
Primer purpose
TT8-A-F ATGGATGAATTAAGTATTATACCG 基因克隆 Gene cloning
TT8-A-R CTAGAGTTTATTATTATATATGA
TT8-B-F ATGGATGAATCAAGTATTATACAG
TT8-B-R CTAGAGTTTATTTTGAGATATG
3301-TT8-A-NcoIF GGGGACTCTTGACCATGGTAATGGATGAATTAAGTATTATACCG TT8载体构建引物
3301-TT8-A-Eco91IR GAAATTCGAGCTGGTCACCCTAGAGTTTATTATTATATATGA TT8 vector primer
3301-TT8-B-NcoIF GGGGACTCTTGACCATGGTAATGGATGAATCAAGTATTATACAG
3301-TT8-B-Eco91IR GAAATTCGAGCTGGTCACCCTAGAGTTTATTTTGAGATATG
qRT-PCR-Actin7-F GCTGACCGTATGAGCAAAG qRT-PCR检测引物
qRT-PCR-Actin7-R AAGATGGATGGACCCGAC qRT-PCR detection primers
qRT-PCR-TT8-A-F ACCAAAAGCGGATGCGTAT
qRT-PCR-TT8-A-R TCTATACCCAGCTCCTTAAGTACCT
qRT-PCR-TT8-B-F GAAGCAACCAATAGTTTAGTAGATACACA
qRT-PCR-TT8-B-R CGATGATTGAACGTAAGAAGATGTGGA
qRT-PCR-PAL-F AGAGCTTTTGACCGGAGAGA
qRT-PCR-PAL-R TTAATCACTCTTAACATATAGGAATGGGAG
qRT-PCR-CHS-F TCTTCATATTGGACGAGATGAGGA
qRT-PCR-CHS-R GCGTTTCTGTTCAAACAGGAA
qRT-PCR-CHI-F CTTTGGAGCGACCATTAGAG
qRT-PCR-CHI-R AGACAAAGCTTAACAAGAGAGGT
qRT-PCR-F3’H-F TGATTGGGAATTAGCTGGAGGA
qRT-PCR-F3’H-R AGTTAAATTTTAACCCGACCCGA
qRT-PCR-F3H-F ATCTTGGAGGAGCCAATTACGT
qRT-PCR-F3H-R ACACAAGGAGTCTAAGCGATGA
qRT-PCR-FLS-F ACTAGGAATGTGATCGCACCA
qRT-PCR-FLS-R TCAGAGGGATTAGGTTTACGG
qRT-PCR-DFR-F TCTTTGGAACAGGTTTGAAGGA
qRT-PCR-DFR-R TAAAGTGACAGGGAGAAAACCCT
qRT-PCR-ANS-F AAGCCGTTGCCTGAGA
qRT-PCR-ANS-R AGAGTTTCAGACTCAGACTTCA
qRT-PCR-BAN-F GGTTTTTGTTGTTAGGGAAAGA
qRT-PCR-BAN-R ATATGCTTACTCTGACAAAACAT

图1

芥菜型油菜紫叶芥BjA09.TT8和BjB08.TT8二级结构和三级结构预测 A: 芥菜型油菜紫叶芥BjA09.TT8和BjB08.TT8二级结构预测; B: 芥菜型油菜紫叶芥BjA09.TT8和BjB08.TT8三级结构预测。"

图2

紫叶芥和四川黄籽BjA09.TT8和BjB08.TT8组织表达特异性分析 A: BjA09.TT8基因在PM中特异性表达; B: BjA09.TT8基因在SY中特异性表达; C: BjB08.TT8基因在PM中特异性表达; D: BjB08.TT8基因在SY中特异性表达。PM: 紫叶芥; SY: 四川黄籽。*和**分别表示在0.05和0.01水平上差异显著。"

图3

MeJA诱导紫叶芥BjA09.TT8和BjB08.TT8基因表达分析 *表示在0.05水平上差异显著。"

图4

芥菜型油菜毛状根中BjA09.TT8和BjB08.TT8基因相对表达量 A: BjA09.TT8基因在紫叶芥毛状根中相对表达量; B: BjA09.TT8基因在四川黄籽毛状根中相对表达量; C: BjB08.TT8基因在紫叶芥毛状根中相对表达量; D: BjB08.TT8基因在四川黄籽毛状根中相对表达量。A4: 野生型毛状根; 3301: 转pCAMBIA3301空载体毛状根; PTT8-A1-A3: 转BjA09.TT8基因紫叶芥毛状根; PTT8-B1-B3: 转BjB08.TT8基因紫叶芥毛状根; STT8-A1-A3: 转BjA09.TT8基因四川黄籽毛状根; STT8-B1-B3: 转BjB08.TT8基因四川黄籽毛状根。PM: 紫叶芥; SY: 四川黄籽。每组数据代表3次生物学重复的平均值±SD。*和**分别表示在0.05和0.01水平上呈显著性差异。"

图5

转BjA09.TT8、BjB08.TT8基因毛状根中类黄酮代谢途径关键酶基因的相对表达量 A: 转PM毛状根A4、pCAMBIA3301空载和BjA09.TT8根系中类黄酮代谢途径关键酶基因的相对表达量检测; B: 转SY毛状根A4、pCAMBIA3301空载和BjA09.TT8根系中类黄酮代谢途径关键酶基因的相对表达量检测; C: 转PM毛状根A4、pCAMBIA3301空载和BjB08.TT8根系中类黄酮代谢途径关键酶基因的相对表达量检测; D: 转SY毛状根A4、pCAMBIA3301空载和BjB08.TT8根系中类黄酮代谢途径关键酶基因的相对表达量检测。内参基因: ACTIN7。PM: 紫叶芥; SY: 四川黄籽。PAL: 苯丙氨酸脱氨酶; CHS: 查尔酮合成酶; CHI: 查尔酮异构酶; F3H: 黄烷酮3-羟化酶; F3’H: 类黄酮3’-羟化酶; FLS: 黄酮醇合酶; DFR: 二氢黄酮醇还原酶; ANS: 花青素合成酶; BAN: 花色素还原酶。每组数据代表3次生物学重复的平均值±SD。*和**分别表示在0.05和0.01水平上呈显著性差异。"

图6

转BjA09.TT8、BjB08.TT8基因毛状根中总黄酮含量检测 A: PM毛状根转A4、pCAMBIA3301空载和BjA09.TT8根系中总黄酮含量检测; B: SY毛状根转A4、pCAMBIA3301空载和BjA09.TT8根系中总黄酮含量检测; C: PM毛状根转A4、pCAMBIA3301空载和BjB08.TT8根系中总黄酮含量检测; D: SY毛状根转A4、pCAMBIA3301空载和BjB08.TT8根系中总黄酮含量检测; PM: 紫叶芥; SY: 四川黄籽。每组数据代表3次生物学重复的平均值±SD。*和**分别表示在0.05和0.01水平上呈显著性差异。"

图7

转基因拟南芥叶片中BjA09.TT8和BjB08.TT8的相对表达量 A: 转BjA09.TT8基因拟南芥相对表达量检测; B: 转BjB08.TT8基因拟南芥相对表达量检测。WT: 野生型拟南芥; 3301: 转pCAMBIA3301载体拟南芥; TT8-A1-A3、TT8-B1-B3: 转基因阳性株系。**表示在0.01水平上有显著差异。"

图8

转基因拟南芥中总黄酮和原花色素含量检测 A: 野生型、转pCAMBIA3301空载和BjA09转TT8的拟南芥总黄酮含量检测; B: 野生型、转pCAMBIA3301和BjB08转TT8的拟南芥原花色素含量检测。TT8-A9、TT8-B8: 转基因阳性株。每组数据代表3次生物学重复的平均值±SD。**表示在0.01水平上有显著差异。"

图9

转基因拟南芥表型鉴定 a: 野生型拟南芥植株; b: 转BjA09.TT8基因拟南芥; c: 转BjB08.TT8基因拟南芥。"

图10

拟南芥tt8中过表达BjA09.TT8和BjB08.TT8后基因的表达量检测 WT: 野生型拟南芥; 3301: 回补pCAMBIA3301载体的拟南芥; tt8-TT8-A1-A3: 回补BjA09.TT8基因的阳性株系; tt8-TT8-B1-B3: 回补BjB08.TT8基因的阳性株系。**表示在0.01水平上有显著差异。"

图11

拟南芥tt8中过表达BjA09.TT8和BjB08.TT8后的总黄酮和原花色素含量检测 A: 回补BjA09.TT8和BjB08.TT8的拟南芥tt8突变体总黄酮含量检测; B: 回补BjBjA09.TT8和BjB08.TT8的拟南芥tt8突变体植株的原花色素含量检测。tt8: 对照组; TT8-A1-A3: 回补BjA09.TT8基因的阳性株系; TT8-B1-B3: 回补BjB08.TT8基因的阳性株系。每组数据代表3次生物学重复的平均值±SD。**表示在0.01水平上有显著差异。"

图12

拟南芥tt8中过表达BjA09.TT8和BjB08.TT8的表型 a: tt8突变体拟南芥植株; b: 回补BjA09.TT8基因的拟南芥tt8突变体植株; c: 回补BjB08.TT8基因的拟南芥tt8突变体的植株。"

[1] Liu L L, Huang T, Ding S P, Wang Y, Yan M L. BANYULS genes from Brassica juncea and Brassica nigra: cloning, evolution and involvement in seed coat colour. J Agric Sci, 2017, 155:421-430.
doi: 10.1017/S0021859616000435
[2] Rauf A, Imran M, Abu-Izneid T, Patel S, Suleria R. Proanthocyanidins: a comprehensive review. Biomed Pharmacoth, 2019, 116:108999.
doi: 10.1016/j.biopha.2019.108999
[3] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径. 作物学报, 2020, 46:1322-1331.
doi: 10.3724/SP.J.1006.2020.04008
Gao G Y, Wu X F, Huang W, Zhou D G, Zhang D W, Zhou M L, Zhang K X, Yan M L. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea. Acta Agron Sin, 2020, 46:1322-1331 (in Chinese with English abstract).
[4] Sarmita J, Dipak P, Shweta P, Kapil U, Jaymesh T, Rahul M, Santasabuj D, Ranjitsinh D, Suresh Y. Anthocyanin rich extract of Brassica oleracea L. alleviates experimentally induced myocardial infarction. PLoS One, 2017, 12:e0182137.
[5] Zhang K X, Logacheva M D, Meng Y, Hu J P, Wan D P, Li L, Dagmar J, Wang Z Y, Georgiev M I, Yu Z, Yang F Y, Yan M L, Zhou M L. Jasmonate-responsive MYB factors spatially repress rutin biosynthesis in Fagopyrum tataricum. J Exp Bot, 2018, 69:1955-1966.
doi: 10.1093/jxb/ery032
[6] Xie Q, Hu Z, Zhang Y, Tian S, Chen G. Accumulation and molecular regulation of anthocyanin in purple tumorous stem mustard (Brassica juncea var. tumida Tsen et Lee). J Agric Food Chem, 2014, 62:7813-7821.
doi: 10.1021/jf501790a
[7] Liu X, Lu Y, Yan M, Sun D, Hu X, Liu S, Chen S, Guan C, Liu Z. Genome-wide identification, localization, and expression analysis of proanthocyanidin-associated genes in Brassica. Front Plant Sci, 2016, 7:1831.
[8] Zhai Y G, Yu K D, Cai S L, Hu L M, Amoo O, Xu L, Yang Y, Ma B, Jiao Y M, Zhang C F, Khan M H, Khan S U, Fan C C, Zhou Y M. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J, 2019, 18:1153-1168.
doi: 10.1111/pbi.v18.5
[9] Li X, Chen L, Hong M Y, Zhang Y, Zu F, Wen J, Yi B, Ma C Z, Shen J X, Tu J X, Fu T D. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One, 2012, 7:e44145.
[10] Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea(AABB). Theor Appl Genet, 2014, 127:339-347.
doi: 10.1007/s00122-013-2222-6
[11] 袁玉辉. 芥菜型油菜TT8干扰载体的构建及遗传转化. 湖南农业大学硕士学位论文, 湖南长沙, 2013.
Yuan Y H. The Construction of TT8 Interference Vector and Genetic Transformation of Brassica juncea (L.). MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2013 (in Chinese with English abstract).
[12] 刘显军. 芥菜型油菜黄籽基因克隆和黄籽形成机制分析. 湖南农业大学博士学位论文, 湖南长沙, 2013.
Liu X J. Positional Cloning of the Gene for Seed Color and Molecular Mechanism of Yellow Seed Formation in Brassica juncea. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2013 (in Chinese with English abstract).
[13] 岳迎春. 芥菜型油菜种皮颜色转录因子基因TT2遗传转化体系优化及种皮色素分析. 湖南农业大学硕士学位论文, 湖南长沙, 2010.
Yue Y C. Pigment Analysis of the Seed Coat Color Transcription Factor Gene TT2 Genetic Transformation System Optimization in Brassic juncea. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract).
[14] Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y H, Yao P, Li X M, Xie K, Zhang J H, Wang J L, Liu F, Ma W W, Shopan J, Zheng H K, Mackenzie S A, Zhang M F. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet, 2016, 48:1225.
doi: 10.1038/ng.3657
[15] 王成龙. 苦荞毛状根的诱导及高频再生体系的建立. 四川农业大学硕士学位论文, 四川成都, 2015.
Wang C L. Induction of Tartary Buckwheat Hairy Roots and Establishment of High Frequency Regeneration System. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015 (in Chinese with English abstract).
[16] 李隆, 程成, 伍小方, 张大为, 刘丽莉, 周静, 周美亮, 张凯旋, 严明理. 芥菜型油菜毛状根诱导体系构建及TTG1基因功能初步研究. 作物学报, 2018, 44:1468-1476.
Li L, Cheng C, Wu X F, Zhang D W, Liu L L, Zhou J, Zhou M L, Zhang K X, Yan M L. Construction of hairy root induction system and functional analysis of TTG1 gene in Brassica juncea. Acta Agron Sin, 2018, 44:1380-1388 (in Chinese with English abstract).
[17] 范昱, 王红力, 何凤, 赖弟利, 王佳俊, 宋月, 向达兵. 后熟对苦荞子粒营养品质的影响. 作物杂志, 2018, (1):96-101.
Fan Y, Wang H L, He F, Lai D L, Wang J J, Song Y, Xiang D B. Nutritional quality in seeds of tartary buckwheat affected by after-ripening. Crops, 2018, (1):96-101 (in Chinese with English abstract).
[18] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16:735-743.
pmid: 10069079
[19] 蒋晓岚, 孟菲, 刘亚军, 万根文, 吴珂, 夏涛, 高丽萍. 茶树根原花青素提取工艺及检测方法的优化. 安徽农业大学学报, 2013, 40:891-898.
Jiang X L, Meng F, Liu Y J, Wan G W, Wu K, Xia T, Gao L P. Optimization of extraction technology and detection method on proanthocyanidins in tea root. J Anhui Agric Univ, 2013, 40:891-898 (in Chinese with English abstract).
[20] Pak H, Guo Y, Chen M X, Chen K M, Li Y L, Hua S J, Shamsi I, Meng H B, Shi C G, Jiang L X. The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.). Planta, 2009, 231:79-91.
doi: 10.1007/s00425-009-1029-9
[21] Nardi C F, Villarreal N M, Opazo M C, Martínez G A, Moya-León M A, Civello P M. Expression of FaXTH1 and FaXTH2 genes in strawberry fruit cloning of promoter regions and effect of plant growth regulators. Sci Hortic, 2014, 165:111-122.
doi: 10.1016/j.scienta.2013.10.035
[22] Zhang L, Yang T, Li X Y, Hao H, Wang C. Cloning and characterization of a novel Athspr promoter specifically active in vascular tissue. Plant Physiol Biochem, 2014, 78:88-96.
doi: 10.1016/j.plaphy.2014.02.019
[23] Carvalhais L C, Schenk P M, Dennis P G. Jasmonic acid signalling and the plant holobiont. Curr Opin Microbiol, 2017, 37:42-47.
doi: S1369-5274(16)30200-4 pmid: 28437665
[24] Zhao C Y, Wang F, Lian Y H, Xiao H, Zheng J K. Biosynthesis of citrus flavonoids and their health effects. Crit Rev Food Sci Nutr, 2020, 60:566-583.
doi: 10.1080/10408398.2018.1544885
[25] Nesi N, Debeaujon I, Jond C, Pelletier G, Lepiniec L. The TT8 gene encodes a basic Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell, 2000, 12:1863-1878.
pmid: 11041882
[26] Zhang D W, Liu L L, Zhou D G, Liu X J, Liu Z S, Yan M L. Genome-wide identification and expression analysis of anthocyanin biosynthetic genes in Brassica juncea. J Integr Agric, 2020, 19:1250-1260.
doi: 10.1016/S2095-3119(20)63172-0
[27] 严明理, 刘显军, 刘忠松, 官春云, 袁谋志, 熊兴华. 芥菜型油菜4-二氢黄酮醇还原酶基因的克隆和表达分析. 作物学报, 2008, 34:1-7.
doi: 10.3724/SP.J.1006.2008.00001
Yan M L, Liu X J, Liu Z S, Guan C Y, Yuan M Z, Xiong X H. Cloning and expression analysis of the dihydroflavonol 4-reductase gene in Brassica juncea. Acta Agron Sin, 2008, 34:1-7 (in Chinese with English abstract).
[28] Yan M L, Liu X J, Guan C Y, Chen X B, Liu Z S. Cloning and expression analysis of an anthocyanidin synthase gene homolog from Brassica juncea. Mol Breed, 2011, 28:313-322.
doi: 10.1007/s11032-010-9483-4
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[3] 罗凯, 谢琛, 汪锦, 王甜, 何舜, 雍太文, 杨文钰. 外源喷施植物生长调节剂对套作大豆碳氮代谢和花荚脱落的影响[J]. 作物学报, 2021, 47(4): 752-760.
[4] 邱红梅, 陈亮, 侯云龙, 王新风, 陈健, 马晓萍, 崔正果, 张玲, 胡金海, 王跃强, 邱丽娟. 大豆种子颜色遗传调控机制研究进展[J]. 作物学报, 2021, 47(12): 2299-2313.
[5] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331.
[6] 王艳花, 荐红举, 邱晓, 李加纳. 白菜型油菜粒色主效基因BrTT1的调控机制分析[J]. 作物学报, 2020, 46(11): 1678-1689.
[7] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[8] 刘浩,鲁清,李海芬,李少雄,陈小平,梁炫强,洪彦彬. 花生硬脂酰-ACP酸脱饱和基因FAB2表达的分子机制[J]. 作物学报, 2019, 45(11): 1638-1648.
[9] 朱广龙,宋成钰,于林林,陈许兵,智文芳,刘家玮,焦秀荣,周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724.
[10] 李隆,程成,伍小方,张大为,刘丽莉,周静,周美亮,张凯旋,严明理. 芥菜型油菜毛状根诱导体系构建及TTG1基因功能初步研究[J]. 作物学报, 2018, 44(10): 1468-1476.
[11] 黄启秀,曲延英,姚正培,李梦雨,陈全家*. 海岛棉枯萎病抗性与类黄酮代谢相关基因表达量的相关[J]. 作物学报, 2017, 43(12): 1791-1801.
[12] 张小萌,刘松江,龚文芳,孙君灵,庞保印,杜雄明. 植物生长调节剂对彩色棉胚珠离体培养纤维发育的影响[J]. 作物学报, 2017, 43(05): 763-776.
[13] 王刚,张向向,徐平,吕泽文,文静,易斌,马朝芝,涂金星,傅廷栋,沈金雄*. 芥菜型油菜多室基因Bjmc2的精细定位[J]. 作物学报, 2016, 42(12): 1735-1742.
[14] 杜海,冉凤,马珊珊,柯蕴倬,孙丽萍,李加纳,唐益雄. GmMYB042基因对类黄酮生物合成的调控作用[J]. 作物学报, 2016, 42(01): 1-10.
[15] 何海旺,潘华清,张铙丹,何龙飞*. 飞机草类黄酮3’-羟化酶基因(CoF3’H)的克隆及其在烟草中的表达[J]. 作物学报, 2015, 41(03): 479-486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!