作物学报 ›› 2022, Vol. 48 ›› Issue (6): 1357-1371.doi: 10.3724/SP.J.1006.2022.14091
陈松余(), 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方*(), 钱伟
CHEN Song-Yu(), DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang*(), QIAN Wei
摘要:
CNGC是植物中普遍存在的环核苷酸门控通道, 对植物的逆境响应有重要作用。系统分析甘蓝型油菜BnCNGC基因家族成员全基因组分布、结构、进化及其响应不同逆境胁迫的表达特性, 对于阐明其生物学功能具有重要意义。本研究利用拟南芥和甘蓝CNGC蛋白保守结构域及特异基序氨基酸序列在全基因组水平鉴定了甘蓝型油菜BnCNGC家族成员, 分析其基因结构、染色体定位、蛋白理化性质、蛋白保守结构域、系统进化及启动子顺式作用元件等。利用转录组数据, 筛选甘蓝型油菜逆境响应候选BnCNGC成员, 并采用实时荧光定量PCR分析其在核盘菌、PEG模拟干旱胁迫下的表达模式。结果显示, 共鉴定到49个甘蓝型油菜BnCNGC成员, 分布于除A08、C06的17对染色体上, 含有5~10个内含子, 其上游1500 bp包含大量逆境胁迫响应元件。BnCNGC家族成员编码的蛋白质含413~801个氨基酸, 相对分子量(MW)范围47.62~110.58 kD, 等电点(pI)范围6.10~9.88。系统进化分析表明, BnCNGC分为Group I、II、III和IV四类。转录组数据分析表明, BnCNGC9、BnCNGC27和BnCNGC48均参与逆境胁迫响应。实时荧光定量PCR分析表明, 甘蓝型油菜叶片中BnCNGC9、BnCNGC27和BnCNGC48均在核盘菌胁迫下表达下调, 下调量分别为48.2%~99.1%、79.4%~87.1%和39.7%~92.6%。PEG模拟干旱胁迫时, 甘蓝油菜叶片中BnCNGC9在处理24 h后上调3.34倍, BnCNGC48在处理48 h后上调6.27倍, BnCNGC27对干旱胁迫不敏感。
[1] |
Hu Z Y, Wang X F, Zhan G M, Liu G H, Hua W, Wang H Z. Unusually large oil bodies are highly correlated with lower oil content in Brassica napus. Plant Cell Rep, 2009, 28: 541-549.
doi: 10.1007/s00299-008-0654-2 |
[2] |
Lu C F, Napier J A, Clemente T E, Cahoon E B. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol, 2011, 22: 252-259.
doi: 10.1016/j.copbio.2010.11.006 |
[3] | 张霖, 赵翔, 王亚静, 张骁. NO与Ca2+对蚕豆保卫细胞气孔运动的互作调控. 作物学报, 2009, 35: 1491-1499. |
Zhang L, Zhao X, Wang Y J, Zhang X. Crosstalk of NO with Ca2+ in stomatal movement in Vicia faba guard cells. Acta Agron Sin, 2009, 35: 1491-1499 (in Chinese with English abstract). | |
[4] |
苏炜华, 刘峰, 黄珑, 苏亚春, 黄宁, 凌辉, 吴期滨, 张华, 阙友雄. 甘蔗Ca2+/H+反向运转体基因的克隆与表达分析. 作物学报, 2016, 42: 1074-1082.
doi: 10.3724/SP.J.1006.2016.01074 |
Su W H, Liu F, Huang L, Su Y C, Huang N, Ling H, Wu Q B, Zhang H, Que Y X. Cloning and expression analysis of a Ca2+/H+ antiporter gene from sugarcane. Acta Agron Sin, 2016, 42: 1074-1082 (in Chinese with English abstract). | |
[5] | Defalco T A, Marshall C B, Munro K, Kang H G, Moeder W, Ikura M, Snedden W A, Yoshioka K. Multiple calmodulin- binding sites positively and negatively regulate Arabidopsis cyclic nucleotide-gated channel 12. Plant Cell, 2016, 28: 1738. |
[6] |
Talke I N, Blaudez D, Maathuis F J M, Sanders D. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci, 2003, 8: 286-293.
pmid: 12818663 |
[7] |
Köhler C, Neuhaus G. Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett, 2000, 471: 133-136.
pmid: 10767408 |
[8] | Sunkar R, Kaplan B, Bouché N, Arazi T, Fromm H. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J, 2010, 24: 533-542. |
[9] |
Yoshioka K, Moeder W, Kang H G, Kachroo P, Masmoudi K, Berkowitz G, Klessiq D F. The chimeric cyclic nucleotide-gated ion channel AtCNGC11/12 activates multiple pathogen resistance responses. Plant Cell, 2006, 18: 747.
pmid: 16461580 |
[10] |
Fesenko E E, Kolesnikov S S, Lyubarsky A L. Induction by Cyclic-GMP of cationic conductance in plasma-membrane of retinal rod outer segment. Nature, 1985, 313: 310-313.
doi: 10.1038/313310a0 |
[11] |
Chin K, Moeder W, Yoshioka K. Biological roles of cyclic- nucleotide-gated ion channels in plants: what we know and don’t know about this 20 members ion channel family. Botany, 2009, 87: 668-677.
doi: 10.1139/B08-147 |
[12] |
Zhou L M, Lan W Z, Jiang Y Q, Fang W, Luan S. A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol Plant, 2014, 7: 369-376.
doi: 10.1093/mp/sst125 |
[13] |
Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15: 365-379.
doi: 10.1105/tpc.006999 |
[14] |
Ma W, Qi Z, Smigel A, Walker R K, Verma R, Berkowitz G A. Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci USA, 2009, 106: 20995-21000.
doi: 10.1073/pnas.0905831106 |
[15] |
Cukkemane A, Seifert R, Kaupp U B. Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem Sci, 2011, 36: 55-64.
doi: 10.1016/j.tibs.2010.07.004 pmid: 20729090 |
[16] |
Kakar K U, Nawaz Z, Kakar K, Ali E, Almoneafy A A, Ullah R, Ren X L, Shu Q Y. Comprehensive genomic analysis of the CNGC gene family in Brassica oleracea: novel insights into synteny, structures, and transcript profiles. BMC Genomics, 2017, 18: 869.
doi: 10.1186/s12864-017-4244-y |
[17] |
Li Q Q, Yang S Q, Ren J, Ye X L, Liu Z Y. Genome-wide identification and functional analysis of the cyclic nucleotide-gated channel gene family in Chinese cabbage. 3 Biotech, 2019, 9: 114.
doi: 10.1007/s13205-019-1647-2 |
[18] |
Saand M A, Xu Y P, Munyampundu J P, Li W, Zhang X R, Cai X Z. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs. DNA Res, 2015, 22: 471-483.
doi: 10.1093/dnares/dsv029 |
[19] |
Nawaz Z, Kakar K U, Ullah R, Yu S Z, Zhang J, Shu Q Y, Ren X L. Genome-wide identification, evolution and expression analysis of cyclic nucleotide-gated channels in tobacco (Nicotiana tabacum L.). Genomics, 2019, 111: 142-158.
doi: 10.1016/j.ygeno.2018.01.010 |
[20] |
Nawaz Z, Kakar K, Saand M A, Shu Q Y. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genomics, 2014, 15: 853.
doi: 10.1186/1471-2164-15-853 |
[21] |
Kaplan B, Sherman T, Fromm H. Cyclic nucleotide-gated channels in plants. FEBS Lett, 2007, 581: 2237-2246.
pmid: 17321525 |
[22] |
曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因. 作物学报, 2021, 47: 1460-1471.
doi: 10.3724/SP.J.1006.2021.04195 |
Zeng W Y, Lai Z G, Sun Z D, Yang S Z, Chen H Z, Tang X M. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq. Acta Agron Sin, 2021, 47: 1460-1471 (in Chinese with English abstract). | |
[23] |
Clough S J, Fengler K A, Yu I C, Lippok B, Smith R K, Bent A F. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA, 2000, 97: 9323-9330.
doi: 10.1073/pnas.150005697 |
[24] |
Foyer C, Vadassery J, Varma M, Kundu A, Meena M K, Jogawat A. Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. J Exp Bot, 2020, 71: 2752-2768.
doi: 10.1093/jxb/eraa028 |
[25] |
Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi D V H, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[26] | Walker J M. The Proteomics Protocols Handbook. University of Hertfordshire, Hatfield, UK: Humana Press, 2005. pp 571-607. |
[27] | Paul H, Keun-Joon P, Takeshi O, Naoya F, Hajime H, Adams-Collier C J, Kenta N. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: 585-587. |
[28] |
Hu B, Jin J P, Guo A Y, Zhang H, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817 |
[29] |
Lescot M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
doi: 10.1093/nar/30.1.325 |
[30] |
Mei J Q, Qian L, Disi J O, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2010, 177: 393-399.
doi: 10.1007/s10681-010-0274-0 |
[31] | 胡承伟, 张学昆, 邹锡玲, 程勇, 曾柳, 陆光远. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35: 48-53. |
Hu C W, Zhang X K, Zou X L, Cheng Y, Zeng L, Lu G Y. Root structure and drought tolerance of rapeseed under PEG imposed drought. Chin J Oil Crop Sci, 2013, 35: 48-53 (in Chinese with English abstract). | |
[32] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[33] |
Zelman A K, Dawe A, Berkowitz G A. Identification of cyclic nucleotide gated channels using regular expressions. Methods Mol Biol, 2013, 1016: 207-224.
doi: 10.1007/978-1-62703-441-8_14 pmid: 23681581 |
[34] |
Zelman A K, Dawe A, Gehring C, Berkowitz G A. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci, 2012, 3: 95.
doi: 10.3389/fpls.2012.00095 pmid: 22661976 |
[35] |
Mäser P, Thomine S, Schroeder J I, Ward J M, Guerinot M L. Phylogenetic relationships within cation transporter families of Arabidopsis1. J Plant Physiol, 2001, 126: 1646-1667.
doi: 10.1104/pp.126.4.1646 |
[36] |
Cheung F, Trick M, Drou N, Lim Y P, Park J Y, Kwon S J, Kim J A, Scott R, Pires J C, Paterson A H, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell, 2009, 21: 1912-1928.
doi: 10.1105/tpc.108.060376 pmid: 19602626 |
[37] |
Verkest A, Byzova M, Martens C, Willems P, Block M D. Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes. J Plant Physiol, 2015, 168: 1338-1350.
doi: 10.1104/pp.15.00155 |
[38] |
Wang P, Yang C, Chen H, Luo L, Leng Q, Li S, Han Z, Li X, Song C, Zhang X, Wang D. Exploring transcription factors reveals crucial members and regulatory networks involved in different abiotic stresses in Brassica napus L. BMC Plant Biol, 2018, 18: 202.
doi: 10.1186/s12870-018-1417-z pmid: 30231862 |
[39] |
Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007.
doi: 10.1038/srep19007 |
[40] | Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A, Zhao M X, Ma J X, Yu J Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T J, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S, Yang L M, Min J M, Zhang D, Jin D C, Li W S, Belcram H, Tu J X, Guan M, Qi C K, Du D Z, Li J, Jiang L C, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y H, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T H, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z, Liu X, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 23: 3930. |
[41] | 汪影, 张昌伟, 吕善武, 侯喜林. 大白菜BrCNGC全基因组鉴定及其表达分析. 南京农业大学学报, 2018, 41: 994-1002. |
Wang Y, Zhang C W, Lyu S W, Hou X L. Genome-wide identification and expression analysis of BrCNGC in Chinese cabbage. J Nanjing Agric Univ, 2018, 41: 994-1002 (in Chinese with English abstract). | |
[42] |
Duszyn M, Swiezawska B, Szmidt-Jaworska A, Jaworski K. Cyclic nucleotide gated channels (CNGCs) in plant signaling- current knowledge and perspectives. J Plant Physiol, 2019, 241: 153035.
doi: 10.1016/j.jplph.2019.153035 |
[43] |
Bouche N, Yellin A, Snedden W A, Fromm H. Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol, 2005, 56: 435-466.
doi: 10.1146/arplant.2005.56.issue-1 |
[44] |
Cherel I. Regulation of K + channel activities in plants: from physiological to molecular aspects. J Exp Bot, 2004, 55: 337-351.
doi: 10.1093/jxb/erh028 |
[45] | Saand M A, Xu Y P, Li W, Wang J P, Cai X Z. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs. Front Plant Sci, 2015, 6: 303. |
[46] |
Harmer S L, Hogenesch J B, Straume M, Chang H S, Han B, Zhu T, Wang X, Kreps J A, Kay S A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 2000, 290: 2110-2113.
pmid: 11118138 |
[47] |
Jeffares D C, Penkett C J, Hler J B. Rapidly regulated genes are intron poor. Trends Genet, 2008, 24: 375-378.
doi: 10.1016/j.tig.2008.05.006 pmid: 18586348 |
[1] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[2] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[5] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[9] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[10] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[11] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[12] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[13] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[14] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[15] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
|