作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1583-1600.doi: 10.3724/SP.J.1006.2022.14121
李佩婷1(), 赵振丽1, 黄潮华1, 黄国强1, 徐良年1, 邓祖湖1, 张玉2,*(), 赵新旺1,3,4,*()
LI Pei-Ting1(), ZHAO Zhen-Li1, HUANG Chao-Hua1, HUANG Guo-Qiang1, XU Liang-Nian1, DENG Zu-Hu1, ZHANG Yu2,*(), ZHAO Xin-Wang1,3,4,*()
摘要:
干旱是制约甘蔗产业发展的重要因素之一。前人研究表明, 斑茅具有良好的抗性基因, 可以通过远缘杂交遗传给后代。本研究以斑茅与甘蔗杂交F1代无性系YCE96-40为材料, 对苗期干旱处理0 h和24 h后的叶和根进行转录组测序分析, 比较了根和叶在转录水平上响应干旱的差异, 鉴定出21,885个(DR vs CR:10176, DL vs CL:7907)差异表达基因(DEGs), 根中差异表达基因多于叶中, 说明根对干旱胁迫响应更为剧烈。GO功能富集分析发现, 根和叶中DEGs均富集到与脱水反应相关及激素信号转导过程相关的条目, 比如“对渗透胁迫生物过程的响应”和“对缺水生物过程的反应”等。与叶不同的是, 根中大量DEGs显著富集到与细胞膜相关的条目。在根中鉴定出多个木质素相关DEGs, 表明木质素参与了根的干旱响应。通过对所有DEGs进行WGCNA分析, 共鉴定出11个基因共表达模块, 其中与干旱处理后的根显著相关有5个模块, 与干旱处理后的叶显著相关的有2个模块。进一步筛选出了26个转录因子为甘蔗干旱响应的候选转录因子, 构建了调控网络。研究结果为进一步理解甘蔗抗旱性的分子机制及甘蔗抗旱性育种提供了理论指导。
[1] |
Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci, 2015, 72: 673-689.
doi: 10.1007/s00018-014-1767-0 |
[2] |
Ma Y, Dias M C, Freitas H. Drought and salinity stress responses and microbe-induced tolerance in plants. Front Plant Sci, 2020, 11: 591911.
doi: 10.3389/fpls.2020.591911 |
[3] | 曾廷儒.玉米转高粱SbSNAC1基因抗旱性鉴定及其分子机制解析. 中国农业科学院博士学位论文, 北京, 2020. |
Zeng T R.Identification of Drought-resistant Lines and Analysis of Its Molecular Mechanism of Transgenic Sorghum SbSNAC1 Gene in Maize. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2020. (in Chinese with English abstract) | |
[4] | Gentile A, Dias L I, Mattos R S, Ferreira T H, Menossi M. MicroRNAs and drought responses in sugarcane. Front Plant Sci, 2015, 6: 58. |
[5] |
Zhang Y B, Yang S L, Dao J M, Deng J, Shahzad A N, Fan X, Li R D, Quan Y J, Bukhari S H, Zeng Z H. Drought-induced alterations in photosynthetic, ultrastructural and biochemical traits of contrasting sugarcane genotypes. PLoS One, 2020, 15: e0235845.
doi: 10.1371/journal.pone.0235845 |
[6] | 罗晟昇, 廖韦卫, 韦海球, 何洪良, 蒋亚琴, 唐利球. 干旱胁迫对甘蔗生长研究进展. 中国热带农业, 2020, (5): 70-73. |
Luo S S, Liao W W, Wei H Q, He H L, Jiang Y Q, Tang L Q. Research progress of drought stress on sugarcane growth. China Trop Agric, 2020, (5): 70-73. (in Chinese with English abstract) | |
[7] | 李海碧, 桂意云, 张荣华, 韦金菊, 杨荣仲, 张小秋, 李杨瑞, 周会, 刘昔辉. 甘蔗抗旱性及抗旱育种研究进展. 分子植物育种, 2019, 17: 3406-3415. |
Li H B, Gui Y Y, Zhang R H, Wei J J, Yang R Z, Zhang X Q, Li Y R, Zhou H, Liu X H. Research progress on drought resistance and drought-resistant breeding of sugarcane. Mol Plant Breed, 2019, 17: 3406-3415. (in Chinese with English abstract) | |
[8] |
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S J F S D, Plant drought stress: effects, mechanisms and management. Agron Sustain Dev, 2009, 29: 185-212.
doi: 10.1051/agro:2008021 |
[9] |
Sallam A, Alqudah A M, Dawood M F A, Baenziger P S, Börner A. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci, 2019, 20: 3137.
doi: 10.3390/ijms20133137 |
[10] | 刘励蔚. 玉米根系发育与抗旱栽培的研究. 吉林农业, 2019, (22): 35. |
Liu L W. Study on root development and drought resistant cultivation of maize. Jilin Agric, 2019, (22): 35. (in Chinese with English abstract) | |
[11] |
Marcos F C C, Silveira N M, Mokochinski J B, Sawaya A, Marchiori P E R, Machado E C, Souza G M, Landell M G A, Ribeiro R V. Drought tolerance of sugarcane is improved by previous exposure to water deficit. J Plant Physiol, 2018, 223: 9-18.
doi: 10.1016/j.jplph.2018.02.001 |
[12] | 温琦, 赵文博, 张幽静, 梁塔娜, 张艳欣, 李丽丽, 黄凤兰. 植物干旱胁迫响应的研究进展. 江苏农业科学, 2020, 48(12): 11-15. |
Wen Q, Zhao W B, Zhang Y J, Liang T N, Zhang Y X, Li L L, Huang F L. Research progress of plant response to drought stress. Jiangsu Agric Sci, 2020, 48(12): 11-15. (in Chinese with English abstract) | |
[13] |
Takahashi F, Kuromori T, Sato H, Shinozaki K. Regulatory gene networks in drought stress responses and resistance in plants. Adv Exp Med Biol, 2018, 1081: 189-214.
doi: 10.1007/978-981-13-1244-1_11 pmid: 30288711 |
[14] |
Gahlaut V, Jaiswal V, Kumar A, Gupta P K.Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat (Triticum aestivum L.). Theor Appl Genet, 2016, 129: 2019-2042.
pmid: 27738714 |
[15] |
Thirumalaikumar V P, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, Mueller-Roeber B, Balazadeh S. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J, 2018, 16: 354-366.
doi: 10.1111/pbi.12776 pmid: 28640975 |
[16] |
El-Esawi M A, Alayafi A A. Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton(Gossypium barbadense L.) . Genes (Basel), 2019, 10: 142.
doi: 10.3390/genes10020142 |
[17] |
Zhao J, Ren W, Zhi D, Wang L, Xia G. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep, 2007, 26: 1521-1528.
doi: 10.1007/s00299-007-0362-3 |
[18] | 张余. 水稻抗逆相关基因OsEBP89和OsRMT1功能研究. 华中农业大学博士学位论文 , 湖北武汉, 2020. |
Zhang Y. Functional Characterization of Two Stress-related Genes OsEBP89 and OsRMT1 in Rice . PhD Dissertation of Huazhong Agricultural University, Hubei, Wuhan, China, 2020. (in Chinese with English abstract) | |
[19] |
翟楠鑫, 迟会, 夏玥琳, 刘彩月, 裴新梧, 袁潜华. 海南山栏稻抗旱基因转录组分析. 生物技术通报, 2020, 36(12): 12-20.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0422 |
Zhai N X, Chi H, Xia Y L, Liu C Y, Pei X W, Yuan Q H. Transcriptome analysis of drought-resistant genes in Hainan Shanlan Upland Rice. Biotechnol Bull, 2020, 36(12): 12-20. (in Chinese with English abstract) | |
[20] | 张文云, 张建诚, 姚景珍. 氮胁迫下小麦叶片转录组分析. 中国农业科技导报, 2020, 22(11): 26-34. |
Zhang W Y, Zhang J C, Yao J Z. Transcriptome analysis of wheat leaves under nitrogen stress. J Agric Sci Technol, 2020, 22(11): 26-34. (in Chinese with English abstract) | |
[21] |
Henry R J, Furtado A, Rangan P. Wheat seed transcriptome reveals genes controlling key traits for human preference and crop adaptation. Curr Opin Plant Biol, 2018, 45: 231-236.
doi: 10.1016/j.pbi.2018.05.002 |
[22] |
Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael A J, Tohge T, Yamazaki M, Saito K. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J, 2014, 77: 367-379.
doi: 10.1111/tpj.12388 |
[23] |
Rodrigues F A, Laia M L D, Zingaretti S M. Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Sci, 2009, 176: 286.
doi: 10.1016/j.plantsci.2008.11.007 |
[24] | Belesini A A, Carvalho F M S, Telles B R, De Castro G M, Giachetto P F, Vantini J S, Carlin S D, Cazetta J O, Pinheiro D G, Ferro M I T. De novo transcriptome assembly of sugarcane leaves submitted to prolonged water-deficit stress. Genet Mol Res, 2017, 16: 1-20 |
[25] | 吴嘉云.甘蔗与斑茅后代染色体遗传分析及抗性初步评价. , 福建农林大学博士学位论文, 福建福州 2013. |
Wu J Y.The Chromosome Inheritance for the Hybrid Progeny of S. officinarum L. and E. arundinaceum and Germplasm Resistance Preliminary Evaluation. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2013. (in Chinese with English abstract) | |
[26] | 刀志学, 鄢家俊, 张建波, 常丹, 白史且, 陈智华, 李达旭, 游明鸿, 张玉, 张昌兵, 张劲, 严旭, 胡超, 张瑜. 斑茅野生种质资源的考察与收集. 植物遗传资源学报, 2013, 14: 816-820. |
Dao Z X, Yan J J, Zhang J B, Chang D, Bai S Q, Chen Z H, Li D X, You M H, Zhang Y, Zhang C B, Zhang J, Yan X, Hu C, Zhang Y. Investigation and ppub of wild Erianthus arundinaceum germplasm resources. J Plant Genet Resour, 2013, 14: 816-820. (in Chinese with English abstract) | |
[27] | 黄永吉, 吴嘉云, 刘少谋, 邓祖湖, 符成, 林彦铨, 李奇伟, 黄忠兴, 陈如凯. 基于GISH的甘蔗与斑茅F1染色体遗传与核型分析. 植物遗传资源学报, 2014, 15: 394-398. |
Huang Y J, Wu J Y, Liu S M, Deng Z H, Fu C, Lin Y Q, Li Q W, Huang Z X, Chen R K. Chromosome genetic and karyotype analysis of F1 hybrids between Saccharum officinarum and Erianthus. J Plant Genet Resour, 2014, 15: 394-398. (in Chinese with English abstract) | |
[28] |
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol, 2011, 29: 644-652.
doi: 10.1038/nbt.1883 pmid: 21572440 |
[29] |
Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf, 2011, 12: 323.
doi: 10.1186/1471-2105-12-323 |
[30] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8 |
[31] |
Young M D, Wakefield M J, Smyth G K, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol, 2010, 11: R14.
doi: 10.1186/gb-2010-11-2-r14 |
[32] |
Mao X, Cai T, Olyarchuk J G, Wei L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21: 3787-3793.
doi: 10.1093/bioinformatics/bti430 |
[33] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559 |
[34] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658 |
[35] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[36] |
Begcy K, Mariano E D, Lembke C G, Zingaretti S M, Souza G M, Araújo P, Menossi M. Overexpression of an evolutionarily conserved drought-responsive sugarcane gene enhances salinity and drought resilience. Ann Bot, 2019, 124: 691-700.
doi: 10.1093/aob/mcz044 |
[37] |
Kim Y, Chung Y S, Lee E, Tripathi P, Heo S, Kim K H. Root response to drought stress in rice (Oryza sativa L.) . Int J Mol Sci 2020, 21: 1513.
doi: 10.3390/ijms21041513 |
[38] |
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet, 2013, 45: 1097-1102.
doi: 10.1038/ng.2725 |
[39] |
邱丽丽, 赵琪, 张玉红, 戴绍军. 植物质膜蛋白质组的逆境应答研究进展. 植物学报, 2017, 52: 128-147.
doi: 10.11983/CBB16001 |
Qiu L L, Zhao Q, Zhang Y H, Dai S J. Research progress on stress response of plant plasma membrane proteome. Chin Bull Bot, 2017, 52: 128-147. (in Chinese with English abstract) | |
[40] |
Liu X, Zhang Y, Yang H, Liang Y, Li X, Oliver M J, Zhang D.Functional aspects of early light-induced protein (ELIP) genes from the desiccation-tolerant moss Syntrichia caninervis. Int J Mol Sci, 2020, 21: 1411.
doi: 10.3390/ijms21041411 |
[41] |
Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot, 2009, 103: 551-560.
doi: 10.1093/aob/mcn125 |
[42] | Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. italic>J Plant Physiol, 2004, 161: 1189-1202. |
[43] |
Challabathula D, Zhang Q, Bartels D. Protection of photosynthesis in desiccation-tolerant resurrection plants. J Plant Physiol, 2018, 227: 84-92.
doi: 10.1016/j.jplph.2018.05.002 |
[44] | 马文静. 外源NO对干旱胁迫下紫花苜蓿幼苗苯丙烷类代谢及miRNA调控的影响. 甘肃农业大学硕士学位论文, 甘肃兰州, 2019. |
Ma W J. Effects of Exogenous Nitric Oxide on Phenylpropanoid Metabolism and Regulation of miRNAs in Alfalfa Seedlings under Drought Stress. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2019. (in Chinese with English abstract) | |
[45] |
Ortega-García F, Peragón J. The response of phenylalanine ammonia-lyase, polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv. Picual). J Sci Food Agric, 2010, 89: 1565-1573.
doi: 10.1002/jsfa.3625 |
[46] | 刘威.薄皮甜瓜肉桂醇脱氢酶(CAD)在非生物胁迫下参与木质素合成的功能探究. 沈阳农业大学博士学位论文,辽宁沈阳, 2019. |
Liu W.Functional Research of CmCADs in Lignin Biosynthesis in Oriental Melon (Cucumis melo L.) under Abiotic Stresses. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2019. (in Chinese with English abstract) | |
[47] | 黄汉唐.木质素代谢相关基因在柚果实发育过程中的作用机制初探. 福建农林大学硕士学位论文, 福建福州, 2020. |
Huang H T. Preliminary Exploration on Mechanism of Lignin Metabolism Related Genes of Pomelo during Fruit Development Stages. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2020. (in Chinese with English abstract) | |
[48] | 刘少锋.甘蓝型油菜甘油三磷酸脱氢酶(BnaGPDH)基因cDNA的克隆与功能分析. 湖南农业大学硕士学位论文, 湖南长沙, 2018. |
Liu S F. Cloning and Function Analysis of Glycerol-3-Phosphate Dehydrogenase (BnaGPDH) cDNA from Brassica napus. MS Thesis of Hunan Agricultural University,Changsha, Hunan, China 2018. (in Chinese with English abstract) | |
[49] |
Zhao Y, Liu M, He L, Li X, Wang F, Yan B, Wei J, Zhao C, Li Z, Xu J. A cytosolic NAD(+)-dependent GPDH from maize (ZmGPDH1) is involved in conferring salt and osmotic stress tolerance. BMC Plant Biol, 2019, 19: 16.
doi: 10.1186/s12870-018-1597-6 |
[50] | 齐岩, 李杰, 李莹, 刘西燕, 冀好布套, 朱延明, 柏锡, 才华. 转OsMAPK4基因烟草的抗旱性研究与遗传分析. 遗传, 2007, 29: 1144-1148. |
Qi Y, Li J, Li Y, Liu X Y, Ji Hao B T, Zhu Y M, Bo X, Cai H. Drought resistance and heredity of transgenic tobacco with OsMAPK4 gene. Hereditas, 2007, 29: 1144-1148. (in Chinese with English abstract) | |
[51] |
Spitzer-Rimon B, Farhi M, Albo B, Cna'ani A, Ben Zvi M M, Masci T, Edelbaum O, Yu Y, Shklarman E, Ovadis M, Vainstein A. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia. Plant Cell, 2012, 24: 5089-5105.
doi: 10.1105/tpc.112.105247 |
[52] |
Wei Q, Luo Q, Wang R, Zhang F, He Y, Zhang Y, Qiu D, Li K, Chang J, Yang G, He G. A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants. Front Plant Sci, 2017, 8: 1374.
doi: 10.3389/fpls.2017.01374 |
[53] |
Xiang L, Liu C, Luo J, He L, Deng Y, Yuan J, Wu C, Cai Y. A tuber mustard AP2/ERF transcription factor gene, BjABR1, functioning in abscisic acid and abiotic stress responses, and evolutionary trajectory of the ABR1 homologous genes in Brassica species. Peer J, 2018, 6: e6071.
doi: 10.7717/peerj.6071 |
[54] |
Chen Y S, Ho T D, Liu L, Lee D H, Lee C H, Chen Y R, Lin S Y, Lu C A, Yu S M. Sugar starvation-regulated MYBS2 and 14-3-3 protein interactions enhance plant growth, stress tolerance, and grain weight in rice. Proc Natl Acad Sci USA, 2019, 116: 21925-21935.
doi: 10.1073/pnas.1904818116 |
[55] |
Kuang J F, Wu C J, Guo Y F, Walther D, Shan W, Chen J Y, Chen L, Lu W J. Deciphering transcriptional regulators of banana fruit ripening by regulatory network analysis. Plant Biotechnol J, 2020, 19: 477-489.
doi: 10.1111/pbi.13477 |
[56] | 王爽, 李海英. 植物E3泛素连接酶与非生物胁迫相关研究进展. 中国农学通报, 2020, 36(29): 47-53. |
Wang S, Li H Y. Plant E3 ubiquitin ligase and abiotic stress: research progress. Chin Agric Sci Bull, 2020, 36(29): 47-53. (in Chinese with English abstract) | |
[57] |
Qin Q, Wang Y, Huang L, Du F, Zhao X, Li Z, Wang W, Fu B. A U-box E3 ubiquitin ligase OsPUB67 is positively involved in drought tolerance in rice. Plant Mol Biol, 2020, 102: 89-107.
doi: 10.1007/s11103-019-00933-8 |
[58] |
Lim C W, Park C, Kim J H, Joo H, Hong E, Lee S C. Pepper CaREL1, a ubiquitin E3 ligase, regulates drought tolerance via the ABA-signalling pathway. Sci Rep, 2017, 7: 477.
doi: 10.1038/s41598-017-00490-4 |
[59] |
Qanmber G, Liu J, Yu D, Liu Z, Lu L, Mo H, Ma S, Wang Z, Yang Z. Genome-wide identification and characterization of the PERK gene family in Gossypium hirsutum reveals gene duplication and functional divergence. Int J Mol Sci, 2019, 20: 1750.
doi: 10.3390/ijms20071750 |
[60] |
Silva N F, Goring D R. The proline-rich, extensin-like receptor kinase-1 (PERK1) gene is rapidly induced by wounding. Plant Mol Biol, 2002, 50: 667-685.
doi: 10.1023/A:1019951120788 |
[61] |
Wang X, Li B B, Ma T T, Sun L Y, Tai L, Hu C H, Liu W T, Li W Q, Chen K M. The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC Plant Biol, 2020, 20: 11.
doi: 10.1186/s12870-019-2234-8 |
[62] |
Muhammad T, Zhang J, Ma Y, Li Y, Zhang F, Zhang Y, Liang Y. Overexpression of a mitogen-activated protein kinase SlMAPK3 positively regulates tomato tolerance to cadmium and drought stress. Molecules, 2019, 24: 556.
doi: 10.3390/molecules24030556 |
[1] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[2] | 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657. |
[3] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[4] | 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613. |
[5] | 郭楠楠, 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮. 长链非编码RNA (LncRNA)在印度梨形孢促进大麦根部生长发育中的调控作用[J]. 作物学报, 2022, 48(7): 1625-1634. |
[6] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[7] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[8] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[9] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[10] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[11] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[12] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
[13] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[14] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[15] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
|