作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1761-1770.doi: 10.3724/SP.J.1006.2022.11046
FENG Ya-Juan1(), LI Ting-Xuan1, PU Yong2, ZHANG Xi-Zhou1,*()
摘要:
探讨镉(Cd)低积累小麦不同器官Cd积累分配特性, 有助于明晰其籽粒Cd低积累机制, 对培育Cd安全小麦品种具有重要意义。通过盆栽试验, 研究了不同Cd积累类型小麦生育后期不同器官Cd积累分配特征, 并探讨节点I和颖壳滞留Cd的部分生理机制。结果表明, 不同Cd积累类型小麦成熟期不同部位Cd积累分配存在较大差异, 绵麦37节点I和颖壳Cd含量显著高于抗锈3816, 灌浆期到成熟期是绵麦37节点I和颖壳Cd积累的关键时期。Cd处理下, 不同Cd积累类型小麦节点I和颖壳亚细胞Cd分配比例均是细胞壁最大, 占70%~80%。绵麦37节点I可溶部分分配比例为18%, 抗锈3816为15%; 而绵麦37颖壳可溶部分分配比例为19%, 是抗锈3816的2.7倍, 绵麦37节点I和颖壳将更多的Cd分配在可溶部分。灌浆期, 两类小麦节点I谷胱甘肽(GSH)含量无显著差异, Cd处理下绵麦37节点I中植物螯合肽(PC)1和PC2的含量显著低于抗锈3816, PC3和PC4的含量显著高于抗锈3816, 而绵麦37颖壳中GSH、PC1、PC2、PC3、PC4含量均显著高于抗锈3816。节点I和颖壳的细胞可溶部分对Cd的固定作用和非蛋白巯基的大量合成是绵麦37籽粒Cd低积累的关键环节, 进一步探讨小麦关键器官对Cd的滞留机理对明晰小麦籽粒Cd积累机制具有重要意义。
[1] |
许艳萍, 杨明, 郭鸿彦, 杨清辉. 5个工业大麻品种对5种重金属污染土壤的修复潜力. 作物学报, 2020, 46: 1970-1978.
doi: 10.3724/SP.J.1006.2020.04010 |
Xu Y P, Yang M, Guo H Y, Yang Q H. Phytoremediation potential of five industrial hemp varieties on five heavy metal polluted soils. Acta Agron Sin, 2020, 46: 1970-1978. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.04010 |
|
[2] |
Hu Y M, Zhou J, Du B Y, Liu H L, Zhang W T, Liang J N, Zhang W H, You L Y, Zhou J. Health risks to local residents from the exposure of heavy metals around the largest copper smelter in China. Ecotox Environ Saf, 2019, 171: 329-336.
doi: 10.1016/j.ecoenv.2018.12.073 |
[3] |
Abbas M S, Akmal M, Ullah S, Hassan M, Farooq S. Effectiveness of zinc and gypsum application against cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Soil Sci Plant Anal, 2017, 48: 1659-1668.
doi: 10.1080/00103624.2017.1373798 |
[4] |
张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响. 作物学报, 2021, 47: 2490-2500.
doi: 10.3724/SP.J.1006.2021.04246 |
Zhang Y, Wang D M, Wang X Y, Ren Q W, Tang K, Zhang L Y, Wu Y H, Liu P. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress. Acta Agron Sin, 2021, 47: 2490-2500. (in Chinese with English abstract) | |
[5] |
Qin S Y, Liu H G, Nie Z J, Rengel Z, Gao W, Li C, Zhao P. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere, 2020, 30: 168-180.
doi: 10.1016/S1002-0160(20)60002-9 |
[6] |
Yamaguchi M, Miyadate H, Akagi H, Fujimura T, Sakurai K, Satoh H, Tezuka K, Takahashi H, Satoh N N, Kawamoto T, Katou K, Masaki S, Watanabe A, Matsumoto S, Kodama I. A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet, 2010, 120: 1175-1182.
doi: 10.1007/s00122-009-1244-6 |
[7] |
Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Jian F M. Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA, 2010, 107: 16500-16505.
doi: 10.1073/pnas.1005396107 |
[8] |
Xu Q, Wang C, Li S, Li B, Li Q, Chen G, Chen W, Wang F. admium adsorption, chelation and compartmentalization limit root-to-shoot translocation of cadmium in rice (Oryza sativa L.). Environ Sci Pollut Res Int, 2017, 24: 11319-11330.
doi: 10.1007/s11356-017-8775-1 |
[9] |
Guo G H, Lei M, Wang Y W, Song B, Yang J. Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int J Environ Res Public Health, 2018, 15: 2601-2618.
doi: 10.3390/ijerph15112601 |
[10] | 张玉盛, 肖欢, 吴勇俊, 杨小粉, 汪泽钱, 伍湘, 向焱赟, 张小毅, 敖和军. 粒肥施用时期对水稻镉积累的影响初探. 华北农学报, 2020, 35(2): 144-151. |
Zhang Y S, Xiao H, Wu Y J, Yang X F, Wang J Q, Wu X, Xiang Y Y, Zhang X Y, Ao H J. Effect of application period of granular fertilizer on cadmium accumulation in rice. Acta Agric Boreali-Sin, 2020, 35(2): 144-151. (in Chinese with English abstract) | |
[11] | Kubo K, Kobayashi H, Fujita M, Ota T, Minamiyama Y, Watanabe Y, Nakajima T, Shinano T. Varietal differences in the absorption and partitioning of cadmium in common wheat (Triticum aestivum L.) . Environ Exp Bot , 2016, 124: 79-88. |
[12] |
Greger M, Landberg T. Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant Soil, 2008, 312: 195-205.
doi: 10.1007/s11104-008-9725-y |
[13] |
Zhang L G, Zhang C, Du B Y, Lu B X, Hou D M, Zhou J, Zhou J. Effects of node restriction on cadmium accumulation in eight Chinese wheat (Triticum turgidum) cultivars. Sci Total Environ, 2020, 725: 138358.
doi: 10.1016/j.scitotenv.2020.138358 |
[14] |
彭秋, 李桃, 徐卫红, 焦璐琛, 邓继宝. 不同品种辣椒镉亚细胞分布和化学形态特征差异. 环境科学, 2019, 40: 3347-3354.
pmid: 31854737 |
Peng Q, Li T, Xu W H, Jiao L C, Deng J B. Differences in the cadmium-enrichment capacity and subcellular distribution and chemical form of cadmium in different varieties of pepper. Environ Sci, 2019, 40: 3347-3354. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201901112 pmid: 31854737 |
|
[15] |
Fu X, Dou C M, Chen Y X, Chen X C, Shi J Y, Yu M G, Xu J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater, 2011, 186: 103-107.
doi: 10.1016/j.jhazmat.2010.10.122 |
[16] |
Chen G C, Liu Y Q, Wang R M, Zhang J F, Owens G. Cadmium adsorption by willow root: the role of cell walls and their subfractions. Environ Sci Pollut Res Int, 2013, 20: 5665-5672.
doi: 10.1007/s11356-013-1506-3 |
[17] | 陈爱葵, 王茂意, 刘晓海, 曾小龙. 水稻对重金属镉的吸收及耐性机理研究进展. 生态科学, 2013, 32: 514-522. |
Chen A K, Wang M Y, Liu X H, Zeng X L. Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms. Ecol Sci, 2013, 32: 514-522. (in Chinese with English abstract) | |
[18] | Huang J, Zhang Y, Peng J S, Zhong C, Yi H Y, Ow D W, Gong J M. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol, 2012, 158: 1779-1788. |
[19] |
Hart J J, Welch R M, Norvell W A, Sullivan L A, Kochian L V. Characterization of cadmium binding, uptake, and translocation in intact seedling of bread and durum wheat cultivars. Plant Physiol, 1998, 116: 1413-1420.
pmid: 9536059 |
[20] | 王芳, 丁杉, 张春华, 葛滢. 不同镉耐性水稻非蛋白巯基及镉的亚细胞和分子分布. 农业环境科学学报, 2010, 29: 625-629. |
Wang F, Ding S, Zhang C H, Ge Y. Non-protein thiols, subcellular and molecular distribution of cadmium in two rice cultivars with difference tolerance. J Agro-Environ Sci, 2010, 29: 625-629. (in Chinese with English abstract) | |
[21] |
Sun Q, Wang X R, Ding S M, Yuan X F. Effects of exogenous organic chelators on phytochelatins production and its relationship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress. Chemosphere, 2005, 60: 22-31.
pmid: 15910898 |
[22] | 冯亚娟, 黄议漫, 余海英, 张锡洲. 籽粒镉低积累小麦材料的筛选及稳定性分析. 麦类作物学报, 2021, 41: 842-850. |
Feng Y J, Huang Y M, Yu H Y, Zhang X Z. Screening of wheat materials with low cadmium accumulation in grains and characteristics of cadmium accumulation. J Triticeae Crops, 2021, 41: 842-850. (in Chinese with English abstract) | |
[23] | 明毅, 张锡洲, 余海英. 小麦籽粒镉积累差异评价. 中国农业科学, 2018, 51: 4219-4229. |
Ming Y, Zhang X Z, Yu H Y. The evaluation of Cd accumulation in grains of different wheat materials. Sci Agric Sin, 2018, 51: 4219-4229. (in Chinese with English abstract) | |
[24] | 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. |
Lu R K. Chemical Analysis Method of Soil Agriculture. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese) | |
[25] | 中华人民共和国国家标准.土壤质量铅、镉的测定石墨炉原子吸收分光光度法(GB T17141-1997). 1997. pp 93-98. |
National Standards of the People’s Republic of China.Soil Quality-Determination of Lead, Cadmium-Graphite Furnace Atomic Absorption Spectrophotometry (GB T17141-1997). 1997. pp 93-98. (in Chinese) | |
[26] | 中华人民共和国国家标准. 土壤质量有效态铅和镉的测定原子吸收法(GBT23739-2009) . 2009. pp 1-3. |
National Standards of the People’s Republic of China. Soil Quality-Analysis of Available Lead and Cadmium Contents in Soils- Atomic Absorption Spectrophotometry (GBT23739-2009) . 2009. pp 1-3. (in Chinese) | |
[27] | 中华人民共和国国家标准.食品安全国家标准食品中多元素的测定(GB 5009.268-2016). 2016. pp 1-14. |
National Standards of the People’s Republic of China. National Standard for Food Safety-Determination of Multi-Elements in Food (GB 5009. 268-2016). 2016. pp 1-14. (in Chinese) | |
[28] |
Lai H Y. Effects of leaf area and transpiration rate on accumulation and compartmentalization of cadmium in Impatiens walleriana . Water Air Soil Pollut, 2015, 226: 2246.
doi: 10.1007/s11270-014-2246-9 |
[29] |
Huang G, Ding C, Guo F, Li X, Zhou Z, Zhang T, Wang X. The role of node restriction on Cd accumulation in the brown rice of twelve Chinese rice (Oryza sativa L.) cultivars. J Agric Food Chem, 2017, 65: 10157-10164.
doi: 10.1021/acs.jafc.7b03333 |
[30] |
Liu C X, Guttieri M J, Waters B M, Eskridge K M, Easterly A, Baenziger P S. Cadmium concentration in terminal tissues as tools to select low-cadmium wheat. Plant Soil, 2018, 430: 127-138.
doi: 10.1007/s11104-018-3712-8 |
[31] |
Herren T, Feller U. Transfer of zinc from xylem to phloem in the peduncle of wheat. J Plant Nutr, 1994, 17: 1587-1598.
doi: 10.1080/01904169409364831 |
[32] | Stephan U W, Scholz G. Nicotianamine: mediator of transport of iron and heavy metals in the phloem. Physiol Plant, 1993, 88: 522-529. |
[33] | 张子叶, 纪雄辉, 谢运河, 柳赛花, 田发祥, 易红伟. 水稻对镉和砷的吸收转运规律研究. 杂交水稻, 2020, 35(6): 68-74. |
Zhang Z Y, Ji X H, Xie Y H, Liu S H, Tian F X, Yi H W. Studies on the uptake and transport dynamics of cadmium and arsenic in rice. Hybrid Rice, 2020, 35(6): 68-74. (in Chinese with English abstract) | |
[34] |
Shi G L, Li D J, Wang Y F, Liu C H, Hu Z B, Lou L Q, Rengel Z, Cai S. Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages. Sci Total Environ, 2019, 667: 532-539.
doi: 10.1016/j.scitotenv.2019.02.394 |
[35] | 倪中应, 章明奎, 王京文, 李丹, 石一珺. 水稻不同生育期镉吸收与积累特征研究. 农学学报, 2020, 10(3): 49-54. |
Ni Z Y, Zhang M K, Wang J W, Li D, Shi Y J. Cadmium uptake and accumulation in rice at different growth stages. J Agric, 2020, 10(3): 49-54. (in Chinese with English abstract) | |
[36] |
Rodda M S, Li G, Reid R J. The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant Soil, 2011, 347: 105-114.
doi: 10.1007/s11104-011-0829-4 |
[37] |
Harris N S, Taylor G J. Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol, 2013, 13: 103.
doi: 10.1186/1471-2229-13-103 pmid: 23856013 |
[38] | 赵步洪, 张洪熙, 奚岭林, 朱庆森, 杨建昌. 杂交水稻不同器官镉浓度与累积量. 中国水稻科学, 2006, 20: 306-312. |
Zhao B H, Zhang H X, Xi L L, Zhu Q S, Yang J C. Concentrations and accumulation of cadmium in different organs of hybrid rice. Chin J Rice Sci, 2006, 20: 306-312. (in Chinese with English abstract) | |
[39] | 李芹, 张曼, 张锡洲, 余海英, 李廷轩. 水稻镉安全材料分蘖期根部镉积累分布特征. 植物营养与肥料学报, 2019, 25: 443-452. |
Li Q, Zhang M, Zhang X Z, Yu H Y, Li T X. Accumulation and distribution characteristics of Cd in roots of cadmium-safe rice line at tillering stage. J Plant Nutr Fert, 2019, 25: 443-452. (in Chinese with English abstract) | |
[40] | 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制. 中国农业科学, 2016, 49: 4323-4341. |
Wang X H, Dai L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots. Sci Agric Sin, 2016, 49: 4323-4341. (in Chinese with English abstract) | |
[41] | 李丹丹, 周东美, 汪鹏, 翁南燕. 小麦根对镉离子的吸收机制及镉的亚细胞分布. 生态毒理学报, 2010, 5: 857-861. |
Li D D, Zhou D M, Wang P, Weng N Y. Uptake and subcellular distribution of cadmium in wheat (Triticum aestivum) roots. Asian J Ecotox, 2010, 5: 857-861. (in Chinese with English abstract) | |
[42] | 刘清泉, 陈亚华, 沈振国, 郑录庆. 细胞壁在植物重金属耐性中的作用. 植物生理学报, 2014, 50: 605-611. |
Liu Q Q, Chen Y H, Shen Z G, Zheng L Q. Roles of cell wall in plant heavy metal tolerance. Plant Physiol J, 2014, 50: 605-611. (in Chinese with English abstract) | |
[43] |
Wu Z C, Zhao X H, Sun X C, Tan Q L, Tang Y F, Nie Z J, Hu C X. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere, 2015, 119: 1217-1223.
doi: 10.1016/j.chemosphere.2014.09.099 |
[44] |
Guo J Y, Zhang X Z, Ye D H, Huang H G, Wang Y D, Zhen Z C, Li T X, Yu H Y. Crucial roles of cadmium retention in nodeII for restraining cadmium transport from straw to ear at reproductive period in a grain low-cadmium rice line (Oryza sativa L.). Ecotox Environ Safe, 2020, 205: 111323.
doi: 10.1016/j.ecoenv.2020.111323 |
[45] |
Sghayar S, Ferri A, Lancilli C, Lucchini G, Abruzzese A, Porrini M, Ghnaya T, Nocito F F, Abdelly C, Sacchi G A. Analysis of cadmium translocation, partitioning and tolerance in six barley (Hordeum vulgare L.) cultivars as a function of thiol metabolism. Biol Fert Soils, 2015, 51: 311-320.
doi: 10.1007/s00374-014-0977-9 |
[46] |
Lu M, Yu S, Lian J P, Wang Q, He Z L, Feng Y, Yang X E. Physiological and metabolomics responses of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation. Sci Total Environ, 2021, 769: 145345.
doi: 10.1016/j.scitotenv.2021.145345 |
[1] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
[2] | 袁珅, 彭少兵. 再生稻头季和再生季稻米重金属含量的比较研究[J]. 作物学报, 2022, 48(7): 1822-1831. |
[3] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[4] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099. |
[5] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[6] | 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500. |
[7] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321. |
[8] | 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127. |
[9] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[10] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[11] | 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638. |
[12] | 梁桂红,华营鹏,周婷,廖琼,宋海星,张振华. 甘蓝型油菜NRT1.5和NRT1.8家族基因的生物信息学分析及其对氮-镉胁迫的响应[J]. 作物学报, 2019, 45(3): 365-380. |
[13] | 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379. |
[14] | 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828. |
[15] | 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244. |
|