欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1761-1770.doi: 10.3724/SP.J.1006.2022.11046

• 耕作栽培·生理生化 • 上一篇    下一篇

不同镉积累类型小麦各器官镉积累分布规律及机理分析

冯亚娟1(), 李廷轩1, 蒲勇2, 张锡洲1,*()   

  1. 1四川农业大学资源学院, 四川成都 611130
    2泸州市农业农村局, 四川泸州 646000
  • 收稿日期:2021-04-28 接受日期:2021-09-09 出版日期:2022-07-12 网络出版日期:2021-10-15
  • 通讯作者: 张锡洲
  • 作者简介:E-mail: fengyajj@163.com
  • 基金资助:
    四川省重大科技专项(2018SZDZX0029);国家重点研发计划项目(2018YFC1802605)

Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type

FENG Ya-Juan1(), LI Ting-Xuan1, PU Yong2, ZHANG Xi-Zhou1,*()   

  1. 1College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Luzhou Municipal Bureau of Agriculture and Rural Affairs, Luzhou 646000, Sichuan, China
  • Received:2021-04-28 Accepted:2021-09-09 Published:2022-07-12 Published online:2021-10-15
  • Contact: ZHANG Xi-Zhou
  • Supported by:
    Major Science and Technology Project of Sichuan Province(2018SZDZX0029);National Key Research and Development Program of China(2018YFC1802605)

摘要:

探讨镉(Cd)低积累小麦不同器官Cd积累分配特性, 有助于明晰其籽粒Cd低积累机制, 对培育Cd安全小麦品种具有重要意义。通过盆栽试验, 研究了不同Cd积累类型小麦生育后期不同器官Cd积累分配特征, 并探讨节点I和颖壳滞留Cd的部分生理机制。结果表明, 不同Cd积累类型小麦成熟期不同部位Cd积累分配存在较大差异, 绵麦37节点I和颖壳Cd含量显著高于抗锈3816, 灌浆期到成熟期是绵麦37节点I和颖壳Cd积累的关键时期。Cd处理下, 不同Cd积累类型小麦节点I和颖壳亚细胞Cd分配比例均是细胞壁最大, 占70%~80%。绵麦37节点I可溶部分分配比例为18%, 抗锈3816为15%; 而绵麦37颖壳可溶部分分配比例为19%, 是抗锈3816的2.7倍, 绵麦37节点I和颖壳将更多的Cd分配在可溶部分。灌浆期, 两类小麦节点I谷胱甘肽(GSH)含量无显著差异, Cd处理下绵麦37节点I中植物螯合肽(PC)1和PC2的含量显著低于抗锈3816, PC3和PC4的含量显著高于抗锈3816, 而绵麦37颖壳中GSH、PC1、PC2、PC3、PC4含量均显著高于抗锈3816。节点I和颖壳的细胞可溶部分对Cd的固定作用和非蛋白巯基的大量合成是绵麦37籽粒Cd低积累的关键环节, 进一步探讨小麦关键器官对Cd的滞留机理对明晰小麦籽粒Cd积累机制具有重要意义。

关键词: 镉, 低积累小麦, 亚细胞, 非蛋白巯基, 节点, 颖壳

Abstract:

The study of cadmium accumulation and distribution characteristics in different organs of wheat with low Cd accumulation is helpful to clarify the mechanism of low Cd accumulation in grain, which is of great significance for cultivating wheat varieties with Cd safety. A pot experiment was conducted to clarify the characteristics of Cd accumulation and distribution in different organs of different Cd accumulating wheat materials at the late growth stages. The physiological characteristics of the key organs, namely node I and glume, were further explored. The results showed that there was significant difference of Cd accumulation and distribution between the two wheats at maturity stage. Cd concentrations in node I and glume of Mianmai 37 were significantly higher than those of Kangxiu 3816. The stage of from filling to maturity was the key period for Cd accumulation in node I and glume of the accumulation of Mianmai 37. In subcellular level, Cd in node I and glume of both wheat was mostly distributed in the cell wall, accounting for 70%-80%. The distribution ratio of the soluble fraction of Mianmai 37 node I was 18%, and that of Kangxiu 3816 was 15%. The distribution ratio of the soluble fraction of Mianmai 37 glume was 19%, which was 2.7 times that of Kangxiu 3816. More Cd was found to distribute in soluble faction in node I and glume of Mianmai 37 compared with Kangxiu 3816. There was no significant difference of GSH concentration in node I of the two wheats at filling stage. The PC1 and PC2 concentrations in node I of Mianmai 37 were significantly lower than those of Kangxiu 3816, while the PC3 and PC4 concentrations were significantly higher. The concentrations of GSH, PC1, PC2, PC3, and PC4 in the glume of Mianmai 37 were significantly higher than those of Kangxiu 3816. Cd retention in node I and the soluble fraction of glumes, as well as the great increase of NPT concentrations, contributed to low Cd accumulation in Mianmai 37. The present study investigates the mechanism of Cd retention in the key organs of wheat, which is of great significance to clarify the mechanism of Cd accumulation in wheat grains.

Key words: cadmium, low accumulation wheat, subcellular, non-protein, node, glume

图1

小麦不同器官示意图"

图2

不同Cd积累类型小麦成熟期不同部位Cd含量 图中数据为平均值±标准差。小图为根、茎、叶、穗和籽粒Cd含量。不同小写字母表示同一材料不同部位差异显著(P < 0.05), 不同“*”符号表示同一部位不同材料间差异显著(P < 0.05)。"

表1

不同Cd积累类型小麦成熟期不同器官Cd转运系数"

TFA-B 绵麦37 Mianmai 37 抗锈3816 Kangxiu 3816
根-茎 Root-Stem 0.846 ± 0.02* 0.593 ± 0.01
茎-叶 Stem-Leaf 1.287 ± 0.06 1.968 ± 0.02*
叶-穗 Leaf-Ear 1.439 ± 0.02* 0.541 ± 0.03
穗-籽粒 Ear-Grain 0.367 ± 0.01 1.678 ± 0.01*
叶片IV-节点III Leaf IV-Node III 0.435 ±0.024 0.441 ± 0.006
叶片III-节点II Leaf III-Node II 0.705 ± 0.043 0.806 ± 0.046
叶片II-节点I Leaf II-Node I 2.102 ± 0.007* 1.183 ± 0.056
节间IV-节点III Stem IV-Node III 1.172 ± 0.126 1.196 ± 0.031
节间III-节点II Stem III-Node II 1.882 ± 0.055 1.900 ± 0.094
节间II-节点I Stem II-Node I 3.337 ± 0.218* 2.620 ± 0.092
节点III-节间III Node III-Stem III 0.758 ± 0.024 0.669 ± 0.003
节点II-节间II Node II-Stem II 0.543 ± 0.029 0.434 ± 0.015
节点I-节间I Node I-Stem I 0.497 ± 0.052 0.626 ± 0.070
节间IV-叶片IV Stem IV-Leaf IV 2.600 ± 0.327 2.713 ± 0.072
节点III-叶片III Node III-Leaf III 2.151 ± 0.055* 1.582 ± 0.068
节点II-叶片II Node II-Leaf II 0.830 ± 0.043 1.034 ± 0.093*
节点I-叶片I Node I-Leaf I 0.341 ± 0.020 0.799 ± 0.059*
节间I-花梗 Stem I-Pedcial 1.816 ± 0.047 1.814 ± 0.102
叶片I-花梗 Leaf I-Pedcial 3.241 ± 0.103* 1.483 ± 0.089
花梗-颖壳 Pedcial-Glume 0.387 ± 0.026* 0.256 ± 0.015
颖壳-籽粒 Glume-Grain 0.575 ± 0.071 2.368 ± 0.109*

图3

不同Cd积累类型小麦节点I (A)和颖壳(B)不同生育期Cd含量 图中数据为平均值±标准差。不同小写字母表示同一材料不同生育期差异显著(P < 0.05), 不同“*”符号表示同一时期不同材料间差异显著(P < 0.05)。"

表2

不同Cd积累类型小麦生育后期节点I和颖壳Cd转运系数"

TFA-B 开花期 Flowering stage 灌浆期 Filling stage 成熟期 Maturity stage
绵麦37
Mianmai 37
抗锈3816
Kangxiu 3816
绵麦37
Mianmai 37
抗锈3816
Kangxiu 3816
绵麦37
Mianmai 37
抗锈3816
Kangxiu 3816
叶片II-节点I Leaf II-Node I 2.673 ± 0.250 b 2.100 ± 0.084 a 3.466 ± 0.116 a 2.994 ± 0.335 a 2.102 ± 0.007 c* 1.183 ± 0.056 b
节间II-节点I Stem II-Node I 1.657 ± 0.055 c 1.750 ± 0.039 b 4.558 ± 0.180 a 10.707± 0.197 a* 3.337 ± 0.218 b* 2.620 ± 0.092 b
节点I-节间I Node I-Stem I 0.406 ± 0.011 b 0.565 ± 0.044 a* 0.234 ± 0.006 c* 0.174 ± 0.010 b 0.497 ± 0.052 a 0.626 ± 0.070 a
节点I-叶片I Node I-Leaf I 0.185 ± 0.007 b 0.345 ± 0.018 b* 0.173 ± 0.005 b 0.208 ± 0.027 c 0.341 ± 0.020 a 0.799 ± 0.059 a*
花梗-颖壳 Pedcial-Glume 0.631 ± 0.006 a 0.682 ± 0.024 a 0.458 ± 0.033 b* 0.392 ± 0.009 b 0.387 ± 0.026 b* 0.256 ± 0.015 c
颖壳-籽粒 Glume-Grain 0.643 ± 0.023 a 2.293 ± 0.149 a* 0.575 ± 0.071 a 2.368 ± 0.109 a*

图4

不同Cd积累类型小麦各部位亚细胞组分Cd所占百分比例"

图5

不同Cd积累类型小麦灌浆期节点I (A)和颖壳(B)非蛋白巯基含量 图中数据为平均值±标准差。不同小写字母表示相同材料不同Cd水平间差异显著(P < 0.05), 不同“*”符号表示同一Cd水平下不同材料间差异显著(P < 0.05)。"

[1] 许艳萍, 杨明, 郭鸿彦, 杨清辉. 5个工业大麻品种对5种重金属污染土壤的修复潜力. 作物学报, 2020, 46: 1970-1978.
doi: 10.3724/SP.J.1006.2020.04010
Xu Y P, Yang M, Guo H Y, Yang Q H. Phytoremediation potential of five industrial hemp varieties on five heavy metal polluted soils. Acta Agron Sin, 2020, 46: 1970-1978. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.04010
[2] Hu Y M, Zhou J, Du B Y, Liu H L, Zhang W T, Liang J N, Zhang W H, You L Y, Zhou J. Health risks to local residents from the exposure of heavy metals around the largest copper smelter in China. Ecotox Environ Saf, 2019, 171: 329-336.
doi: 10.1016/j.ecoenv.2018.12.073
[3] Abbas M S, Akmal M, Ullah S, Hassan M, Farooq S. Effectiveness of zinc and gypsum application against cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Soil Sci Plant Anal, 2017, 48: 1659-1668.
doi: 10.1080/00103624.2017.1373798
[4] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响. 作物学报, 2021, 47: 2490-2500.
doi: 10.3724/SP.J.1006.2021.04246
Zhang Y, Wang D M, Wang X Y, Ren Q W, Tang K, Zhang L Y, Wu Y H, Liu P. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress. Acta Agron Sin, 2021, 47: 2490-2500. (in Chinese with English abstract)
[5] Qin S Y, Liu H G, Nie Z J, Rengel Z, Gao W, Li C, Zhao P. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere, 2020, 30: 168-180.
doi: 10.1016/S1002-0160(20)60002-9
[6] Yamaguchi M, Miyadate H, Akagi H, Fujimura T, Sakurai K, Satoh H, Tezuka K, Takahashi H, Satoh N N, Kawamoto T, Katou K, Masaki S, Watanabe A, Matsumoto S, Kodama I. A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet, 2010, 120: 1175-1182.
doi: 10.1007/s00122-009-1244-6
[7] Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Jian F M. Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA, 2010, 107: 16500-16505.
doi: 10.1073/pnas.1005396107
[8] Xu Q, Wang C, Li S, Li B, Li Q, Chen G, Chen W, Wang F. admium adsorption, chelation and compartmentalization limit root-to-shoot translocation of cadmium in rice (Oryza sativa L.). Environ Sci Pollut Res Int, 2017, 24: 11319-11330.
doi: 10.1007/s11356-017-8775-1
[9] Guo G H, Lei M, Wang Y W, Song B, Yang J. Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int J Environ Res Public Health, 2018, 15: 2601-2618.
doi: 10.3390/ijerph15112601
[10] 张玉盛, 肖欢, 吴勇俊, 杨小粉, 汪泽钱, 伍湘, 向焱赟, 张小毅, 敖和军. 粒肥施用时期对水稻镉积累的影响初探. 华北农学报, 2020, 35(2): 144-151.
Zhang Y S, Xiao H, Wu Y J, Yang X F, Wang J Q, Wu X, Xiang Y Y, Zhang X Y, Ao H J. Effect of application period of granular fertilizer on cadmium accumulation in rice. Acta Agric Boreali-Sin, 2020, 35(2): 144-151. (in Chinese with English abstract)
[11] Kubo K, Kobayashi H, Fujita M, Ota T, Minamiyama Y, Watanabe Y, Nakajima T, Shinano T. Varietal differences in the absorption and partitioning of cadmium in common wheat (Triticum aestivum L.) . Environ Exp Bot , 2016, 124: 79-88.
[12] Greger M, Landberg T. Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant Soil, 2008, 312: 195-205.
doi: 10.1007/s11104-008-9725-y
[13] Zhang L G, Zhang C, Du B Y, Lu B X, Hou D M, Zhou J, Zhou J. Effects of node restriction on cadmium accumulation in eight Chinese wheat (Triticum turgidum) cultivars. Sci Total Environ, 2020, 725: 138358.
doi: 10.1016/j.scitotenv.2020.138358
[14] 彭秋, 李桃, 徐卫红, 焦璐琛, 邓继宝. 不同品种辣椒镉亚细胞分布和化学形态特征差异. 环境科学, 2019, 40: 3347-3354.
pmid: 31854737
Peng Q, Li T, Xu W H, Jiao L C, Deng J B. Differences in the cadmium-enrichment capacity and subcellular distribution and chemical form of cadmium in different varieties of pepper. Environ Sci, 2019, 40: 3347-3354. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201901112 pmid: 31854737
[15] Fu X, Dou C M, Chen Y X, Chen X C, Shi J Y, Yu M G, Xu J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater, 2011, 186: 103-107.
doi: 10.1016/j.jhazmat.2010.10.122
[16] Chen G C, Liu Y Q, Wang R M, Zhang J F, Owens G. Cadmium adsorption by willow root: the role of cell walls and their subfractions. Environ Sci Pollut Res Int, 2013, 20: 5665-5672.
doi: 10.1007/s11356-013-1506-3
[17] 陈爱葵, 王茂意, 刘晓海, 曾小龙. 水稻对重金属镉的吸收及耐性机理研究进展. 生态科学, 2013, 32: 514-522.
Chen A K, Wang M Y, Liu X H, Zeng X L. Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms. Ecol Sci, 2013, 32: 514-522. (in Chinese with English abstract)
[18] Huang J, Zhang Y, Peng J S, Zhong C, Yi H Y, Ow D W, Gong J M. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol, 2012, 158: 1779-1788.
[19] Hart J J, Welch R M, Norvell W A, Sullivan L A, Kochian L V. Characterization of cadmium binding, uptake, and translocation in intact seedling of bread and durum wheat cultivars. Plant Physiol, 1998, 116: 1413-1420.
pmid: 9536059
[20] 王芳, 丁杉, 张春华, 葛滢. 不同镉耐性水稻非蛋白巯基及镉的亚细胞和分子分布. 农业环境科学学报, 2010, 29: 625-629.
Wang F, Ding S, Zhang C H, Ge Y. Non-protein thiols, subcellular and molecular distribution of cadmium in two rice cultivars with difference tolerance. J Agro-Environ Sci, 2010, 29: 625-629. (in Chinese with English abstract)
[21] Sun Q, Wang X R, Ding S M, Yuan X F. Effects of exogenous organic chelators on phytochelatins production and its relationship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress. Chemosphere, 2005, 60: 22-31.
pmid: 15910898
[22] 冯亚娟, 黄议漫, 余海英, 张锡洲. 籽粒镉低积累小麦材料的筛选及稳定性分析. 麦类作物学报, 2021, 41: 842-850.
Feng Y J, Huang Y M, Yu H Y, Zhang X Z. Screening of wheat materials with low cadmium accumulation in grains and characteristics of cadmium accumulation. J Triticeae Crops, 2021, 41: 842-850. (in Chinese with English abstract)
[23] 明毅, 张锡洲, 余海英. 小麦籽粒镉积累差异评价. 中国农业科学, 2018, 51: 4219-4229.
Ming Y, Zhang X Z, Yu H Y. The evaluation of Cd accumulation in grains of different wheat materials. Sci Agric Sin, 2018, 51: 4219-4229. (in Chinese with English abstract)
[24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
Lu R K. Chemical Analysis Method of Soil Agriculture. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[25] 中华人民共和国国家标准.土壤质量铅、镉的测定石墨炉原子吸收分光光度法(GB T17141-1997). 1997. pp 93-98.
National Standards of the People’s Republic of China.Soil Quality-Determination of Lead, Cadmium-Graphite Furnace Atomic Absorption Spectrophotometry (GB T17141-1997). 1997. pp 93-98. (in Chinese)
[26] 中华人民共和国国家标准. 土壤质量有效态铅和镉的测定原子吸收法(GBT23739-2009) . 2009. pp 1-3.
National Standards of the People’s Republic of China. Soil Quality-Analysis of Available Lead and Cadmium Contents in Soils- Atomic Absorption Spectrophotometry (GBT23739-2009) . 2009. pp 1-3. (in Chinese)
[27] 中华人民共和国国家标准.食品安全国家标准食品中多元素的测定(GB 5009.268-2016). 2016. pp 1-14.
National Standards of the People’s Republic of China. National Standard for Food Safety-Determination of Multi-Elements in Food (GB 5009. 268-2016). 2016. pp 1-14. (in Chinese)
[28] Lai H Y. Effects of leaf area and transpiration rate on accumulation and compartmentalization of cadmium in Impatiens walleriana . Water Air Soil Pollut, 2015, 226: 2246.
doi: 10.1007/s11270-014-2246-9
[29] Huang G, Ding C, Guo F, Li X, Zhou Z, Zhang T, Wang X. The role of node restriction on Cd accumulation in the brown rice of twelve Chinese rice (Oryza sativa L.) cultivars. J Agric Food Chem, 2017, 65: 10157-10164.
doi: 10.1021/acs.jafc.7b03333
[30] Liu C X, Guttieri M J, Waters B M, Eskridge K M, Easterly A, Baenziger P S. Cadmium concentration in terminal tissues as tools to select low-cadmium wheat. Plant Soil, 2018, 430: 127-138.
doi: 10.1007/s11104-018-3712-8
[31] Herren T, Feller U. Transfer of zinc from xylem to phloem in the peduncle of wheat. J Plant Nutr, 1994, 17: 1587-1598.
doi: 10.1080/01904169409364831
[32] Stephan U W, Scholz G. Nicotianamine: mediator of transport of iron and heavy metals in the phloem. Physiol Plant, 1993, 88: 522-529.
[33] 张子叶, 纪雄辉, 谢运河, 柳赛花, 田发祥, 易红伟. 水稻对镉和砷的吸收转运规律研究. 杂交水稻, 2020, 35(6): 68-74.
Zhang Z Y, Ji X H, Xie Y H, Liu S H, Tian F X, Yi H W. Studies on the uptake and transport dynamics of cadmium and arsenic in rice. Hybrid Rice, 2020, 35(6): 68-74. (in Chinese with English abstract)
[34] Shi G L, Li D J, Wang Y F, Liu C H, Hu Z B, Lou L Q, Rengel Z, Cai S. Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages. Sci Total Environ, 2019, 667: 532-539.
doi: 10.1016/j.scitotenv.2019.02.394
[35] 倪中应, 章明奎, 王京文, 李丹, 石一珺. 水稻不同生育期镉吸收与积累特征研究. 农学学报, 2020, 10(3): 49-54.
Ni Z Y, Zhang M K, Wang J W, Li D, Shi Y J. Cadmium uptake and accumulation in rice at different growth stages. J Agric, 2020, 10(3): 49-54. (in Chinese with English abstract)
[36] Rodda M S, Li G, Reid R J. The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant Soil, 2011, 347: 105-114.
doi: 10.1007/s11104-011-0829-4
[37] Harris N S, Taylor G J. Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol, 2013, 13: 103.
doi: 10.1186/1471-2229-13-103 pmid: 23856013
[38] 赵步洪, 张洪熙, 奚岭林, 朱庆森, 杨建昌. 杂交水稻不同器官镉浓度与累积量. 中国水稻科学, 2006, 20: 306-312.
Zhao B H, Zhang H X, Xi L L, Zhu Q S, Yang J C. Concentrations and accumulation of cadmium in different organs of hybrid rice. Chin J Rice Sci, 2006, 20: 306-312. (in Chinese with English abstract)
[39] 李芹, 张曼, 张锡洲, 余海英, 李廷轩. 水稻镉安全材料分蘖期根部镉积累分布特征. 植物营养与肥料学报, 2019, 25: 443-452.
Li Q, Zhang M, Zhang X Z, Yu H Y, Li T X. Accumulation and distribution characteristics of Cd in roots of cadmium-safe rice line at tillering stage. J Plant Nutr Fert, 2019, 25: 443-452. (in Chinese with English abstract)
[40] 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制. 中国农业科学, 2016, 49: 4323-4341.
Wang X H, Dai L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots. Sci Agric Sin, 2016, 49: 4323-4341. (in Chinese with English abstract)
[41] 李丹丹, 周东美, 汪鹏, 翁南燕. 小麦根对镉离子的吸收机制及镉的亚细胞分布. 生态毒理学报, 2010, 5: 857-861.
Li D D, Zhou D M, Wang P, Weng N Y. Uptake and subcellular distribution of cadmium in wheat (Triticum aestivum) roots. Asian J Ecotox, 2010, 5: 857-861. (in Chinese with English abstract)
[42] 刘清泉, 陈亚华, 沈振国, 郑录庆. 细胞壁在植物重金属耐性中的作用. 植物生理学报, 2014, 50: 605-611.
Liu Q Q, Chen Y H, Shen Z G, Zheng L Q. Roles of cell wall in plant heavy metal tolerance. Plant Physiol J, 2014, 50: 605-611. (in Chinese with English abstract)
[43] Wu Z C, Zhao X H, Sun X C, Tan Q L, Tang Y F, Nie Z J, Hu C X. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere, 2015, 119: 1217-1223.
doi: 10.1016/j.chemosphere.2014.09.099
[44] Guo J Y, Zhang X Z, Ye D H, Huang H G, Wang Y D, Zhen Z C, Li T X, Yu H Y. Crucial roles of cadmium retention in nodeII for restraining cadmium transport from straw to ear at reproductive period in a grain low-cadmium rice line (Oryza sativa L.). Ecotox Environ Safe, 2020, 205: 111323.
doi: 10.1016/j.ecoenv.2020.111323
[45] Sghayar S, Ferri A, Lancilli C, Lucchini G, Abruzzese A, Porrini M, Ghnaya T, Nocito F F, Abdelly C, Sacchi G A. Analysis of cadmium translocation, partitioning and tolerance in six barley (Hordeum vulgare L.) cultivars as a function of thiol metabolism. Biol Fert Soils, 2015, 51: 311-320.
doi: 10.1007/s00374-014-0977-9
[46] Lu M, Yu S, Lian J P, Wang Q, He Z L, Feng Y, Yang X E. Physiological and metabolomics responses of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation. Sci Total Environ, 2021, 769: 145345.
doi: 10.1016/j.scitotenv.2021.145345
[1] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[2] 袁珅, 彭少兵. 再生稻头季和再生季稻米重金属含量的比较研究[J]. 作物学报, 2022, 48(7): 1822-1831.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[5] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[6] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[7] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[8] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[9] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[10] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[11] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[12] 梁桂红,华营鹏,周婷,廖琼,宋海星,张振华. 甘蓝型油菜NRT1.5NRT1.8家族基因的生物信息学分析及其对氮-镉胁迫的响应[J]. 作物学报, 2019, 45(3): 365-380.
[13] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[14] 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828.
[15] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[3] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[4] 李浩;张平平;查向东;夏先春;何中虎. 优质面包小麦品种济南17和豫麦34灌浆期高温胁迫差异表达基因的分离[J]. 作物学报, 2007, 33(10): 1644 -1653 .
[5] 俞履圻;林权. 中国栽培稻种亲缘的研究[J]. 作物学报, 1962, 1(03): 232 -258 .
[6] 常丽英;顾东祥;张文宇;杨杰;曹卫星;朱艳. 水稻叶片伸长过程的模拟模型[J]. 作物学报, 2008, 34(02): 311 -317 .
[7] 黄华宏;陆国权;舒庆尧. 高色素甘薯淀粉糊化特性的基因型差异[J]. 作物学报, 2005, 31(01): 92 -96 .
[8] 李金才;魏凤珍;王成雨;尹钧. 孕穗期土壤渍水逆境对冬小麦根系衰老的影响[J]. 作物学报, 2006, 32(09): 1355 -1360 .
[9] 刘建卫;吴显荣. 我国主要高粱品种含氰势(HCN-P)的分析[J]. 作物学报, 1986, 12(02): 143 -144 .
[10] 林瑞余;陈鸿飞;邓家耀;梁义元;梁康迳;林文雄. 不同栽培模式早稻-再生稻的能量积累与热值分析[J]. 作物学报, 2007, 33(11): 1794 -1801 .