欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1884-1893.doi: 10.3724/SP.J.1006.2022.14140

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因

刘成(), 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬*(), 盖钧镒*()   

  1. 南京农业大学大豆研究所 / 国家大豆改良中心 / 农业农村部大豆生物学与遗传育种重点实验室(综合) / 作物遗传与种质创新国家重点实验室 / 江苏省现代作物生产协同创新中心, 江苏南京 210095
  • 收稿日期:2021-08-06 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-17
  • 通讯作者: 王吴彬,盖钧镒
  • 作者简介:E-mail: wildsoybean@163.com
  • 基金资助:
    江苏省农业科技自主创新资金项目(CX(20)2007);中央高校基本科研业务费专项(KYZ202103);国家自然科学基金项目(31601325);长江学者和创新团队发展计划项目(PCSIRT_17R55);国家现代农业产业技术体系建设专项(CARS-04)

Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population

LIU Cheng(), ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin*(), GAI Jun-Yi*()   

  1. Soybean Research Institute / National Center for Soybean Improvement / Key Laboratory for Biology and Genetic Improvement of Soybean (General) of Ministry of Agriculture and Rural Affairs / National Key Laboratory of Crop Genetics and Germplasm Enhancement / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2021-08-06 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-17
  • Contact: WANG Wu-Bin,GAI Jun-Yi
  • Supported by:
    Jiangsu Agriculture Science and Technology(CX(20)2007);Fundamental Research Funds for the Central Universities(KYZ202103);National Natural Science Foundation of China(31601325);MOE Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT_17R55);China Agriculture Research System(CARS-04)

摘要:

一年生野生大豆是栽培大豆的祖先, 在长期驯化改良过程中, 百粒重逐渐增大, 阐明该变化的遗传基础, 对大豆的进化研究与品种改良具有重要意义。为了解析大豆百粒重驯化的遗传基础, 本研究以177份全基因组重测序的野生大豆染色体片段代换系(SojaCSSLP5)为材料, 通过3个不同环境的表型评价, 检测到13个与大豆百粒重相关的野生染色体片段, 均具有减小大豆百粒重的加性效应, 变幅为-0.49~ -1.19 g, 这与野生大豆具有较小百粒重相符。检测到的这些野生染色体片段分布在大豆11条染色体上, 可以解释76.70%的表型变异, 单个片段表型贡献率变幅为2.45%~15.14%。其中片段Gm03_LDB_15和Gm12_LDB_46的贡献率超过10%, 为大豆百粒重由野生向栽培进化的大效应片段。结合双亲栽培大豆南农1138-2和野生大豆N24852的转录组数据和基因组数据, 在这些区段内共预测到13个百粒重候选基因, 涉及以下调控植物种子大小的途径: 泛素蛋白激酶调控途径、G蛋白信号途径、裂原活化蛋白激酶途径、植物激素途径、转录调控因子途径和HAIKU途径。与前人利用栽培大豆的研究结果相比, 本研究检测到13个大豆百粒重相关野生染色体片段中有4个片段是新检测到的, 表明有9个野生染色体片段可能为野生大豆传递给栽培大豆的共享片段, 而这4个新检测到的野生染色体片段相对应栽培片段可能为栽培大豆特有的进化片段。

关键词: 野生大豆, 染色体片段代换系, 百粒重, 数量性状位点

Abstract:

Annual wild soybean is the ancestor of cultivated soybean. The 100-seed weight gradually increases in the long-term domestication process. Clarifying the genetic basis of this change is of great significance to the evolutionary research and variety improvement of soybean. In order to analyze the genetic basis of 100-seed weight during soybean domestication, a wild soybean chromosome segment substitution line population (SojaCSSLP5) composed of 177 whole-genome resequencing lines were used in this study. 13 QTLs/segments of 100-seed weight were detected by phenotypic evaluation in three different environments. All of 13 wild chromosome segments had the additive effect of reducing 100-seed weight, ranging from -0.49 g to -1.19 g, which was consistent with the smaller 100-seed weight of wild soybeans. These detected domesticated segments from 11 chromosomes explained 76.70% of the phenotypic variation, and the phenotypic contribution rate of a single segment ranged from 2.45% to 15.14%. The contribution rate of segments Gm03_LDB_15 and Gm12_LDB_46 exceeded 10%, which were major influence on the evolution of 100-seed weight of wild soybeans. Combined the transcriptome data and genome data of parental cultivated soybean Nannong 1138-2 and wild soybean N24852, a total of 13 candidate genes were predicted in these segments, and were involved in the pathways of plant seed size, including ubiquitin protein kinase regulatory pathway, G protein signal pathway, mitogen-activated protein kinase pathway, plant hormone pathway, transcription regulator pathway, and IKU (HAIKU) pathway. Compared with previous QTLs mapping results with cultivated soybeans, 4 of the 13 QTLs/segments were newly detected in this study, indicating that 9 wild chromosome segments might be passed to cultivated soybeans during domestication, and the corresponding cultivated segments of these 4 wild segments may be unique evolutionary segments of cultivated soybean.

Key words: wild soybean, chromosome segment substitution line, 100-seed weight, QTLs

表1

野生大豆染色体片段代换系群体SojaCSSLP5及其亲本百粒重表现"

环境
Environment
亲本 Parents 染色体片段代换系群体 Chromosome segment substitution line population (SojaCSSLP5)
南农1138-2
Nannong 1138-2
N24852 组中值Class mid-value (g) 变幅
Range
均值
Mean
变异系数
CV (%)
遗传率
h2 (%)
10 11 12 13 14 15 16 17 18 19 20 21 Σ
2016JP 18.07 1.84 1 3 4 9 30 43 47 31 7 2 0 0 177 10.49-18.85 15.34 6.45 84.2
2017JP 19.22 1.79 2 2 4 8 21 30 40 36 24 8 1 1 177 10.00-21.18 15.91 6.52 89.0
2018DT 19.56 1.74 0 0 2 2 12 16 26 36 40 34 8 1 177 12.10-20.78 17.14 6.08 86.6
平均Mean 18.95 1.73 0 1 3 6 12 28 46 54 23 4 0 0 177 11.15-18.96 16.14 6.36 91.8

表2

SojaCSSLP5群体多环境联合方差分析结果"

变异来源
Source of variation
自由度
DF
均方
MS
F
F-value
P
环境 Environment 2 417.90 398.00 <0.0001
环境内重复 Repeat (Environment) 6 8.03 7.65 <0.0001
家系 Line 176 29.31 12.06 <0.0001
家系×环境Line×Environment 356 2.43 2.31 <0.0001
误差 Error 1007 1.05
总和 Total 1549

表3

SojaCSSLP5群体中检测到的百粒重QTL/片段"

QTL 连锁标记
Marker
染色体区间
Genome region
区间大小
Size of region (Mb)
显著性
LOD
贡献率
PVE
(%)
加性效应
Add
已报道QTL
Reported QTL
qSW2.1 Gm02_LDB_27 12586195-13747176 1.16 9.11 6.97 -0.77 Seed weight 49-8[32]
qSW3.1 Gm03_LDB_15 12466486-13017335 0.55 17.63 15.14 -1.19 新位点New
qSW4.1 Gm04_LDB_13 2601664-2650056 0.05 5.62 4.10 -0.62 Seed weight 47-3[33]
qSW4.2 Gm04_LDB_25 6482923-6818956 0.34 6.22 4.58 -0.58 Seed weight 54-1[34]
Seed weight 47-3[33]
qSW4.3 Gm04_LDB_39 12291313-15488343 3.20 4.30 3.09 -0.57 Seed weight 50-9[6]
Seed weight 47-3[33]
qSW6.1 Gm06_LDB_34 11933129-12135714 0.20 5.11 3.71 -0.49 新位点New
qSW9.1 Gm09_LDB_54 41753666-41795135 0.04 9.10 6.96 -0.59 Seed weight 27-3[33]
qSW11.1 Gm11_LDB_21 4680921-4726090 0.05 8.95 6.83 -0.77 Seed weight 37-9[35]
qSW12.1 Gm12_LDB_46 37389148-37916269 0.53 12.59 10.10 -1.08 新位点New
qSW13.1 Gm13_LDB_27 28160461-28502188 0.34 6.96 5.17 -0.67 Seed weight 50-7[6]
Seed weight 19-2[36]
Seed weight 15-3[37]
Seed weight 49-14[32]
Seed weight 2-4[38]
qSW16.1 Gm16_LDB_38 8724531-9795523 1.07 5.31 3.86 -0.67 新位点New
qSW18.1 Gm18_LDB_24 43990050-47921961 3.93 3.45 2.45 -0.50 Seed weight 27-1[33]
qSW19.1 Gm19_LDB_3 223110-353922 0.13 5.16 3.74 -0.49 Seed weight 3-6[33]

图1

野生大豆染色体片段代换系群体百粒重QTL-allele矩阵 在CSSL列中, 第1列代表亲本南农1138-2, 第2列代表亲本N24852; 黑色代表减效等位变异, 来自野生大豆N24852; 白色代表增效等位变异, 来自南农1138-2, 其效应见表3; 图中红线左边的家系与南农1138-2存在显著差异。"

表4

结合南农1138-2和N24852转录组及基因组数据预测的大豆百粒重候选基因"

基因
Gene
片段
QTL
基因功能
Function
亲本
Parents
变异碱基
SNP variant
差异表达
Expression difference (FPKM)
14 seed 21 seed 28 seed 35 seed Leaf
Glyma.02G125200 qSW2.1 bHLH转录因子[39]
bHLH transcription factor[39]
南农1138-2
Nannong 1138-2
TCGG 0.45 0.40 2.19 5.37 2.57
N24852 CAAT 13.79 6.11 8.71 21.03 91.63
Glyma.03G066200 qSW3.1 ABA受体调节因子(IKU)
Regulatory components of ABA receptor (IKU)
南农1138-2
Nannong 1138-2
GA 1.25 0.63 3.91 10.63 0.69
N24852 AG 3.16 1.39 3.48 20.33 2.93
Glyma.04G080800 qSW4.1 RNA聚合酶I相关因子
RNA polymerase I-associated factor
南农1138-2
Nannong 1138-2
G 48.56 53.32 13.06 16.68 16.63
N24852 C 39.16 18.85 35.88 108.75 14.82
Glyma.04G078900 qSW4.2 裂原活化蛋白激酶
Mitogen-activated protein
kinase
南农1138-2
Nannong 1138-2
G 0.80 0.42 2.21 2.27 0.93
N24852 C 11.43 5.44 5.54 9.74 7.88
Glyma.04G116700 qSW4.3 对生长素的反应
Response to auxin
南农1138-2
Nannong 1138-2
AACACGC 1.11 0.71 3.82 7.24 1.01
N24852 CGTCGAT 10.27 5.20 17.85 45.44 10.32
Glyma.06G146700 qSW6.1 调节发育的G蛋白[40]
G protein that regulates
development[40]
南农1138-2
Nannong 1138-2
TTCTTTC 0.41 0.68 2.28 4.90 0.77
N24852 CCTACCA 11.03 11.03 17.77 41.99 11.34
Glyma.09G194200 qSW9.1 丝氨酸/苏氨酸磷酸酶
Serine/threonine phosphatase
南农1138-2
Nannong 1138-2
CCCCTTCTCT 1.44 0.39 0.80 0.50 1.26
N24852 TTATCATAGC 19.75 6.88 9.99 4.78 11.35
基因
Gene
片段
QTL
基因功能
Function
亲本
Parents
变异碱基
SNP variant
差异表达
Expression difference (FPKM)
14 seed 21 seed 28 seed 35 seed Leaf
Glyma.11G063500 qSW11.1 E3泛素连接酶[41-43]
E3 ubiquitin ligase[41-43]
南农1138-2
Nannong 1138-2
C 0.31 1.42 1.93 3.45 0.78
N24852 G 6.33 8.77 6.09 17.65 7.58
Glyma.12G216100 qSW12.1 GRAS类转录因子
GRAS transcription factors
南农1138-2
Nannong 1138-2
TCG 1.49 1.84 12.80 30.95 1.17
N24852 GGA 1.61 2.14 20.70 73.39 1.99
Glyma.13G167900 qSW13.1 核糖体生物合成蛋白
Ribosomal biosynthetic
protein
南农1138-2
Nannong 1138-2
AGG 28.37 39.78 17.86 19.92 22.40
N24852 GAA 33.04 12.85 39.50 104.52 15.60
Glyma.16G084300 qSW16.1 生长素响应因子
Auxin response factor
南农1138-2
Nannong 1138-2
G 0.31 0.46 0.88 0.11 3.24
N24852 C 30.59 10.86 3.63 0.44 39.27
Glyma.18G200100 qSW18.1 E3泛素连接酶
E3 ubiquitin ligase
南农1138-2
Nannong 1138-2
GTATTAC 0.59 1.41 1.15 0.92 1.45
N24852 ACCCCGT 2.80 3.46 5.14 2.68 4.40
Glyma.19G004200 qSW19.1 亲环蛋白
Cyclophilin
南农1138-2
Nannong 1138-2
TGCACG 14.24 9.18 8.69 5.45 4.90
N24852 AAAGTT 8.19 5.47 17.04 34.60 7.26
[1] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-416.
doi: 10.1038/nbt.3096
[2] Wang M, Li W Z, Fang C, Xu F, Liu Y C, Wang Z, Yang R, Zhang M, Liu S L, Lu S J, Lin T, Tang J Y, Wang Y Q, Wang H R, Lin H, Zhu B G, Chen M S, Kong F J, Liu B H, Zeng D L, Jackson S A, Chu C C, Tian Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50: 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128
[3] Liu B H, Watanabe S, Uchiyama T, Kong F J, Kanazawa A, Xia Z J, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198-210.
doi: 10.1104/pp.109.150607
[4] Sun L, Miao Z, Cai C, Zhang D, Zhao M, Wu Y, Zhang X, Swarm S A, Zhou L, Zhang Z J, Nelson R L, Ma J. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet, 2015, 47: 939-943.
doi: 10.1038/ng.3339
[5] Han Y P, Li D M, Zhu D, Li H Y, Li X P, Teng W L, Li W B. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x
[6] Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang T Y, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet, 2014, 127: 1365-1374.
doi: 10.1007/s00122-014-2304-0
[7] Xin D W, Qi Z M, Jiang H W, Hu Z B, Zhu R S, Hu J H, Han H Y, Hu G H, Liu C Y, Chen Q S. QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS One, 2016, 11: e0149380.
doi: 10.1371/journal.pone.0149380
[8] Liu D Q, Yan Y L, Fujita Y, Xu D H. Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci, 2018, 68: 442-448.
doi: 10.1270/jsbbs.17127
[9] Wu D P, Zhan Y H, Sun Q X, Xu L X, Lian M, Zhao X, Han Y P, Li W B. Identification of quantitative trait loci underlying soybean (Glycine max [L.] Merr.) seed weight including main, epistatic and QTL × environment effects in different regions of Northeast China. Plant Breed, 2018, 137: 194-202.
doi: 10.1111/pbr.12574
[10] Li Y H, Reif J C, Hong H L, Li H H, Liu Z X, Ma Y S, Li J, Tian Y, Li Y F, Li W B, Qiu L J. Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Plant Sci, 2018, 266: 95-101.
doi: 10.1016/j.plantsci.2017.04.013
[11] Li D M, Zhao X, Han Y P, Li W B, Xie F T. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions. Genomics, 2019, 111: 90-95.
doi: 10.1016/j.ygeno.2018.01.004
[12] Zhang Y H, He J B, Wang Y F, Xing G N, Zhao J M, Li Y, Yang S P, Palmer R G, Zhao T J, Gai J Y. Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J Exp Bot, 2015, 66: 6311-6325.
doi: 10.1093/jxb/erv342
[13] He J B, Meng S, Zhao T J, Xing G N, Yang S P, Li Y, Guan R Z, Lu J J, Wang Y F, Xia Q J, Yang B, Gai J Y. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor Appl Genet, 2017, 130: 2327-2343.
doi: 10.1007/s00122-017-2962-9
[14] Li D D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci, 2008, 48: 571-581.
doi: 10.2135/cropsci2007.06.0361
[15] Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J. QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot, 2007, 100: 1027-1038.
doi: 10.1093/aob/mcm149
[16] Maughan P J, Maroof M A S, Buss G R. Molecular-marker analysis of seed weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet, 1996, 93: 574-579.
doi: 10.1007/BF00417950 pmid: 24162350
[17] Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci, 2000, 40: 1438-1444.
doi: 10.2135/cropsci2000.4051438x
[18] Wang W B, He Q Y, Yang H Y, Xiang S H, Xing G N, Zhao T J, Gai J Y. Identification of QTL/segments related to seed-quality traits in G. soja using chromosome segment substitution lines. Plant Genet Resour, 2014, 12: S65-S69.
[19] Yang K, Moon J K, Jeong N, Chun H K, Kang S T, Back K, Jeong S C. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genom, 2011, 33: 685-692.
doi: 10.1007/s13258-011-0043-z
[20] Wang W B, He Q Y, Yang H Y, Xiang S H, Zhao T J, Gai J Y. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica, 2013, 189: 293-307.
doi: 10.1007/s10681-012-0817-7
[21] Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15: 433.
doi: 10.1186/1471-2164-15-433
[22] Li G Q, Wang Y, Chen M S, Edae E, Poland J, Akhunov E, Chao S M, Bai G H, Carver B F, Yan L L. Precisely mapping a major gene conferring resistance to Hessian fly in bread wheat using genotyping-by-sequencing. BMC Genomics, 2015, 16: 108.
doi: 10.1186/s12864-015-1297-7
[23] Wu X L, Ren C W, Joshi T, Vuong T, Xu D, Nguyen H T. SNP discovery by high-throughput sequencing in soybean. BMC Genomics, 2010, 11: 469.
doi: 10.1186/1471-2164-11-469
[24] Xu X Y, Zeng L, Tao Y, Vuong T, Wan J R, Boerma R, Noe J, Li Z L, Finnerty S, Pathan S M, Shannon J G, Nguyen H T. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA, 2013, 110: 13469-13474.
doi: 10.1073/pnas.1222368110
[25] Liu C, Chen X L, Wang W B, Hu X Y, Han W, He Q Y, Yang H Y, Xiang S H, Gai J Y. Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. Int J Mol Sci, 2021, 22: 1559-1580.
doi: 10.3390/ijms22041559
[26] Li Y H, Zheng L Y, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana Gene Dev, 2008, 22: 1331-1336.
doi: 10.1101/gad.463608
[27] Ashikari M, Wu J Z, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96: 10284-10289.
doi: 10.1073/pnas.96.18.10284
[28] Schruff M C, Spielman M, Tiwari S, Adams S, Fenby N, Scott R J. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006, 133: 251-261.
pmid: 16339187
[29] Garcia D, Saingery V, Chambrier P, Mayer U, Jurgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol, 2003, 131: 1661-1670.
doi: 10.1104/pp.102.018762
[30] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977
[31] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[32] Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, Sun G, Li W. QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.). Heredity, 2009, 102: 372-380.
doi: 10.1038/hdy.2008.108 pmid: 18971958
[33] Vieira A J D, Oliveira D A D, Soares T C B, Schuster L, Piovesan N D, Martinez C A, Barros E G, Moreira M A. Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Braz J Plant Physiol, 2006, 18: 281-290.
doi: 10.1590/S1677-04202006000200004
[34] Hacisalihoglu G, Burton A L, Gustin J L, Eker S, Asikli S, Heybet E H, Ozturk L, Cakmak I, Yazici A, Burkey K O, Orf J, Settles A M. Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels. J Integr Plant Biol, 2018, 60: 232-241.
doi: 10.1111/jipb.12612
[35] Sun Y N, Pan J B, Shi X L, Du X Y, Wu Q, Qi Z M, Jiang H W, Xin D W, Liu C Y, Hu G H, Chen Q S. Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol Biol Rep, 2012, 39: 9435-9443.
doi: 10.1007/s11033-012-1808-4
[36] Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet, 2005, 111: 851-861.
pmid: 16059730
[37] Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561.
pmid: 15221142
[38] Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474
[39] Luo J H, Liu H, Zhou T Y, Gu B G, Huang X H, Shang-Guan Y Y, Zhu J J, Li Y, Zhao Y, Wang Y C, Zhao Q, Wang A H, Wang Z Q, Sang T, Wang Z X, Han B. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013, 25: 3360-3376.
doi: 10.1105/tpc.113.113589
[40] Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ou-Yang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-y
[41] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014
[42] Dong H, Dumenil J, Lu F H, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y H, Bevan M W. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Gene Dev, 2017, 31: 197-208.
doi: 10.1101/gad.292235.116 pmid: 28167503
[43] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223.
doi: 10.1007/s00122-010-1437-z
[44] Zhao B, Dai A, Wei H, Wang B, Jiang N, Feng X. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol Biol, 2016, 90: 33-47.
doi: 10.1007/s11103-015-0392-0
[45] Tang X F, Su T, Han M, Wei L, Wang W W, Yu Z Y, Xue Y G, Wei H B, Du Y J, Greiner S, Rausch T, Liu L J. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). J Exp Bot, 2017, 68: 469-482.
[46] Ge L F, Yu J B, Wang H L, Luth D, Bai G H, Wang K, Chen R J. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci USA, 2016, 113: 12414-12419.
doi: 10.1073/pnas.1611763113
[47] Liu J Y, Zhang Y W, Han X, Zuo J F, Zhang Z, Shang H, Song Q, Zhang Y M. An evolutionary population structure model reveals pleiotropic effects of GmPDAT for traits related to seed size and oil content in soybean. J Exp Bot, 2020, 71: 6988-7002.
doi: 10.1093/jxb/eraa426
[48] Wang S D, Liu S, Wang J, Yokosho K, Zhou B, Yu Y C, Liu Z, Frommer W B, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. Simultaneous changes in seed size, oil content, and protein content driven by selection of SWEET homologues during soybean domestication. Nat Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110
[49] Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.13181
[50] Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006
[51] Nguyen C X, Paddock K J, Zhang Z Y, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2021, 229: 920-934.
doi: 10.1111/nph.16928
[1] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[2] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[3] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[4] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[5] 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133.
[6] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[7] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[8] 蒙姜宇,傅鹰,贺亚军,钱伟. 利用DH和IF2群体检测油菜籽粒油酸、亚油酸、亚麻酸含量QTL[J]. 作物学报, 2019, 45(9): 1338-1348.
[9] 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049.
[10] 崔国庆,王世明,马福盈,汪会,向朝中,李云峰,何光华,张长伟,杨正林,凌英华,赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位[J]. 作物学报, 2018, 44(10): 1477-1484.
[11] 郭海平, 孙高阳, 张晓祥, 闫鹏帅, 刘坤, 谢惠玲, 汤继华, 丁冬, 李卫华. 基于SSSL群体的玉米穗下节间长QTL分析[J]. 作物学报, 2018, 44(04): 522-532.
[12] 贺亚军, 吴道明, 傅鹰, 钱伟. 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL[J]. 作物学报, 2018, 44(04): 533-541.
[13] 马岩松,刘章雄,文自翔,魏淑红,杨春明,王会才,杨春燕,卢为国,徐冉,张万海,吴纪安,胡国华,栾晓燕,付亚书,郭. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响[J]. 作物学报, 2018, 44(01): 43-52.
[14] 周勇,陶亚军,姚 锐,李 畅,谭文琛,裔传灯,龚志云,梁国华*. 利用染色体片段代换系定位水稻叶片形态性状QTL[J]. 作物学报, 2017, 43(11): 1650-1657.
[15] 陈雪萍**,荆凌云**,王嘉,荐红举,梅家琴,徐新福,李加纳,刘列钊*. 甘蓝型油菜茎秆菌核病抗性与木质素及其单体比例的相关性分析及QTL定位[J]. 作物学报, 2017, 43(09): 1280-1289.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .