欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (3): 585-596.doi: 10.3724/SP.J.1006.2023.22035

• 综述 •    下一篇

水稻大穗形成及其调控的研究进展

刘立军(), 周沈琪, 刘昆, 张伟杨, 杨建昌   

  1. 扬州大学江苏省作物遗传生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心 / 江苏省作物基因组学和分子育种重点实验室 / 农业农村部耕地质量监测与评价重点实验室, 江苏扬州225009
  • 收稿日期:2022-06-07 接受日期:2022-09-05 出版日期:2023-03-12 网络出版日期:2022-09-23
  • 通讯作者: 刘立军
  • 基金资助:
    国家自然科学基金项目(32071947);国家自然科学基金项目(31871557)

Research progress on the formation of large panicles in rice and its regulation

LIU Li-Jun(), ZHOU Shen-Qi, LIU Kun, ZHANG Wei-Yang, YANG Jian-Chang   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-06-07 Accepted:2022-09-05 Published:2023-03-12 Published online:2022-09-23
  • Contact: LIU Li-Jun
  • Supported by:
    National Natural Science Foundation of China(32071947);National Natural Science Foundation of China(31871557)

摘要:

水稻每穗粒数是构成产量的关键因素, 现代高产水稻品种多表现为穗大粒多。增加每穗粒数、促进大穗形成是提高水稻产量的重要途径。本文概述了水稻每穗粒数形成与幼穗发育的关系, 并结合作者相关研究, 从水稻穗型的遗传调控、营养状况与氮肥管理、水分、温光条件和内源激素等方面分析了其对每穗粒数形成的影响。从根系形态生理与幼穗发育、水肥管理和温光条件以及植物激素间的相互作用调节颖花分化与退化的生理和分子机制等方面提出了未来加强水稻大穗形成研究的重点, 以期为大穗高产水稻品种选育和栽培调控提供依据。

关键词: 水稻, 大穗, 颖花分化与退化, 水肥管理, 激素

Abstract:

The spikelet number per panicle is a key factor that constitutes the grain yield in rice. Modern high-yielding rice varieties mostly show high spikelet number per panicle. Increasing the spikelet number per panicle and promoting the formation of large panicles are important ways to improve rice yield. This paper reviewed the relationship between the formation of spikelet number per panicle and young panicle development in rice. Combined with the author’s related research, the mechanisms underlying genetic regulation in rice panicle size, the effects of nutritional status and nitrogen fertilizer management, water, temperature, light, and endogenous hormones on the formation of spikelet number per panicle in rice were reviewed. We put forward the future research focus on strengthening the formation of large panicles in rice from the aspects of root morphophysiology and young panicle development, water and nitrogen management, temperature and light conditions, and the physiological and molecular mechanisms of interaction between plant hormones regulating spikelet degeneration. The purpose of this study was to provide a basis for the selection and cultivation of high-yielding rice varieties with large panicles.

Key words: rice, large panicle, spikelet differentiation and degeneration, water and nutrient management, hormone

图1

穗肥施氮量对不同穗型超级稻品种一、二次枝梗颖花分化和退化的影响 Nanjing 9108、Yangliangyou 6和Yongyou 1540分别代表小穗型(每穗粒数130粒左右)、中穗型(每穗粒数220粒左右)和大穗型(每穗粒数300粒左右)品种南粳9108、扬两优6号和甬优1540。0N、54N、108N、162N和216N分别代表穗肥施氮量为0、54、108、162和216 kg hm-2。DiN、SN、DeN和DR分别代表分化数、退化数、现存数和退化率。该图根据参考文献[40]改制。"

表1

穗分化期水分处理对不同穗型水稻品种颖花分化和退化的影响"

品种
Variety
处理
Treatment
每穗一次枝梗颖花 Primary spikelets per panicle 每穗二次枝梗颖花 Secondary spikelets per panicle
分化数
DiN
退化数
DeN
现存数
SN
退化率
DR
分化数
DiN
退化数
DeN
现存数
SN
退化率
DR
淮稻5号 CF 75.2 a 1.14 a 74.1 a 1.52 a 122.6 b 28.5 a 94.1 b 23.2 a
Huaidao 5 AWMD 76.5 a 1.18 a 75.3 a 1.54 a 146.2 a 24.4 b 121.8 a 16.7 b
甬优2640 CF 83.6 a 1.06 a 82.5 a 1.27 a 294.5 b 57.4 a 237.1 b 19.5 a
Yongyou 2640 AWMD 84.3 a 1.09 a 83.2 a 1.29 a 313.9 a 53.7 b 260.2 a 17.1 b

图2

水稻幼穗发育过程中颖花分化数和退化率与24-表油菜甾酮(24-epiCS)和28-高油菜素内酯(28-homoBL)含量的关系 YD-6: 扬稻6号; YY-2640: 甬优2640; SPD: 颖花原基分化期; PMC: 花粉母细胞减数分裂期。该图根据参考文献[82]改制。**P < 0.01。"

图3

水稻幼穗发育过程中油菜素甾醇(BRs)作用的描述模型 黑色箭头“→”表示增强, 红色箭头“→”表示抑制。IM activity: 分生组织活性; H2O2: 过氧化氢; O2: 氧气; H2O: 水; AsA: 抗坏血酸; GSH: 谷胱甘肽; GSSH: 氧化型谷胱甘肽; D-mannose-1-P: 甘露糖-1-磷酸; GDP-D-mannose: 二磷酸鸟苷-二核苷酸-甘露糖; AO: 抗坏血酸氧化酶; APX: 抗坏血酸过氧化物酶; DHAR: 脱氢抗坏血酸还原酶; MDHAR: 单脱氢抗坏血酸还原酶; NADP: 氧化型烟酰胺腺嘌呤二核苷酸磷酸; NADPH: 还原型烟酰胺腺嘌呤二核苷酸磷酸; MDHA: 单脱氢抗坏血酸; DHA: 脱氢抗坏血酸; DKG: 2,3-二酮-L-古洛糖酸。该图根据参考文献[81]改制。"

[1] Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327: 812-818.
doi: 10.1126/science.1185383 pmid: 20110467
[2] Xiong J, Ding C Q, Wei G B, Ding Y F, Wang S H. Characteristic of dry-matter accumulation and nitrogen-uptake of super-high-yielding early rice in China. Agron J, 2013, 105: 1142-1150.
doi: 10.2134/agronj2012.0297
[3] Okamura M, Arai-Sanoh Y, Yoshida H, Mukouyama T, Adachi S, Yabe S, Nakagawa H, Tsutsumi K, Taniguchi Y, Kobayashi N, Kondo M. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield. Field Crops Res, 2018, 219: 139-147.
doi: 10.1016/j.fcr.2018.01.035
[4] Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8: e66428.
doi: 10.1371/journal.pone.0066428
[5] Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D P, Huang J L. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci, 2017, 8: 1147.
doi: 10.3389/fpls.2017.01147 pmid: 28706531
[6] Wei H Y, Zhang H C, Blumwald E, Li H L, Cheng J Q, Dai Q G, Huo Z Y, Xu K, Guo B W. Different characteristics of high yield formation between inbred japonica super rice and inter- sub-specific hybrid super rice. Field Crops Res, 2016, 198: 179-187.
doi: 10.1016/j.fcr.2016.09.009
[7] Zhang Z J, Chu G, Liu L J, Wang Z Q, Wang X M, Zhang H, Yang J C, Zhang J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013, 150: 9-18.
doi: 10.1016/j.fcr.2013.06.002
[8] Tang L, Xu Z J, Chen W F. Advances and prospects of super rice breeding in China. J Integr Agric, 2017, 16: 984-991.
doi: 10.1016/S2095-3119(16)61604-0
[9] Liu L J, Zhang H, Ju C X, Xiong Y W, Bian J L, Zhao B H, Yang J C. Changes in grain yield and root morphology and physiology of mid-season rice in the Yangtze River basin of China during the last 60 years. J Agric Sci, 2014, 6: 1-15.
[10] Zhang H, Liu H L, Hou D P, Zhou Y L, Liu M Z, Wang Z Q, Liu L J, Gu J F, Yang J C. The effect of integrative crop management on root growth and methane emission of paddy rice. Crop J, 2019, 7: 444-457.
doi: 10.1016/j.cj.2018.12.011
[11] Huang L Y, Yang D S, Li X X, Peng S B, Wang F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res, 2019, 233: 49-58.
doi: 10.1016/j.fcr.2019.01.005
[12] Furutani I, Sukegawa S, Kyozuka J. Genome-wide analysis of spatial and temporal gene expression in rice panicle development. Plant J, 2006, 46: 503-511.
pmid: 16623909
[13] González-Navarro O E, Griffiths S, Molero G, Reynolds M P, Slafer G A. Dynamics of floret development determining differences in spike fertility in an elite population of wheat. Field Crops Res, 2015, 172: 21-31.
doi: 10.1016/j.fcr.2014.12.001
[14] Itoh J I, Nonomura K I, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development: from zygote to spikelet. Plant Cell Physiol, 2005, 46: 23-47.
doi: 10.1093/pcp/pci501
[15] Li S B, Qian Q, Fu Z M, Zeng D L, Meng X B, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y H. Short panicle1encodes a putative PTR family transporter and determines rice panicle size. Plant J, 2009, 58: 592-605.
doi: 10.1111/j.1365-313X.2009.03799.x
[16] Kobyasi K, Yamane K, Imaki T. Effects of non-structural carbohydrates on spikelet differentiation in rice. Plant Prod Sci, 2001, 4: 9-14.
doi: 10.1626/pps.4.9
[17] 乔中英, 陈培峰, 韩立宇, 顾俊荣, 季红娟, 董明辉. 氮肥运筹与栽插密度对粳稻颖花和产量形成的影响. 扬州大学学报(农业与生命科学版), 2016, 37(2): 56-62.
Qiao Z Y, Chen P F, Han L Y, Gu J R, Ji H J, Dong M H. Effects of nitrogen managements and transplanting density on spikelets and yield formation of japonica rice varieties. J Yangzhou Univ (Agric Life Sci Edn), 2016, 37(2): 56-62. (in Chinese with English abstract)
[18] Kamoi T, Kenzo T, Kuraji K, Momose K. Abortion of reproductive organs as an adaptation to fluctuating daily carbohydrate production. Oecologia, 2007, 154: 663-677.
doi: 10.1007/s00442-007-0864-2
[19] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 2005, 46: 620-628.
pmid: 15701658
[20] Skazhennik M A, Vorob’yov N V, Sheudzhen A K, Kovalyov V S. Causes of increased panicle spikelet sterility in rice. Russ Agric Sci, 2015, 41: 309-310.
doi: 10.3103/S1068367415050195
[21] Kobata T, Tanaka S, Utumi M, Hara S, Imaki T. Sterility in rice (Oryza sativa L.) subject to drought during the booting stage occurs not because of lack of assimilate or of water- deficit in the shoot but because of dehydration of the root-zone. Jpn J Crop Sci, 1994, 63: 510-517.
doi: 10.1626/jcs.63.510
[22] 孙永健, 孙园园, 严奉君, 杨志远, 徐徽, 李玥, 王海月, 马均. 氮肥后对不同氮效率水稻花后碳氮代谢的影响. 作物学报, 2017, 43: 407-419.
doi: 10.3724/SP.J.1006.2017.00407
Sun Y J, Sun Y Y, Yan F J, Yang Z Y, Xu H, Li Y, Wang H Y, Ma J. Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2017, 43: 407-419. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00407
[23] 阮新民, 施伏芝, 从夕汉, 罗志祥. 氮高效利用水稻碳氮代谢物含量的变化特征. 作物杂志, 2015, (6): 76-83.
Ruan X M, Shi F Z, Cong X H, Luo Z X. Characteristics of carbon and nitrogen metabolites of rice genotype with high nitrogen use efficiency. Crops, 2015, (6): 76-83. (in Chinese with English abstract)
[24] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741-745.
doi: 10.1126/science.1113373 pmid: 15976269
[25] Gouda G, Gupta M K, Donde R, Kumar J, Vadde R, Mohapatra T, Behera L. Computational approach towards understanding structural and functional role of cytokinin oxidase/dehydrogenase 2 (CKX2) in enhancing grain yield in rice plant. J Biomol Struct Dyn, 2019, 38: 1158-1167.
doi: 10.1080/07391102.2019.1597771
[26] Hudson D, Guevara D R, Hand A J, Xu Z H, Hao L X, Chen X, Zhu T, Bi Y M, Rothstein S J. Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture. Plant Physiol, 2013, 162: 132-144.
doi: 10.1104/pp.113.217265 pmid: 23548780
[27] Wu Y, Wang Y, Mi X F, Shan J X, Li X M, Xu J F, Lin H X. The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet, 2016, 12: e1006386.
[28] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143
[29] Zong W B, Ren D, Huang M H, Sun K L, Feng J L, Zhao J, Xiao D D, Xie W H, Liu S Q, Zhang H, Qiu R, Tang W J, Yang R Q, Chen H Y, Xie X R, Chen L T, Liu Y G, Guo J X. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. New Phytol, 2020, 229: 1635-1649.
doi: 10.1111/nph.16946
[30] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the dep1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497.
doi: 10.1038/ng.352
[31] Terao T, Nagata K, Morino K, Hirose T. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet, 2009, 120: 875-893.
doi: 10.1007/s00122-009-1218-8
[32] Wang Y X, Yang L X, Kobayashi K, Zhu J G, Chen C P, Yang K F, Tang H Y, Wang Y L. Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China. Agric Ecosyst Environ, 2012, 150: 63-71.
doi: 10.1016/j.agee.2012.01.016
[33] Kovi M R, Bai X F, Mao D H, Xing Y Z. Impact of seasonal changes on spikelets per panicle, panicle length and plant height in rice (Oryza sativa L.). Euphytica, 2011, 179: 319-331.
doi: 10.1007/s10681-010-0332-7
[34] Zhao L, Tan L B, Zhu Z F, Xiao L T, Xie D X, Sun C Q. Pay 1 improves plant architecture and enhances grain yield in rice. Plant J, 2015, 83: 528-536.
doi: 10.1111/tpj.12905
[35] Zhang W Y, Chen Y J, Wang Z Q, Yang J C. Polyamines and ethylene in rice young panicles in response to soil drought during panicle differentiation. Plant Growth Regul, 2017, 82: 491-503.
doi: 10.1007/s10725-017-0275-2
[36] Osugi A, Sakakibara H. Q&A: how do plants respond to cytokinins and what is their importance? BMC Biol, 2015, 13: 1-10.
doi: 10.1186/s12915-014-0111-3
[37] 田青兰, 刘波, 孙红, 何莎, 钟晓媛, 赵敏, 任万军. 不同播栽方式下杂交籼稻茎秆生长和穗粒形成特点及与气象因子的关系. 中国水稻科学, 2016, 30: 507-524.
doi: 10.16819/j.1001-7216.2016.6012
Tian Q L, Liu B, Sun H, He S, Zhong X Y, Zhao M, Ren W J. Characteristics of stem growth and formation of grain of Indica hybrid rice in different planting methods and their correlation with meteorological factors. Chin J Rice Sci, 2016, 30: 507-524. (in Chinese with English abstract)
[38] 刘利, 雷小龙, 王丽, 邓飞, 刘代银, 任万军. 种植方式对杂交稻枝梗和颖花分化及退化的影响. 作物学报, 2013, 39: 1434-1444.
Liu L, Lei X L, Wang L, Deng F, Liu D Y, Ren W J. Effect of planting methods on differentiation and retrogression of branches and spikelets of hybrid rice cultivar. Acta Agron Sin, 2013, 39: 1434-1444. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01434
[39] 付鹏浩. 氮肥运筹对大穗型水稻颖花分化、籽粒灌浆和产量的影响及机理. 华中农业大学博士学位论文, 湖北武汉, 2020.
Fu P H. Effect of Nitrogen Management on Spikelet Differentiation, Grain Filling and Grain Yield and Its Mechanisms for Large-Panicle Type. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2020. (in Chinese with English abstract)
[40] 刘昆, 黄健, 周沈琪, 张伟杨, 张耗, 顾骏飞, 刘立军. 穗肥施氮量对不同穗型超级稻品种产量的影响及其机理. 作物学报, 2022, 48: 2028-2040.
Liu K, Huang J, Zhou S Q, Zhang W Y, Zhang H, Gu J F, Liu L J. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism. Acta Agron Sin, 2022, 48: 2028-2040. (in Chinese with English abstract)
[41] Wang Z Q, Zhang W Y, Yang J C. Physiological mechanism underlying spikelet degeneration in rice. J Integr Agric, 2018, 17: 1475-1481.
doi: 10.1016/S2095-3119(18)61981-1
[42] Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano H Y. Aberrant spikelet and panicle1, encoding a topless- related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J, 2012, 70: 327-339.
doi: 10.1111/j.1365-313X.2011.04872.x
[43] 汪本福, 余振渊, 程建平, 李阳, 张枝盛, 杨晓龙. 氮素对水稻产量和品质形成的影响研究进展. 华中农业大学学报, 2022, 41(1): 76-83.
Wang B F, Yu Z Y, Cheng J P, Li Y, Zhang Z S, Yang X L. Research progress of effects of nitrogen on yield and quality of rice. J Huazhong Agric Univ, 2022, 41(1): 76-83. (in Chinese with English abstract)
[44] 魏海燕, 凌启鸿, 张洪程, 郭文善, 杨建昌, 陈德华, 冷锁虎, 陆卫平, 邢志鹏. 作物群体质量及其关键调控技术. 扬州大学学报(农业与生命科学版), 2018, 39(2): 1-9.
Wei H Y, Ling Q H, Zhang H C, Guo W S, Yang J C, Chen D H, Leng S H, Lu W P, Xing Z P. The quality of crop population and its key regulation technology. J Yangzhou Univ (Agric Life Sci Edn), 2018, 39(2): 1-9. (in Chinese with English abstract)
[45] 李刚华, 王惠芝, 王绍华, 王强盛, 郑永美, 丁艳锋. 穗肥对水稻穗分化期碳氮代谢及颖花数的影响. 南京农业大学学报, 2010, 33(1): 1-5.
Li G H, Wang H Z, Wang S H, Wang Q S, Zheng Y M, Ding Y F. Effects of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle. J Nanjing Agric Univ, 2010, 33(1): 1-5. (in Chinese with English abstract)
[46] Deng F, Wang L, Mei X F, Li S X, Pu S L, Ren W J. Polyaspartate urea and nitrogen management affect nonstructural carbohydrates and yield of rice. Crop Sci, 2016, 56: 3272-3285.
doi: 10.2135/cropsci2016.02.0130
[47] Gu J F, Li Z K, Mao Y Q, Struik P C, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331.
doi: S0168-9452(18)30135-3 pmid: 30080619
[48] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang, J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40.
doi: 10.1016/j.fcr.2009.04.004
[49] 钟楚. 水分胁迫下水稻氮素利用及其适应机理. 华中农业大学博士学位论文, 湖北武汉, 2018.
Zhong C. Nitrogen Utilization and Its Adaptive Mechanism of Rice (Oryza sativa L.) under Water Stress. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[50] Yang J C, Liu K, Wang Z Q, Du Y, Zhang J H. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. J Integr Plant Biol, 2007, 49: 1445-1454.
doi: 10.1111/j.1672-9072.2007.00555.x
[51] Yang C M, Yang L Z, Yang Y X, Ou-Yang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manage, 2004, 70: 67-81.
doi: 10.1016/j.agwat.2004.05.003
[52] 陈培峰, 韩立宇, 顾俊荣, 乔中英, 王文青, 董明辉. 灌溉方式与施氮量对杂交粳稻颖花形成及籽粒充实的影响. 核农学报, 2017, 31: 1604-1611.
doi: 10.11869/j.issn.100-8551.2017.08.1604
Chen P F, Han L Y, Gu J R, Qiao Z Y, Wang W Q, Dong M H. Effects of irrigation pattern and nitrogen applications on spikelets formation and grain filling in hybrid japonica rice. J Nucl Agric Sci, 2017, 31: 1604-1611. (in Chinese with English abstract)
[53] 田青兰, 刘波, 钟晓媛, 赵敏, 孙红, 任万军. 不同播栽方式下杂交籼稻非结构性碳水化合物与枝梗和颖花形成及产量性状的关系. 中国农业科学, 2016, 49: 35-53.
Tian Q L, Liu B, Zhong X Y, Zhao M, Sun H, Ren W J. Relationship of NSC with the formation of branches and spikelets and the yield traits of india hybrid rice in different planting methods. Sci Agric Sin, 2016, 49: 35-53. (in Chinese with English abstract)
[54] Liu K, Chen Y, Huang J, Qiu Y Y, Li S Y, Zhuo X X, Yu F, Gao J, Li G M, Zhang W Y, Zhang H, Gu J F, Liu L J, Yang J C. Spikelet differentiation and degeneration in rice varieties with different panicle sizes. Food Energy Secur, 2022, 11: e320.
[55] 王亚梁, 张玉屏, 曾研华, 武辉, 向镜, 陈惠哲, 张义凯, 朱德峰. 水稻穗分化期高温对颖花分化及退化的影响. 中国农业气象, 2015, 36: 724-731.
Wang Y L, Zhang Y P, Zeng Y H, Wu H, Xiang J, Chen H Z, Zhang Y K, Zhu D F. Effects of high temperature stress on rice spikelet differentiation and degeneration during panicle initiation stage. Chin J Agrometeorol, 2015, 36: 724-731. (in Chinese with English abstract)
[56] 曹云英, 段骅, 杨立年, 王志琴, 周少川, 杨建昌. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因. 作物学报, 2008, 34: 2134-2142.
doi: 10.3724/SP.J.1006.2008.02134
Cao Y Y, Duan H, Yang L N, Wang Z Q, Zhou S C, Yang J C. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron Sin, 2008, 34: 2134-2142. (in Chinese with English abstract)
[57] Oshino T, Abiko M, Saito R, Ichiishi E, Endo M, Kawagishi- Kobayashi M, Higashitani A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol Genet Genomics, 2007, 278: 31-42.
doi: 10.1007/s00438-007-0229-x pmid: 17429694
[58] 刘航江, 袁新捷, 陈国兴. 高温胁迫下粳稻产量因子的变化以及对抗氧化酶活性的影响. 云南农业大学学报(自然科学), 2021, 36(1): 14-21.
Liu H J, Yuan X J, Chen G X. Changes of japonica rice factors and effects on antioxidant enzyme activities under high temperature stress. J Yunnan Agric Univ (Nat Sci Edn), 2021, 36(1): 14-21. (in Chinese with English abstract)
[59] 曾研华, 张玉屏, 向镜, 王亚梁, 陈惠哲, 朱德峰. 籼型常规早稻穗分化期低温对颖花形成和籽粒充实的影响. 应用生态学报, 2015, 26: 2007-2014.
Zeng Y H, Zhang Y P, Xiang J, Wang Y L, Chen H Z, Zhu D F. Effects of low temperature on formation of spikelets and grain filling of indica inbred rice during panicle initiation in early-season. Chin J Appl Ecol, 2015, 26: 2007-2014. (in Chinese with English abstract)
[60] 王亚梁, 张玉屏, 向镜, 王磊, 陈惠哲, 张义凯, 张文倩, 朱德峰. 籼稻颖花分化与退化对不同播期温光的响应. 应用生态学报, 2017, 28: 3571-3580.
doi: 10.13287/j.1001-9332.201711.010
Wang Y L, Zhang Y P, Xiang J, Wang L, Chen H Z, Zhang Y K, Zhang W Q, Zhu D F. Response of indica rice spikelet differentiation and degeneration to air temperature and solar radiation of different sowing dates. Chin J Appl Ecol, 2017, 28: 3571-3580. (in Chinese with English abstract)
[61] 盛家艳, 张伟杨, 王志琴, 杨建昌. 水稻颖花退化机理与调控途径. 作物杂志, 2019, (2): 20-27.
Sheng J Y, Zhang W Y, Wang Z Q, Yang J C. Mechanism and regulation spikelet degeneration of rice. Crops, 2019, (2): 20-27. (in Chinese with English abstract)
[62] Han Y Y, Yang H B, Jiao Y L. Regulation of inflorescence architecture by cytokinins. Front Plant Sci, 2014, 5: 669.
doi: 10.3389/fpls.2014.00669 pmid: 25505480
[63] Talla S K, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J Exp Bot, 2016, 67: 1839-1851.
doi: 10.1093/jxb/erv575 pmid: 26826216
[64] Kim H J, Ryu H, Hong S H, Woo H R, Lim P O, Lee I C, Sheen J, Nam H G, Hwang I. Cytokinin-mediated control of leaf longevity by Ahk3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 814-819.
doi: 10.1073/pnas.0505150103
[65] Shimizu-Sato S, Tanaka M, Mori H. Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol, 2008, 69: 429-435.
doi: 10.1007/s11103-008-9416-3
[66] Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in regulating shoot and root meristem activity. Plant Cell, 2003, 15: 2532-2550.
doi: 10.1105/tpc.014928 pmid: 14555694
[67] 王夏雯, 王绍华, 李刚华, 王强盛, 刘正辉, 余翔, 丁艳锋. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系. 作物学报, 2008, 34: 2184-2189.
doi: 10.3724/SP.J.1006.2008.02184
Wang X W, Wang S H, Li G H, Wang Q S, Liu Z H, Yu X, Ding Y F. Effect of panicle nitrogen fertilizer on concentrations of cytokinin and auxin in young panicle of japonica rice and its relation with spikelet development. Acta Agron Sin, 2008, 34: 2184-2189. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.02184
[68] Pandey G K. Mechanism of Plant Hormone Signaling under Stress, 2nd edn. New Jersey: Wiley Blackwell, 2017. pp 453-459.
[69] Yang J C, Liu K, Zhang S F, Wang X M, Wang Z Q, Liu L J. Hormones in rice spikelets in responses to water stress during meiosis. Acta Agron Sin, 2008, 34: 111-118.
doi: 10.1016/S1875-2780(08)60005-X
[70] Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L J. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol, 2010, 171: 293-303.
doi: 10.1111/j.1469-8137.2006.01753.x
[71] Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long- distance signaling. Nature, 2018, 556: 235-238.
doi: 10.1038/s41586-018-0009-2
[72] Feng H Y, Wang Z M, Kong F N, Zhang M J, Zhou S L. Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J Integr Plant Biol, 2011, 53: 388-398.
doi: 10.1111/j.1744-7909.2011.01039.x
[73] 赵宏伟, 李晓, 贾琰, 张盛楠, 张妍, 王喆, 韩东. 水杨酸对孕穗期低温胁迫寒地粳稻颖花形成的影响. 东北农业大学学报, 2019, 50(6): 1-9.
Zhao H W, Li X, Jia Y, Zhang S N, Zhang Y, Wang Z, Han D. Effects of salicylic acid on formation of spikelet in japonica rice under low-temperature stress at booting stage. J Northeast Agirc Univ, 2019, 50(6): 1-9. (in Chinese with English abstract)
[74] 陈睿. 茉莉素、生长素和表观遗传调控水稻颖花发育的研究进展. 福建农业科技, 2021, 51(1): 62-67.
Chen R. Research progress on the regulation of jasmonates, auxin and epigenetics on rice floret development. Fujian Agric Sci Technol, 2021, 51(1): 62-67. (in Chinese with English abstract)
[75] 符冠富, 张彩霞, 杨雪芹, 杨永杰, 陈婷婷, 赵霞, 符卫蒙, 奉保华, 章秀福, 陶龙兴, 金千瑜. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究. 中国水稻科学, 2015, 29: 637-647.
doi: 10.3969/j.issn.1001G7216.2015.06.010
Fu G H, Zhang C X, Yang X Q, Yang Y J, Chen T T, Zhao X, Fu W M, Feng B H, Zhang X F, Tao L X, Jin Q Y. Action mechanism by which SA alleviates high temperature-induced inhibition to spikelet differentiation. Chin J Rice Sci, 2015, 29: 637-647. (in Chinese with English abstract)
[76] Zhang C X, Feng B H, Chen T T, Zhang X F, Tao L X, Fu G F. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul, 2017, 83: 313-323.
doi: 10.1007/s10725-017-0296-x
[77] Cai Q, Yuan Z, Chen M J, Yin C S, Luo Z J, Zhao X X, Liang W Q, Hu J P, Zhang D B. Jasmonic acid regulates spikelet development in rice. Nat Commun, 2014, 5: 3476.
doi: 10.1038/ncomms4476 pmid: 24647160
[78] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用. 作物学报, 2021, 45: 894-903.
Yao J Y, Yu J X, Wang Z Q, Liu L J, Zhou J, Zhang W Y, Yang J C. Response of endogenous brassinosteriods to nitrogen rates and its regulatory effect on spikelet degeneration in rice. Acta Agron Sin, 2021, 45: 894-903. (in Chinese with English abstract)
[79] Zhang W Y, Sheng J Y, Fu L D, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Zhang J H, Yang J C. Brassinosteroids mediate the effect of soil-drying during meiosis on spikelet degeneration in rice. Environ Exp Bot, 2020, 169: 103887.
doi: 10.1016/j.envexpbot.2019.103887
[80] Bajguz A, Tretyn A. The chemical characteristic and distribution of brassinosteroids in plant. Phytochemistry, 2003, 62: 1027-1046.
doi: 10.1016/S0031-9422(02)00656-8
[81] Zhang W Y, Sheng J Y, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Yang J C, Zhang J H. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil- drying during panicle development. BMC Plant Biol, 2019, 19: 409.
doi: 10.1186/s12870-019-2025-2
[82] Zhang W Y, Zhu K Y, Zhang H, Gu J F, Liu L J, Yang J C, Zhang J H. Brassinosteroids function in spikelet differentiation and degeneration in rice. J Integr Biol, 2019, 61: 943-963.
[83] 周磊, 刘秋员, 田晋钰, 朱梦华, 程爽, 车阳, 王志杰, 邢志鹏, 胡雅杰, 刘国栋, 魏海燕, 张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异. 作物学报, 2020, 46: 772-786.
doi: 10.3724/SP.J.1006.2020.92051
Zhou L, Liu Q Y, Tian J Y, Zhu M H, Cheng S, Che Y, Wang Z J, Xing Z P, Hu Y J, Liu G D, Wei H Y, Zhang H C. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series. Acta Agron Sin, 2020, 46: 772-786 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.92051
[84] 汪峰, 谌江华, 陈若霞, 史骏, 任少鹏, 金树权, 姚红燕, 朱德峰, 戴瑶璐. 减氮对甬优籼粳杂交稻产量和氮肥利用率的影响. 浙江农业学报, 2021, 33: 984-992.
doi: 10.3969/j.issn.1004-1524.2021.06.03
Wang F, Chen J H, Chen R X, Shi J, Ren S P, Jin S Q, Yao H Y, Zhu D F, Dai L Y. Effects of reduced nitrogen application on yield and nitrogen agronomic efficiency of Yongyou indica-japonica hybrid rice. Acta Agric Zhejiangensis, 2021, 33: 984-992. (in Chinese with English abstract)
[85] Liu K, Li T T, Chen Y, Huang J, Qiu Y Y, Li S Y, Wang H, Zhu A, Zhuo X X, Yu F, Zhang H, Gu J F, Liu L J, Yang J C. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Res, 2020, 258, 107946.
[86] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36-46.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36-46. (in Chinese with English abstract)
[87] 刘文兆, 李秧秧. 断伤作物根系对籽粒产量与水分利用效率的影响研究现状及问题. 西北植物学报, 2003, 23: 1320-1324.
Liu W Z, Li Y Y. Effect of crop root-cutting on grain yield and water use efficiency. Acta Bot Boreal-Occident Sin, 2003, 23: 1320-1324. (in Chinese with English abstract)
[88] 汪强, 樊小林, 刘芳, 李方敏, Klaus D, Sattemacher B. 断根和覆草旱作条件下水稻的产量效应. 中国水稻科学, 2004, 18: 437-442.
Wang Q, Fan X L, Liu F, Li F M, Klaus D, Sattemacher B. Effect of root cutting on rice yield by shifting normal paddy to upland cultivation. Chin J Rice Sci, 2004, 18: 437-442. (in Chinese with English abstract)
[89] Liu L J, Zhang H, Ju C X, Xiong Y W, Bian J L, Zhao B H, Yang J C. Changes in grain yield and root morphology and physiology of mid-season rice in the Yangtze River basin of China during the last 60 years. J Agric Sci, 2014, 6: 1-15.
[90] 宋有金, 吴超. 高温影响水稻颖花育性的生理机制综述. 江苏农业科学, 2020, 48(16): 41-48.
Song Y J, Wu C. A review on the physiological mechanism of high temperature affecting spikelet fertility in rice. Jiangsu Agric Sci, 2020, 48(16): 41-48. (in Chinese)
[91] 杨洪建, 王余龙, 黄建晔, 董桂春, 朱建国, 杨连新, 单玉华. 开放式空气CO2浓度增高对水稻颖花分化和退化的影响. 应用生态学报, 2002, 13: 1215-1218.
Yang H J, Wang Y L, Huang J Y, Dong G C, Zhu J G, Yang L X, Shan Y H. Effect of free-air CO2 enrichment (FACE) on spikelets differentiation and retrogression in rice (Oryza sativa L.). Chin J Appl Ecol, 2002, 13: 1215-1218. (in Chinese with English abstract)
[92] Wang J Y, Jia J X, Xiong Z Q, Khalil M A K, Xing G X. Water regime-nitrogen fertilizer-straw incorporation interaction: field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China. Agric Ecosyst Environ, 2011, 141: 437-446.
doi: 10.1016/j.agee.2011.04.009
[1] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[2] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
[3] 唐文强, 张文龙, 朱晓乔, 董必正, 李勇成, 杨楠, 张耀, 王云月, 韩光煜. 多样性混合间栽对水稻根际细菌群落结构与功能的影响[J]. 作物学报, 2023, 49(4): 1111-1121.
[4] 李秋平, 张春龙, 杨宏, 王拓, 李娟, 金寿林, 黄大军, 李丹丹, 文建成. 水稻半育突变体sfp10的生理特征分析及基因定位[J]. 作物学报, 2023, 49(3): 634-646.
[5] 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒型QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743.
[6] 朱晓彤, 叶亚峰, 郭均瑶, 杨惠杰, 王紫瑶, 詹玥, 吴跃进, 陶亮之, 马伯军, 陈析丰, 刘斌美. 水稻早衰基因ESL8的遗传与定位[J]. 作物学报, 2023, 49(3): 662-671.
[7] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[8] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[9] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[10] 韩贝, 孙思敏, 孙伟男, 杨细燕, 张献龙. 植物体细胞胚胎发生的分子机制[J]. 作物学报, 2023, 49(2): 299-309.
[11] 陈赛华, 彭盛, 尤仪雯, 张路遥, 王凯, 薛明, 杨远柱, 万建民. 水稻不育系湘陵628S不同组合感光性差异的遗传解析[J]. 作物学报, 2023, 49(2): 332-342.
[12] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[13] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[14] 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128.
[15] 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .