欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1065-1078.doi: 10.3724/SP.J.1006.2023.23032

• 耕作栽培·生理生化 • 上一篇    下一篇

种植密度对不同生育期玉米品种光温资源利用率和产量的影响

吴希1(), 王家瑞1, 郝淼艺1, 张宏军2, 张仁和1,*()   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100
    2陕西省种子工作总站, 陕西西安 710003
  • 收稿日期:2022-04-14 接受日期:2022-09-05 出版日期:2023-04-12 网络出版日期:2022-09-15
  • 通讯作者: *张仁和, E-mail: zhangrenhe1975@163.com
  • 作者简介:E-mail: wuxi1997@126.com
  • 基金资助:
    国家重点研发计划项目(2017YFD03000304);陕西省优势特色农业产业项目(SXNY-2021-02)

Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages

WU Xi1(), WANG Jia-Rui1, HAO Miao-Yi1, ZHANG Hong-Jun2, ZHANG Ren-He1,*()   

  1. 1College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Shaanxi Seed Work Station, Xi’an 710003, Shaanxi, China
  • Received:2022-04-14 Accepted:2022-09-05 Published:2023-04-12 Published online:2022-09-15
  • Contact: *E-mail: zhangrenhe1975@163.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD03000304);Shaanxi Advantage Characteristic Agricultural Industry Project(SXNY-2021-02)

摘要:

探究不同生育期玉米光温利用、物质生产和产量形成对密度的响应, 以期为陕北灌区春玉米密植高产高效栽培提供理论依据。试验于2019—2020年以东单60 (中晚熟)和大丰30 (中早熟)为试验材料, 设置45,000 (D1)、60,000 (D2)、75,000 (D3)和90,000 (D4)株 hm-2 4个种植密度, 测定了叶面积指数、冠层光分布、物质生产与转运、光温利用和产量及其构成等指标。结果表明, 大丰30和东单60分别在90,000株 hm-2和75,000株 hm-2密度下达到最高产量18,787.5 kg hm-2和16,953.0 kg hm-2, 较低密度分别提高了37.7%和41.4%, 且高产下大丰30籽粒含水率较东单60低11.5%。随着种植密度的增加, 群体叶面积指数明显提高, 上部冠层光能截获率显著增大, 而中部冠层光能截获率显著下降且东单60降低幅度高于大丰30, 下部冠层光能截获率无显著差异。对于光能辐射利用而言, 大丰30花前截获的光合有效辐射和光能利用率较东单60分别高7.9%、高1.7%; 大丰30花后截获的光合有效辐射和光能利用率较东单60分别低9.5%、高14.9%, 根据光能利用效率和种植密度的相关关系表明增密对提高大丰30的光能辐射利用率更显著。在D4密度下, 中早熟品种大丰30较晚熟品种东单60生育期平均缩短了4.3 d, 大丰30的平均有效积温较东单60少25.3℃, 而积温利用率提高了25.3%, 达到最大干物质积累速率所需积温较东单60少; 东单60和大丰30的花前干物质累积量及花后转运率较D1分别提高了26.7%、34.6%和43.7%、55.8%, 且大丰30的花后干物质累积量和花后干物质转运率较东单60分别高14.5%和12.3%。可见, 中早熟品种大丰30密植下重塑群体结构, 改善中部冠层光能截获, 增加干物质增长速率和提前干物质达到最大增大速率时期, 促进干物质的累积与转运, 提高了光温资源利用效率, 实现该区春玉米高产高效; 同时收获时籽粒较低的含水率, 适宜籽粒机收。

关键词: 春玉米, 种植密度, 光温资源, 物质累积转运, 籽粒机收

Abstract:

The objective of this study is to explore the response of maize solar and heat utilization, material production, and yield formation to density at different maturity stages, in order to provide a theoretical basis for high yield and efficiency cultivation of spring maize in Northern Shaanxi irrigation area. In 2019 and 2020, the field experiments were conducted by using two maize hybrids [Dongdan 60 (middle-late-maturing) and Dafeng 30 (middle-early-maturing)] with four planting density treatments [45,000 (D1), 60,000 (D2), 75,000 (D3), and 90,000 (D4) plants hm-2]. Leaf area index, canopy solar distribution, material production and transport, solar and heat utilization, yield and its composition were measured. The results showed that, compared with the low density, Dafeng 30 and Dongdan 60 reached the highest yield of 18,787.5 kg hm-2 and 16,953.0 kg hm-2 under the density of 90,000 plants hm-2 and 75,000 plants hm-2 and increased by 37.7 % and 41.4 %, respectively. The grain moisture content of Dafeng 30 was 11.5 % lower than that of Dongdan 60 under high yield. With the increase of planting density, the leaf area index of the population and the interception rate of solar energy in the upper canopy increased significantly, while the solar interception rate of the middle canopy decreased significantly, and Dongdan 60 decreased more than Dafeng 30. There was no significant difference in the interception rate of the lower canopy. For the utilization of solar radiation, the pre-silking intercepted photosynthetically active radiation and radiation use efficiency of Dafeng 30 were 7.9% and 1.7% higher than those of Dongdan 60, respectively. The post-silking intercepted photosynthetically active radiation and radiation use efficiency of Dafeng 30 were 9.5% and 14.9% lower than those of Dongdan 60, respectively. The correlation between radiation use efficiency and planting density revealed that the increase of planting density was more obvious in improving the light radiation utilization efficiency of Dafeng 30. Under D4 density, the growth period of Dafeng 30 was shortened by 4.3 days on average compared with that of Dongdan 60, and the average effective accumulated temperature of Dafeng 30 was 25.3°C less than that of Dongdan 60, but the temperature use efficiency was 25.3% higher than that of Dongdan 60, and the accumulated temperature required to reach the maximum dry matter accumulation rate was less than that of Dongdan 60. The pre-anthesis dry matter accumulation and post-anthesis dry matter transport rate of Dongdan 60 and Dafeng 30 were 26.7%, 34.6%, and 43.7%, 55.8% higher than those of D1, respectively. The post-silking dry matter accumulation and post-silking dry matter transport rate of Dafeng 30 were 14.5% and 12.3% higher than those of Dongdan 60, respectively. In comclusion, the population structure of Dafeng 30 was reconstructed under the dense planting can improve solar energy interception in the middle canopy, increase growth rate of dry matter and advance dry matter to reach the maximum growth rate, promote dry matter accumulation and transportat, improve solar and heat resource utilization efficiency, and achieve high yield and efficiency of spring maize in this area. Meanwhile, the lower moisture content of grain was suitable for mechanical harvesting.

Key words: spring maize, planting density, solar and heat resources, accumulated transport of substances, mechanical grain harvesting

图1

2019?2020年玉米生育期温度和光辐射变化"

表1

密度对不同生育期玉米品种产量及其构成因素的影响"

年份
Year
品种
Variety name
密度
Density
穗粒数
Grains per ear (spike hm-2)
百粒重
100-kernel weight
(g)
籽粒产量
Grain yield
(kg hm-2)
籽粒含水率
Grain moisture content
(%)
2019 东单60
Dongdan 60
D1 712.9 a 38.6 a 13,052.8 d 25.5 a
D2 686.3 b 37.6 a 15,673.6 c 24.4 ab
D3 675.1 b 34.9 b 17,099.3 a 22.3 bc
D4 646.8 c 32.8 b 16,370.6 b 22.1 c
大丰30
Dafeng 30
D1 732.4 a 42.9 a 14,174.3 d 22.2 a
D2 678.0 b 40.9 b 15,549.3 c 21.0 ab
D3 653.7 c 40.2 b 17,848.0 b 20.4 ab
D4 648.7 c 38.3 c 19,126.5 a 20.0 b
2020 东单60
Dongdan 60
D1 623.7 a 37.4 a 11,570.3 d 26.2 a
D2 605.8 b 36.8 a 14,093.0 c 25.0 a
D3 575.1 c 35.3 b 16,806.6 a 24.5 a
D4 565.9 c 33.5 c 14,911.5 b 22.5 b
大丰30
Dafeng 30
D1 692.2 a 40.8 a 12,396.4 c 23.9 a
D2 676.1 b 38.6 b 14,944.2 b 23.6 a
D3 650.1 b 37.8 b 17,332.9 a 22.5 ab
D4 565.1 c 35.6 c 18,448.4 a 21.4 b
变异来源
Source of variation
年份Year (Y) ** ** ** **
品种Variety (V) ** ** ** **
密度Density (D) ** ** ** **
Y×V ** ** * ns
Y×D ** ns * ns
V×D ** ns ** ns
Y×V×D ** ns ** ns

图2

不同生育期玉米品种种植密度和产量、籽粒含水率的关系"

表2

冠层不同层次光能截获率与籽粒产量之间的回归关系"

项目
Item
回归方程
Regression
决定系数
R2
产量
Yield
(kg hm-2)
Y=29,386.2ΔT1+27,614.9ΔT2
-7874.3ΔT3-2798.8
0.818**
Y=36,773.9ΔT-14,617.0 0.620**

图3

密度对不同生育期品种玉米叶面积指数的影响 DD60: 东单60; DF30: 大丰30; V6: 拔节期; V12: 喇叭口期; R1: 吐丝期。处理同表1。同列标以不同字母的值在处理间差异显著(P < 0.05)。"

表3

不同生育期玉米品种在不同密度下的生育进程和有效积温利用"

品种
Variety
密度
Density
播种期
Sowing date (M/D)
吐丝期
R1
(M/D)
生理成熟期
R6
(M/D)
吐丝前
有效积温
EATBS (℃)
吐丝后
有效积温
EATAS (℃)
生育期
Total growth
(d)
总有效积温
TEAT
(℃)
温度利用效率TUE
(kg hm-2-1)
2019
东单60
Dongdan 60
D1 4/30 7/14 9/28 683.79 771.63 149 1455.42 9.19 d
D2 4/30 7/14 9/27 683.79 765.54 148 1449.33 11.06 c
D3 4/30 7/14 9/27 683.79 765.54 148 1449.33 12.06 b
D4 4/30 7/14 9/26 683.79 758.66 147 1442.45 11.67 a
大丰30
Dafeng 30
D1 4/30 7/14 9/23 671.06 759.03 145 1430.09 10.44 d
D2 4/30 7/14 9/22 683.79 740.86 144 1424.65 11.49 c
D3 4/30 7/14 9/22 683.79 740.86 144 1424.65 13.19 b
D4 4/30 7/14 9/20 683.79 730.56 142 1414.35 14.29 a
2020
东单60
Dongdan 60
D1 5/1 7/14 9/29 724.91 754.40 149 1497.31 8.18 d
D2 5/1 7/14 9/28 724.91 749.06 148 1491.97 10.01 c
D3 5/1 7/14 9/28 724.91 749.06 148 1491.97 11.93 b
D4 5/1 7/14 9/27 724.91 743.75 147 1486.66 10.70 a
大丰30
Dafeng 30
D1 5/1 7/13 9/24 731.02 748.32 145 1479.34 9.11 d
D2 5/1 7/13 9/24 731.02 748.32 145 1479.34 11.02 c
D3 5/1 7/14 9/22 742.91 727.21 143 1470.12 12.79 b
D4 5/1 7/14 9/21 742.91 721.19 142 1464.10 13.73 a

表4

密度对不同生育期玉米品种光能辐射利用效率的影响"

品种
Variety
密度
Density
吐丝前Pre-silking 吐丝后Post-silking 全生育期Total growth period
IPAR
(MJ m-1)
RUE
(g MJ-1)
IPAR
(MJ m-1)
RUE
(g MJ-1)
IPAR
(MJ m-1)
RUE
(g MJ-1)
2019
东单60
Dongdan 60
D1 1030.00 1.09 b 965.37 1.19 a 1995.37 1.14 b
D2 1048.29 1.13 b 979.38 1.24 a 2027.67 1.18 ab
D3 1091.91 1.24 a 1012.78 1.30 a 2104.69 1.27 a
D4 1046.57 1.24 a 978.06 1.26 a 2024.63 1.25 a
大丰30
Dafeng 30
D1 1095.59 1.12 b 839.01 1.32 c 1934.60 1.21 c
D2 1124.11 1.14 b 860.86 1.39 bc 1984.97 1.25 bc
D3 1183.46 1.19 b 906.31 1.46 b 2089.77 1.31 b
D4 1193.06 1.33 a 913.66 1.67 a 2106.71 1.48 a
2020
东单60
Dongdan 60
D1 958.20 0.97 b 818.58 1.19 b 1776.78 1.07 c
D2 1015.44 1.04 ab 860.25 1.23 ab 1875.69 1.13 bc
D3 1078.04 1.16 a 905.82 1.30 a 1983.86 1.22 a
D4 1028.39 1.11 a 869.68 1.27 ab 1898.07 1.18 ab
大丰30
Dafeng 30
D1 1005.41 0.98 c 731.98 1.31 c 1737.39 1.12 d
D2 1063.68 1.03 c 774.41 1.37 bc 1838.09 1.18 c
D3 1132.20 1.12 b 824.29 1.43 ab 1956.48 1.25 b
D4 1153.42 1.21 a 839.74 1.52 a 1993.17 1.34 a

图4

密度对不同生育期品种玉米冠能光能截获率的影响 图柱上小写字母不同表示不同处理间差异显著(P < 0.05)。处理同表1, 缩写同图3。"

图5

不同生育期玉米品种光能辐射利用效率与种植密度之间的关系 缩写同图3。"

表5

密度对不同生育期玉米品种物质生产转运的影响"

品种
Variety
密度
Density
总生物量
Total biomass (kg hm-2)
花前干物质积累量DMABS
(kg hm-2)
花后干物积累量DMAAS
(kg hm-2)
花后转运率
DMTR
(%)
花后干物质转运对籽粒的贡献率CGDMT (%)
2019
东单60
Dongdan 60
D1 22,757.70 d 11,233.57 b 11,524.13 b 19.52 b 16.08 b
D2 24,024.00 c 11,865.98 b 12,158.02 ab 21.59 b 17.38 b
D3 26,692.83 a 13,544.67 a 13,147.90 a 29.70 a 23.46 a
D4 25,223.08 b 12,931.67 a 12,291.42 ab 27.44 a 22.40 a
大丰30
Dafeng 30
D1 23,320.67 c 12,273.15 c 11,047.52 c 21.53 b 19.42 c
D2 24,744.67 c 12,787.20 bc 11,957.47 bc 22.57 b 19.47 c
D3 27,298.08 b 14,101.00 b 13,197.08 b 30.33 a 24.48 b
D4 31,115.23 a 15,832.80 a 15,282.43 a 32.70 a 25.30 a
品种
Variety
密度
Density
总生物量
Total biomass (kg hm-2)
花前干物质积累量DMABS
(kg hm-2)
花后干物积累量DMAAS
(kg hm-2)
花后转运率
DMTR
(%)
花后干物质转运对籽粒的贡献率CGDMT (%)
2020
东单60
Dongdan 60
D1 19,049.50 d 9317.36 c 9732.14 a 19.61 a 15.94 b
D2 21,142.13 c 10,564.45 bc 10,577.68 a 24.38 a 19.71 ab
D3 24,279.00 a 12,492.13 a 11,786.87 a 26.51 a 22.39 a
D4 22,458.63 b 11,441.93 ab 11,016.70 a 25.84 a 21.31 a
大丰30
Dafeng 30
D1 19,474.16 d 9887.67 d 9589.50 d 18.99 b 16.45 c
D2 21,634.72 c 10,989.60 c 10,645.12 c 27.89 a 22.34 b
D3 24,487.11 b 12,731.80 b 11,755.31 b 30.18 a 24.63 a
D4 26,732.58 a 13,975.67 a 12,756.92 a 30.41 a 25.00 a

图6

不同生育期玉米品种在不同密度配置下的干物质积累动态变化 处理同表1, 缩写同图3。"

图7

物质生产、光温资源利用效率与产量相关性分析 IPARBS: 花前截获光合有效辐射; IPARAS: 花后截获光合有效辐射; TEAT: 总有效积温; RUE: 光能利用效率; TUE: 温度利用效率; DMABS: 花前干物质累积量; DMAAS: 花后干物质累积量; DMTR: 干物质转运率; GMC: 籽粒含水率; GY: 籽粒产量。缩写同图3。*表示在P < 0.05水平差异显著, **表示在P < 0.01水平差异显著。"

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959. (in Chinese with English abstract)
[2] Xu W J, Liu C W, Wang K R, Xie R Z, Ming B, Wang Y H, Zhang G Q, Liu G Z, Zhao R L, Fan P P, Li S K, Hou P. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res, 2017, 212: 126-134.
doi: 10.1016/j.fcr.2017.05.006
[3] Xue J, Gao S, Fan Y H, Li L L, Ming B, Wang K R, Xie R Z, Hou P, Li S K. Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging-resistant maize cultivars. Eur J Agron, 2020, 117: 126073.
doi: 10.1016/j.eja.2020.126073
[4] 万泽花, 任佰朝, 赵斌, 刘鹏, 张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化. 作物学报, 2019, 45: 1446-1453.
doi: 10.3724/SP.J.1006.2019.83078
Wan Z H, Ren B C, Zhao B, Liu P, Zhang J W. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities. Acta Agron Sin, 2019, 45: 1446-1453. (in Chinese with English abstract)
[5] 柏延文, 张宏军, 朱亚利, 郑学慧, 杨梅, 李从锋, 张仁和. 不同株型玉米冠层光氮分布、衰老特征及光能利用对增密的响应. 中国农业科学, 2020, 53: 3059-3070.
Bai Y W, Zhang H J, Zhu Y L, Zheng X H, Yang M, Li C F, Zhang R H. Responses of canopy radiation and nitrogen distribution, leaf senescence and radiation use efficiency on increased planting density of different variety types of maize. Sci Agric Sin, 2020, 53: 3059-3070. (in Chinese with English abstract)
[6] Chen S, Yin M, Zheng X, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F. Effect of dense planting of hybrid rice on grain yield and solar radiation use in southeastern China. Agron J, 2019, 111: 1-10.
doi: 10.2134/agronj2018.10.0657
[7] 徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50: 2463-2475.
Xu Z G, Sun L, Wang H, Wang S L, Wang X L, Li J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Sci Agric Sin, 2017, 50: 2463-2475. (in Chinese with English abstract).
[8] 崔晓朋, 郭家选, 刘秀位, 张喜英, 孙宏勇. 不同种植模式对夏玉米光能利用率和产量的影响. 华北农学报, 2013, 28: 231-238.
doi: 10.7668/hbnxb.2013.05.039
Cui X P, Guo J X, Liu X W, Zhang X Y, Sun H Y. Effect of different planting patterns on radiation use efficiency and yield of summer maize. Acta Agric Boreali-Sin, 2013, 28: 231-238. (in Chinese with English abstract)
[9] 唐心龙, 刘莹, 秦喜彤, 张雨寒, 王腾, 李博, 薛瑞锋, 李济, 李昊, 石武良, 李斌, 李秋祝, 王洪预, 崔金虎, 姜文洙, 曹宁, 张玉斌. 玉米光能利用率和产量对密度、施氮量及其互作的响应. 植物营养与肥料学报, 2021, 27: 1864-1873.
Tang X L, Liu Y, Qin X T, Zhang Y H, Wang T, Li B, Xue R F, Li J, Li H, Shi W L, Li B, Li Q Z, Wang H Y, Cui J H, Jiang W Z, Cao N, Zhang Y B. Response of light use efficiency and grain yield of maize to planting density and nitrogen application rate. J Plant Nutr Fert, 2021, 27: 1864-1873. (in Chinese with English abstract)
[10] Cao Y J, Wang L C, Gu W R, Wang Y J, Zang J H. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J Integr Agric, 2021, 20: 494-510.
doi: 10.1016/S2095-3119(20)63378-0
[11] 吕丽华, 陶洪斌, 王璞, 刘明, 赵明, 王润正. 种植密度对夏玉米碳氮代谢和氮利用率的影响. 作物学报, 2008, 34: 718-723.
doi: 10.3724/SP.J.1006.2008.00718
Lyu L H, Tao H B, Wang P, Liu M, Zhao M, Wang R Z. Carbon and nitrogen metabolism and nitrogen use efficiency in summer maize under different planting densities. Acta Agron Sin, 2008, 34: 718-723. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00718
[12] 陈静, 任佰朝, 赵斌, 刘鹏, 杨今胜, 张吉旺. 基于品种生育期有效积温确定夏玉米适宜播期. 中国农业科学, 2021, 54: 3632-3646.
Chen J, Ren B C, Zhao B, Liu P, Yang J S, Zhang J W. Determination on suitable sowing date of summer maize hybrids based on effective accumulated temperature in growth period. Sci Agric Sin, 2021, 54: 3632-3646. (in Chinese with English abstract)
[13] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应. 作物学报, 2021, 47: 507-519.
doi: 10.3724/SP.J.1006.2021.03024
Zhu Y L, Wang C G, Yang M, Zheng X H, Zhao C F, Zhang R H. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density. Acta Agron Sin, 2021, 470: 507-519. (in Chinese with English abstract)
[14] 徐田军, 吕天放, 赵久然, 王荣焕, 陈传永, 刘月娥, 刘秀芝, 王元东, 刘春阁. 玉米生产上3个主推品种光合特性、干物质积累转运及灌浆特性. 作物学报, 2018, 44: 414-422.
doi: 10.3724/SP.J.1006.2018.00414
Xu T J, Lyu T F, Zhao J R, Wang R H, Chen C Y, Liu Y E, Liu X Z, Wang Y D, Liu C G. Photosynthetic characteristics, dry matter accumulation and translocation, grain filling parameter of three main maize varieties in production. Acta Agron Sin, 2018, 44: 414-422. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00414
[15] 钱春荣, 王荣焕, 于洋, 徐田军, 宫秀杰, 郝玉波, 姜宇博, 赵久然. 生态区对不同熟期玉米品种生长发育与有效积温生产效率的影响. 黑龙江农业科学, 2020, (9): 1-8.
Qian C R, Wang R H, Yu Y, Xu T J, Gong X J, Hao Y B, Jiang Y B, Zhan J R. Effects of ecological zone on growth and development and effective accumulated temperature production efficiency of maize varieties differing in maturity. Heilongjiang Agric Sci, 2020, (9): 1-8. (in Chinese with English abstract)
[16] 王洪章, 刘鹏, 董树亭, 张吉旺, 赵斌, 任佰朝. 夏玉米产量与光温生产效率差异分析——以山东省为例. 中国农业科学, 2019, 52: 1355-1367.
Wang H Z, Liu P, Dong S T, Zhang J W, Zhao B, Ren B C. Analysis of gap between yield and radiation production efficiency and temperature production efficiency in summer maize: taking Shandong province as an example. Sci Agric Sin, 2019, 52: 1355-1367. (in Chinese with English abstract)
[17] 于胜男, 高聚林, 明博, 王振, 张宝林, 于晓芳, 孙继颖, 梁红伟, 王志刚. 基于热量定量密植协同提升春玉米粒收品种产量及热量利用效率. 中国生态农业学报, 2021, 29: 2046-2060.
Yu S N, Gao J L, Ming B, Wang Z, Zhang B L, Yu X F, Zhang J Y, Liang H W, Wang Z G. Quantification planting density based on heat resource for enhancing grain yield and heat utilization efficiency of grain mechanical harvesting maize. Chin J Eco-Agric, 2021, 29: 2046-2060. (in Chinese with English abstract)
[18] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017, 35: 265-272.
Li S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci Edn), 2017, 35: 265-272. (in Chinese with English abstract)
[19] 严定春, 朱艳, 曹卫星. 水稻栽培适宜品种选择的知识模型. 南京农业大学学报. 2004, 27(4): 20-25.
Yan D C, Zhu Y, Cao W X. A knowledge model for selection of suitable variety in rice production. J Nanjing Agric Univ, 2004, 27(4): 20-25. (in Chinese with English abstract)
[20] Ma L, Zhang X, Lei Q Y, Liu F. Effects of drip irrigation nitrogen coupling on dry matter accumulation and yield of summer maize in arid areas of China. Field Crops Res, 2012, 274:108321
doi: 10.1016/j.fcr.2021.108321
[21] Ren X M, Sun D B, Wang Q S. Modeling the effects of plant density on maize productivity and water balance in the loess plateau of China. Agric Water Manag, 2016, 171: 40-48.
doi: 10.1016/j.agwat.2016.03.014
[22] Mao L L, Zhang L Z, Zhao X H, Liu S D, Werf W V D, Zhang S P, Spiertz H, Li Z H. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crops Res, 2014, 155: 67-76.
doi: 10.1016/j.fcr.2013.09.021
[23] Wang X Y, Wang X L, Xu C C, Tan W M, Wang P, Meng Q F. Decreased kernel moisture in medium-maturing emaize hybrids with high yield for mechanized grain harvest. Crop Sci, 2019, 59: 2794-2805.
doi: 10.2135/cropsci2019.04.0218
[24] 杨胜举, 佟玲, 吴宣毅, 陈阳. 玉米冠层辐射分布和产量对种植密度和水分的响应研究. 灌溉排水学报, 2021, 40: 19-26.
Yang S J, Tong L, Wu X Y, Chen Y. Changes in radiation in canopy and the yield of maize in response to planting density and irrigation amounts. J Irrig Drain, 2021, 40: 19-26. (in Chinese with English abstract)
[25] 郭江, 肖凯, 郭新宇, 张凤路, 赵春江. 玉米冠层结构、光分布和光合作用研究综述. 玉米科学, 2005, 13(2): 55-59.
Guo J, Xiao K, Guo X Y, Zhang F L, Zhao C J. Review on maize canopy structure, light distributing and canopy photosynthesis. J Maize Sci, 2005, 13(2): 55-59. (in Chinese with English abstract)
[26] Chen S, Yin M, Zheng X, Liu S W, Chu G, Xu C M, Wang D Y, Zhang X F. Effect of dense planting of hybrid rice on grain yield and solar radiation use in southeastern China. Agron J, 2019, 111: 1-10.
doi: 10.2134/agronj2018.10.0657
[27] 司转运, 高阳, 李双, 张传更, 刘俊明, 段爱旺. 不同灌水条件下施氮量对滴灌夏棉冠层指标的影响. 灌溉排水学报, 2019, 38: 31-36.
Si Z Y, Gao Y, Li S, Zhang C G, Liu J M, Yin A W. Response of canopy traits of summer cotton to different fertigation. J Irrig Drain, 2019, 38: 31-36. (in Chinese with English abstract)
[28] 朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53: 3048-3058.
Piao L, Li B, Chen X C, Ding Z S, Zhang Y, Zhao M, Li C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Sci Agric Sin, 2020, 53: 3048-3058. (in Chinese with English abstract)
[29] 戴明宏, 单成钢, 王璞. 温光生态效应对春玉米物质生产的影响. 中国农业大学学报, 2009, 14(3): 35-41.
Dai M H, Shan C G, Wang P. Effect of temperature and solar ecological factors on spring maize production. J China Agric Univ, 2009, 14(3): 35-41. (in Chinese with English abstract)
[30] 胡旦旦, 李荣发, 刘鹏, 董树亭, 赵斌, 张吉旺, 任佰朝. 密植条件下玉米品种混播提高籽粒灌浆性能和产量. 中国农业科学, 2021, 54: 1856-1868.
Hu D D, Li R F, Liu P, Dong S T, Zhao B, Zhang J W, Ren B C. Mixed-cropping improved on grain filling characteristics and yield of maize under high planting densities. Sci Agric Sin, 2021, 54: 1856-1868. (in Chinese with English abstract)
[31] 钱春荣, 王荣焕, 于洋, 徐田军, 宫秀杰, 郝玉波, 姜宇博, 李梁, 吕国依, 杨忠良, 赵久然. 不同熟期玉米品种在不同生态区的干物质积累、转运与分配特征. 玉米科学, 2021, 29: 60-68.
Qian C R, Wang R H, Yu Y, Xu T J, Gong X J, Hao Y B, Jiang Y B, Li L, Lu G Y, Yang Z L, Zhan J R. Characteristics of dry matter accumulation, transportation and distribution of maize varieties differing in maturities in different ecological zones. J Maize Sci, 2021, 29: 60-68. (in Chinese with English abstract)
[32] 赵继玉, 任佰朝, 赵斌, 刘鹏, 张吉旺. 不同熟期夏玉米品种生长发育特性与产量形成的关系. 中国农业科学, 2021, 54: 46-57.
Zhao J Y, Ren B C, Zhao B, Liu P, Zhang J W. Relationship between growth and development characteristics and yield formation of summer maize varieties differing in maturities. Sci Agric Sin, 2021, 54: 46-57. (in Chinese with English abstract)
[33] 童淑媛, 宋凤斌, 徐洪文. 不同品种玉米籽粒成熟期间叶片形态衰老的差异. 华北农学报, 2009, 24(1): 11-15.
doi: 10.7668/hbnxb.2009.01.004
Tong S Y, Song F B, Xu H W. Differences of morphological senescence of leaves in various maize varieties during mature period of seed. Acta Agric Boreali-Sin, 2009, 24(1): 11-15. (in Chinese with English abstract)
[34] 周琦, 张富仓, 李志军, 强生才, 田建柯, 李国栋, 范军亮. 施氮时期对夏玉米生长、干物质转运与产量的影响. 干旱地区农业研究, 2018, 36(1): 76-82.
Zhou Q, Zhang F C, Li Z J, Qiang S C, Tian J K, Li G D, Fan J L. Effects of nitrogen application at different stages on growth, yield, and dry matter transportation of summer maize. Agric Res Arid Areas, 2018, 36(1): 76-82. (in Chinese with English abstract)
[35] Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina. Field Crops Res, 2014, 155: 111-119.
doi: 10.1016/j.fcr.2013.09.016
[1] 栾奕, 白岩, 卢实, 李磊鑫, 王德强, 高婷婷, 石洁, 杨洪明, 路明. “十三五”国家东华北春玉米区域试验品种抗病性评价[J]. 作物学报, 2023, 49(4): 1122-1131.
[2] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[3] 王利青, 于晓芳, 高聚林, 马达灵, 胡树平, 郭怀怀, 刘爱业. 不同年代玉米品种籽粒产量形成对种植密度的响应[J]. 作物学报, 2022, 48(10): 2625-2637.
[4] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[5] 高震, 梁效贵, 张莉, 赵雪, 杜雄, 崔彦宏, 周顺利. 不同时期灌溉对华北平原春玉米穗粒数的影响[J]. 作物学报, 2021, 47(7): 1324-1331.
[6] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[7] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507-519.
[8] 张金丹, 范虹, 杜进勇, 殷文, 樊志龙, 胡发龙, 柴强. 小麦玉米同步增密有利于优化种间关系而提高间作产量[J]. 作物学报, 2021, 47(12): 2481-2489.
[9] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[10] 刘朋召,师祖姣,宁芳,王瑞,王小利,李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断[J]. 作物学报, 2020, 46(8): 1225-1237.
[11] 李瑞杰,唐会会,王庆燕,许艳丽,王琦,卢霖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[12] 张玉芹,杨恒山,李从锋,赵明,罗方,张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902-913.
[13] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[14] 赵小红,白羿雄,王凯,姚有华,姚晓华,吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(4): 586-595.
[15] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!