欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 1079-1089.doi: 10.3724/SP.J.1006.2023.21022

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦豌豆间作对群体光合特性和生产力的影响

吴香奇1(), 刘博1, 张威1, 杨雪妮1, 郭子艳1, 刘铁宁1, 张旭东1,*(), 韩清芳1,2,*()   

  1. 1农业农村部西北黄土高原作物生理生态与耕作重点实验室/西北农林科技大学农学院, 陕西杨凌 712100
    2教育部干旱半干旱地区农业水土工程重点实验室/西北农林科技大学中国旱区节水农业研究院, 陕西杨凌 712100
  • 收稿日期:2022-03-20 接受日期:2022-09-05 出版日期:2023-04-12 网络出版日期:2022-10-18
  • 通讯作者: *张旭东, E-mail: xudongzhang@nwsuaf.edu.cn;韩清芳, E-mail: hanqf88@nwafu.edu.cn
  • 作者简介:E-mail: 931934164@qq.com
  • 基金资助:
    “十二五”国家高技术研究发展计划项目“作物生境过程光能利用调控技术”(2013AA102902);“十四五”国家重点研发计划项目(2021YFD1901102)

Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity

WU Xiang-Qi1(), LIU Bo1, ZHANG Wei1, YANG Xue-Ni1, GUO Zi-Yan1, LIU Tie-Ning1, ZHANG Xu-Dong1,*(), HAN Qing-Fang1,2,*()   

  1. 1Key Laboratory of Crop Ecophysiology and Tillage in Northwest Loess Plateau, Ministry of Agriculture and Rural Affairs/College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2Key Laboratory of Agricultural Water and Soil Engineering in Arid and Semi-Arid Areas, Ministry of Education/China Research Institute of Water-Saving Agriculture in Arid Regions, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-03-20 Accepted:2022-09-05 Published:2023-04-12 Published online:2022-10-18
  • Contact: *E-mail: xudongzhang@nwsuaf.edu.cn;E-mail: hanqf88@nwafu.edu.cn
  • Supported by:
    National High-Tech Research and Development Program of China during the 12th Five-Year Plan(2013AA102902);National Key Research and Development Project during the 14th Five-Year Plan(2021YFD1901102)

摘要:

为探究小麦和豌豆间作对群体光合特性和生产力的影响, 本研究于2019—2021年在陕西关中地区开展田间试验, 设置4行小麦+2行豌豆(W4P2)、2行小麦+2行豌豆(W2P2)两种条带种植处理, 以单作小麦(CKW)和单作豌豆(CKP)为对照, 分析了小麦和豌豆叶片净光合速率(Pn)、群体光合速率(CAP)、干物质累积及群体生产力等指标。结果表明: 与单作相比, W2P2和W4P2间作处理显著提高了小麦叶片SPAD和Pn, 但豌豆叶片SPAD和Pn不同程度降低。小麦与豌豆间作显著提高了花前群体光合速率, W4P2的CAP较其对照群体光合CAPCK42(2/3CAPCKW+1/3CAPCKP)增加6.2%~8.0%, 而W2P2处理的CAP较其对照群体光合CAPCK22(1/2CAPCKW+1/2CAPCKP)增加6.2%~8.5%。与CKW相比, W4P2和W2P2间作处理单位面积小麦干物质积累能力显著增强, 成熟期有效穗数和穗粒数显著提高, 籽粒产量分别提高7.8%~9.4%和18.9%~19.0%; 而与CKP相比, 两间作处理的豌豆干物质积累和产量构成指标表现减弱趋势, 籽粒产量分别降低9.9%~12.2%和6.8%~9.0%。竞争力评价表明, W4P2和W2P2间作处理土地当量比均高于1 (W4P2: 1.02; W2P2: 1.06), 表明小麦和豌豆间作提高了作物群体产量优势, 且优势作物小麦相较于豌豆的侵占力在W2P2间作模式(0.27)高于W4P2 (0.20)。综上, 在小麦和豌豆间作系统中, 窄带型(W2P2)相较于宽带型(W4P2)通过提高优势作物小麦的光合能力能够提高群体光合速率, 促进群体对光资源的利用, 进一步挖掘了复合群体生产优势。

关键词: 间作, 群体光合, 单叶光合, 干物质, 产量

Abstract:

To investigate the effects of wheat and pea intercropping on population photosynthetic characteristics and productivity, a field experiment with two treatments [two strip cropping treatments of four rows of wheat + two rows of peas (W4P2), two rows of wheat + two rows of peas (W2P2), and single-crop wheat (CKW) and single-crop pea (CKP) as the controls] was conducted in Guanzhong region of Shaanxi Province from 2019 to 2021. The leaf photosynthetic rate (Pn), canopy apparent photosynthesis (CAP), dry matter accumulation and population productivity of wheat and pea were analyzed. The results showed that, compared with the monoculture, the W2P2 and W4P2 intercropping treatments significantly increased the SPAD and Pn of wheat leaves, but decreased the SPAD and Pn of pea leaves to different degrees. Intercropping wheat with peas significantly increased the preflowering population photosynthetic rate. The CAP of W4P2 increased by 6.2%-8.0% compared to its control population photosynthetic CAPCK42 (2/3CAPCKW+1/3CAPCKP), while the CAP of W2P2 increased 6.2%-8.5% compared to its control population photosynthetic CAPCK22 (1/2CAPCKW+1/2CAPCKP). Compared with CKW, the W4P2 and W2P2 intercropping treatments significantly enhanced the dry matter accumulation capacity per unit area of wheat, significantly increased the number of effective spikes and spikes at maturity stage, and increased the seed yield by 7.8%-9.4% and 18.9%-19.0%, respectively. Compared with CKP, the two intercropping treatments had a weakening trend in the dry matter accumulation and yield composition indexes of peas, and reduced the seed yield by 9.9%-12.2% and 6.8%-9.0%, respectively. The competitiveness evaluation revealed that the land equivalent ratios of W4P2 and W2P2 intercropping treatments were higher than 1 (W4P2: 1.02; W2P2: 1.06), indicating that wheat and pea intercropping increased the crop population yield advantage and the encroachment of the dominant crop wheat compared to pea was higher in the W2P2 intercropping model (0.27) than in W4P2 (0.20). In conclusion, in the wheat and pea intercropping system, compared to the broad-banded type (W4P2), the narrow-banded type (W2P2) was able to increase the population photosynthetic rate by increasing the photosynthetic capacity of the dominant crop wheat, thus promoting the use of light resources by the population and further exploiting the composite population production advantage.

Key words: intercropping, canopy apparent photosynthesis, individual leaf photosynthesis, dry matter, yield

图1

不同处理的小麦和豌豆叶片相对叶绿素含量(SPAD) 图中不同小写字母表示处理间在0.05概率水平差异显著。W4P2: 4行小麦间作2行豌豆; 2行小麦间作2行豌豆; CKW: 单作小麦; CKP: 单作豌豆。"

图2

不同处理的小麦叶片Pn和Gs 图中不同小写字母表示处理间在0.05概率水平差异显著。缩写同图1。"

图3

不同处理的豌豆叶片Pn和Gs 图中不同小写字母表示处理间在0.05概率水平差异显著。缩写同图1。"

图4

不同处理的群体光合速率 图中不同小写字母表示处理间在0.05概率水平差异显著。缩写同图1。"

图5

不同处理对小麦和豌豆干物质积累量的影响 图中不同小写字母表示处理间在0.05概率水平差异显著。缩写同图1。"

表1

不同处理对小麦和豌豆产量及其构成因素的影响"

年度
Year
处理
Treatment
小麦Wheat 豌豆Pea 籽粒总产量
Total grain yield
(kg hm-2)
穗数
No. of
productive ear (0.2 m2)
穗粒数
No. of spike
千粒重
1000-kernel weight (g)
籽粒产量
Grain yield
(kg hm-2)
单株荚数
Pods per plant
荚粒数
Seeds per pod
百粒重
100-grain weight (g)
籽粒产量
Grain yield
(kg hm-2)
2019-
2020
W4P2 108.7 b 34.0 a 38.0 a 4247 4.7 b 4.2 a 15.9 a 742 4989
W2P2 114.5 a 35.2 a 39.2 a 3461 5.3 b 3.8 a 16.7 a 1153 4614
CKW 107.0 b 33.8 a 39.1 a 5822 5822
CKP 6.6 a 3.8 a 16.4 a 2534 2534
2020-
2021
W4P2 110.8 b 37.0 b 38.6 a 4278 7.6 b 3.2 a 17.7 ab 774 5052
W2P2 117.2 a 40.3 a 39.8 a 3541 7.9 b 3.4 a 18.5 a 1201 4742
CKW 108.5 b 35.5 b 39.3 a 5954 5954
CKP 11.3 a 4.4 a 16.8 b 2577 2577

表2

不同生育时期光合特性指标与干物质积累量的相关系数"

光合指标
Photosynthetic
index
小麦干物质累积量Dry matter accumulation of wheat 豌豆干物质累积量Dry matter accumulation of peas
拔节期
Jointing stage
扬花期
Flowering stage
灌浆期
Filling stage
分枝期
Branching stage
开花期
Flowering stage
结荚期
Podding stage
SPAD 0.641** 0.552* 0.560* 0.636** 0.684** 0.844**
Pn 0.308 0.583* 0.420 0.569* 0.797** 0.766**

表3

不同生育时期的群体光合速率与群体干物质积累量和群体产量的相关性分析"

变量
Variable
群体光合速率Population photosynthetic rate
拔节期/分枝期
Jointing stage/Branching stage
扬花期/开花期
Flowering stage/Flowering stage
灌浆期/结荚期
Filling stage/Podding stage
群体干物质积累量
Population dry matter accumulation
0.275 0.898** 0.475*
群体产量
Population yield
0.210 0.877** 0.275

表4

不同间作处理的竞争力评价"

处理
Treatment
土地当量比 LER 侵占力 Awp
2019-2020 2020-2021 2019-2020 2020-2021
W4P2 1.02 1.02 0.22 0.18
W2P2 1.05 1.06 0.28 0.26
[1] 王自奎, 吴普特, 赵西宁, 李正中, 付小军. 作物间套作群体光能截获和利用机理研究进展. 自然资源学报, 2015, 30: 1057-1066.
Wang Z K, Wu P T, Zhao X N, Li Z Z, Fu X J. A review of light interception and utilization by intercropped canopies. J Nat Resour, 2015, 30: 1057-1066. (in Chinese with English abstract)
[2] 王一帆, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 间作小麦光合性能对地上地下互作强度的响应. 作物学报, 2021, 47: 929-941.
doi: 10.3724/SP.J.1006.2021.01047
Wang Y F, Yin W, Hu F L, Fan H, Fan Z L, Zhao C, Yu A Z, Chai Q. Response of photosynthetic performance of intercropped wheat to interaction intensity between above- and below-ground. Acta Agron Sin, 2021, 47: 929-941. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01047
[3] Suroshe S S, Chorey A B, Thakur M R. Productivity and economics of maize-based intercropping systems in relation to nutrient management. Res Crop, 2009, 10: 38-41.
[4] Connie M, Blessing M, Christian T. Productivity or stability? Exploring maize-legume intercropping strategies for smallholder conservation agriculture farmers in Zimbabwe. Agric Syst, 2020, 185: 103127.
[5] Chen G D, Chai Q, Huang G B, Yu A Z, Feng F X, Mu Y P, Kong X F, Huang P. Belowground interspecies interaction enhances productivity and water use efficiency in maize-pea intercropping systems. Crop Sci, 2015, 55: 420-428.
doi: 10.2135/cropsci2014.06.0439
[6] 吴玉环, 王自奎, 刘亚男, 马千虎. 带幅设计对玉米/苜蓿间作群体光环境特征及光能利用效率的影响. 草业学报, 2022, 31(3): 144-155.
Wu Y H, Wang Z Q, Liu Y N, Ma Q H. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping. Acta Pratac Sin, 2022, 31(3): 144-155. (in Chinese with English abstract)
[7] Zhang Y, Sun Z X, Su Z C, Du G J, Bai W, Wang Q, Wang R N, Nie J Y, Sun T R, Feng C, Zhang Z, Yang N, Zhang X, Evers J B, van der Werf W, Zhang L Z. Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition. Field Crops Res, 2022, 282: 108523.
doi: 10.1016/j.fcr.2022.108523
[8] 陈元凯, 冯铃洋, Muhammad A R, 范元芳, 谌俊旭, 雍太文, 杨文钰, 杨峰. 四川地区玉米/大豆带状套作对大豆形态、叶绿素荧光特征及系统产量的影响. 中国生态农业学报, 2019, 27: 870-879.
Chen Y K, Feng Z Y, Muhammad A R, Fan Y F, Chen J X, Yong T W, Yang W Y, Yang F. Effect of maize/soybean relay strip intercropping system on soybean morphology, chlorophyll fluorescence, and yield in Sichuan area. Chin J Eco-Agric, 2019, 27: 870-879. (in Chinese with English abstract)
[9] 王旭, 曾昭海, 朱波, 胡跃高. 箭筈豌豆与燕麦不同间作混播模式对产量和品质的影响. 作物学报, 2007, 33: 1892-1895.
Wang X, Zeng Z H, Zhu B, Hu Y G. Effect of different intercropping and mixture modes on forage yield and quality of oat and common vetch. Acta Agron Sin, 2007, 33: 1892-1895. (in Chinese with English abstract)
[10] Chen X F, Sun N, Gu Y, Zheng H Y, Li J F, Wu C S, Wang Z M. Photosynthetic and chlorophyll fluorescence responses in maize and soybean strip intercropping system. Int J Agric Biol, 2020, 24: 799-811.
[11] Elise P, Mathieu B, David M, Guénaëlle C H, Christophe N, Mehdi A R, Edouard B, Laurent B, Véronique B, Patrick B, Benoit C, Daniel D, Damien F, Bernard G, Laurence G, Marie C M, Bertrand O, Loïc P, Morgane Y, Eric J, Marie-Hélène J. Pea-wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur J Agron, 2012, 40: 39-53.
doi: 10.1016/j.eja.2012.01.010
[12] Hauggaard-Nielsen H, Andersen M K, Jornsgaard B, Jensena E S. Density and relative frequency effects on competitive interactions and resource use in pea-barley intercrops. Field Crops Res, 2006, 95: 256-267.
doi: 10.1016/j.fcr.2005.03.003
[13] 陈磊, 张朝春, 张信吉, 秦雪梦, 焦念元. 施磷对不同间作体系间作优势与磷肥利用的影响. 中国农学通报, 2013, 29(6): 137-141.
Chen L, Zhang C C, Zhang X J, Qin X M, Jiao N Y. Effects of phosphate fertilizer on intercropping advantage and phosphate fertilizer utilization of different intercropping system. Chin Agric Sin Bull, 2013, 29(6): 137-141. (in Chinese with English abstract)
[14] 刘铁宁, 徐彩龙, 谷利敏, 董树亭. 高密度种植条件下去叶对不同株型夏玉米群体及单叶光合性能的调控. 作物学报, 2014, 40: 143-153.
doi: 10.3724/SP.J.1006.2014.00143
Liu T N, Xu C L, Gu L M, Dong S T. Effects of leaf removal on canopy apparent photosynthesis and individual leaf photosynthetic characteristics in summer maize under high plant density. Acta Agron Sin, 2014, 40: 143-153 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00143
[15] 赵德强, 李彤, 侯玉婷, 元晋川, 廖允成. 玉米大豆间作模式下干物质积累和产量的边际效应及其系统效益. 中国农业科学, 2020, 53: 1971-1985.
Zhao D Q, Li T, Hou Y T, Yuan J C, Liao Y C. Benefits and marginal effect of dry matter accumulation and yield in maize and soybean intercropping patterns. Sci Agric Sin, 2020, 53: 1971-1985. (in Chinese with English abstract)
[16] Mead R, Willey R W. The concept of a ‘land equivalent ratio’ and advantages in yields from intercropping. Exp Agric, 1980, 16: 217-228.
doi: 10.1017/S0014479700010978
[17] Willey R W, Rao M R. A competitive ratio for quantifying competition between intercrops. Exp Agric, 1980, 16: 117-125.
doi: 10.1017/S0014479700010802
[18] 程彬, 刘卫国, 王莉, 许梅, 覃思思, 卢俊吉, 高阳, 李淑贤, Raza A, 张熠, Ahmad I, 敬树忠, 刘然金, 杨文钰. 种植密度对玉米-大豆带状间作下大豆光合、产量及茎秆抗倒的影响. 中国农业科学, 2021, 54: 4084-4096.
Cheng B, Liu W G, Wang L, Xu M, Qin S S, Lu J J, Gao Y, Li S X, Raza A, Zhang Y, Ahmad I, Jing S Z, Liu R J, Yang W Y. Effects of planting density on photosynthetic characteristics, yield and stem lodging resistance of soybean in maize-soybean strip intercropping system. Sci Agric Sin, 2021, 54: 4084-4096. (in Chinese with English abstract)
[19] Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecific competition and N transfer between wheat and fababean using direct and indirect 15N techniques. Plant Soil, 2004, 262: 45-54.
doi: 10.1023/B:PLSO.0000037019.34719.0d
[20] 王雅梅, 许彦骁, 王亚露, 李静, 张海芳, 杨殿林, 赵建宁, 轩清霞. 玉米-大豆不同宽幅间作对大豆光合特性及群体产量的影响. 农业环境科学学报, 2020, 39: 2587-2595.
Wang Y M, Xu Y X, Wang Y L, Li J, Zhang H F, Yang D L, Zhao J N, Xu Q X. Effects of maize-soybean intercropping with different widths on photosynthetic characteristics of soybean and population yield. J Agro-Environ Sci, 2020, 39: 2587-2595. (in Chinese with English abstract)
[21] 李智, 王宏富, 王钰云, 杨净, 鱼冰星, 黄珊珊. 谷子大豆间作对作物光合特性及产量的影响. 中国农业科技导报, 2020, 22(6): 168-175.
doi: 10.13304/j.nykjdb.2019.0807
Li Z, Wang H F, Wang Y Y, Yang J, Yu B X, Huang S S. Impact of millet and soybean intercropping on their photosynthetic characteristics and yield. J Agric Sci Technol, 2020, 22(6): 168-175. (in Chinese with English abstract)
[22] 任永福, 陈国鹏, 蒲甜, 陈诚, 曾瑾汐, 彭霄, 马艳玮, 杨文钰, 王小春. 玉米-大豆带状种植中套作高光效玉米窄行穂位叶光合特性对弱光胁迫的响应. 作物学报, 2019, 45: 728-739.
doi: 10.3724/SP.J.1006.2019.83040
Ren Y F, Chen G P, Pu T, Chen C, Zeng J S, Peng X, Ma Y W, Yang W Y, Wang X C. Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system. Acta Agron Sin, 2019, 45: 728-739. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83040
[23] 曹娜, 于海秋, 王绍斌, 于挺, 曹敏建. 高产玉米群体的冠层结构及光合特性分析. 玉米科学, 2006, 14(5): 94-97.
Cao N, Yu H Q, Wang S B, Yu T, Cao M J. Analysis on canopy structure and photosynthetic characteristics of high yield maize population. J Maize Sci, 2006, 14(5): 94-97. (in Chinese with English abstract)
[24] 崔亮, 苏本营, 杨峰, 杨文钰. 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响. 中国农业科学, 2014, 47: 1489-1501.
Cui L, Su B Y, Yang F, Yang W Y. Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize/soybean relay strip intercropping systems. Sci Agric Sin, 2014, 47: 1489-1501. (in Chinese with English abstract)
[25] 高阳, 段爱旺, 刘祖贵, 孙景生, 陈金平, 王和洲. 间作种植模式对玉米和大豆干物质积累与产量组成的影响. 中国农学通报, 2009, 25(2): 214-221.
Gao Y, Duan A W, Liu Z G, Sun J S, Chen J P, Wang H Z. Effect of intercropping patterns on dry matter accumulation and yield components of maize and soybean. Chin Agric Sci Bull, 2009, 25(2): 214-221. (in Chinese with English abstract)
[26] Latati M, Bargaz A, Belarbi B, Lazail M, Benlahrech S, Tellah S, Kaci G, Drevon J J, Ounane S M. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur J Agron, 2008, 72: 80-90.
doi: 10.1016/j.eja.2015.09.015
[27] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析. 作物学报, 2021, 47: 1978-1987.
doi: 10.3724/SP.J.1006.2021.04226
Ren Y Y, Zhang L, Yu Y C, Zhang Y J, Zhang S Q. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems. Acta Agron Sin, 2021, 47: 1978-1987. (in Chinese with English abstract)
[28] 孟维伟, 王旭清, 刘佳, 戴海英, 尹庆良, 张正. 玉米大豆间作对资源利用及产量、效益影响的研究进展. 山东农业科学, 2013, 45(3): 132-135.
Meng W W, Wang X Q, Liu J, Dai H Y, Yin Q L, Zhang Z. Research advances on resource utilization, yield and economic benefit in maize-soybean intercropping system. Shandong Agric Sci, 2013, 45(3): 132-135. (in Chinese with English abstract)
[29] 冯良山. 花生谷子间作水分养分高效利用机制研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2013.
Feng L S. Mechanism Research for Improving Water and Nutrient Use Efficiency in Peanut and Foxtail Millet Intercropping. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2013. (in Chinese with English abstract)
[30] Chen X F, Sun N, Gu Y, Liu Y L, Li J F, Wu C S, Wang Z M. Maize-soybean strip intercropping improved lodging resistance and productivity of maize. Int J Agric Biol, 2020, 24: 1383-1392.
[31] 张桂国, 董树亭, 杨在宾. 苜蓿+玉米间作系统产量表现及其种间竞争力的评定. 草业学报, 2011, 20(1): 22-30.
Zhang G G, Dong S T, Yang Z B. Production performance of alfalfa+maize intercropping systems and evaluation of interspecies competition. Acta Pratac Sin, 2011, 20(1): 22-30. (in Chinese with English abstract)
[32] 王利立, 朱永永, 殷文, 郑德阳, 柴强. 大麦/豌豆间作系统种间竞争力及产量对地下作用和密度互作的响应. 中国生态农业学报, 2016, 24: 265-273.
Wang L L, Zhu Y Y, Yin W, Zheng D Y, Chai Q. Competitiveness and yield response to belowground interaction and density in barley-pea intercropping system. Chin J Eco-Agric, 2016, 24: 265-273. (in Chinese with English abstract)
[33] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41: 642-650.
doi: 10.3724/SP.J.1006.2015.00642
Yang F, Lou Y, Liao D P, Gao R C, Yong T W, Wang X C, Liu W G, Yang W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agron Sin, 2015, 41: 642-650. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00642
[34] 杨春杰, 谭春燕, 陈佳琴, 刘作易, 龚丽娜, 朱星陶. 间作玉米对大豆鼓粒期产量与农艺性状及干物质积累的影响. 贵州农业科学, 2015, 43(11): 38-42.
Yang C J, Tan C Y, Chen J Q, Liu Z Y, Gong L N, Zhu X T. Effects of corn and soybean interplanting on yield, agronomic traits and dry matter accumulation of soybean during seed filling period. Guizhou Agric Sci, 2015, 43(11): 38-42. (in Chinese with English abstract)
[1] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[2] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[3] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[4] 吴冬青, 李洲, 郭春林, 邹京南, 庞孜钦, 林非凡, 何海斌, 林文雄. 再生季稻与同期抽穗主季稻干物质分配特性及机制研究[J]. 作物学报, 2023, 49(3): 755-771.
[5] 刘月, 明博, 李姚姚, 王克如, 侯鹏, 薛军, 李少昆, 谢瑞芝. 基于根冠协调发展的东北春玉米高产种植密度分析[J]. 作物学报, 2023, 49(3): 795-807.
[6] 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621.
[7] 方娅婷, 任涛, 张顺涛, 周橡棋, 赵剑, 廖世鹏, 丛日环, 鲁剑巍. 氮磷钾肥对旱地和水田油菜产量及养分利用的影响差异[J]. 作物学报, 2023, 49(3): 772-783.
[8] 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391.
[9] 宋杰, 王少祥, 李亮, 黄金苓, 赵斌, 张吉旺, 任佰朝, 刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响[J]. 作物学报, 2023, 49(2): 539-551.
[10] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[11] 陶士宝, 柯健, 孙杰, 尹传俊, 朱铁忠, 陈婷婷, 何海兵, 尤翠翠, 郭爽爽, 武立权. 长江中下游地区不同穗型中籼杂交稻高产群体农艺特征[J]. 作物学报, 2023, 49(2): 511-525.
[12] 刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响[J]. 作物学报, 2023, 49(2): 497-510.
[13] 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响[J]. 作物学报, 2023, 49(2): 472-484.
[14] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[15] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!