欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (4): 955-965.doi: 10.3724/SP.J.1006.2023.24089

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选

徐子寅1(), 于晓玲2,3, 邹良平2,3, 赵平娟2,3, 李文彬2,3, 耿梦婷1,*(), 阮孟斌2,3,*()   

  1. 1海南大学热带作物学院, 海南海口 570228
    2中国热带农业科学院热带生物技术研究所/农业部热带作物生物学与遗传资源利用重点实验室, 海南海口 571101
    3海南热带农业资源研究院/海南省热带农业生物资源保护与利用重点实验室, 海南海口 571101
  • 收稿日期:2022-04-10 接受日期:2022-07-21 出版日期:2023-04-12 网络出版日期:2022-08-22
  • 通讯作者: *阮孟斌, E-mail: ruanmengbin@itbb.org.cn;耿梦婷, E-mail: mengtinggeng8908@163.com
  • 作者简介:E-mail: 670307392@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD1000501);海南省重大科技计划项目(ZDKJ2021012);中央级公益科研院所基本科研业务费专项(1630052022036)

Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60

XU Zi-Yin1(), YU Xiao-Ling2,3, ZOU Liang-Ping2,3, ZHAO Ping-Juan2,3, LI Wen-Bin2,3, GENG Meng-Ting1,*(), RUAN Meng-Bin2,3,*()   

  1. 1College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China
    2Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
    3Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou 571101, Hainan, China
  • Received:2022-04-10 Accepted:2022-07-21 Published:2023-04-12 Published online:2022-08-22
  • Contact: *ruanmengbin@itbb.org.cn;E-mail: mengtinggeng8908@163.com
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000501);Major Science and Technology Plan of Hainan Province(ZDKJ2021012);Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Tropical Agricultural Sciences(1630052022036)

摘要:

Myeloblastosis (MYB)类转录因子在植物对非生物胁迫的响应过程中起重要调控作用。本研究在分析栽培木薯MYB家族成员表达模式的基础上, 筛选并克隆到了一个R2R3-MYB转录因子基因MeMYB60。基因表达特性分析表明, 该基因在叶片特异表达, 受干旱、低温负调控, 同时对ABA处理也有响应。启动子活性分析发现, MeMYB60可以在保卫细胞表达, 预示着该转录因子基因的表达可能与木薯气孔开闭调节有关。MeMYB60编码蛋白主要定位于细胞核中, 具有转录激活活性, 其转录激活结构域在蛋白C端第194~343氨基酸残基范围内。以MeMYB60蛋白N端第1~194氨基酸残基片段为诱饵, 从干旱胁迫后木薯叶片的cDNA文库中筛选到18种可能与MeMYB60互作的蛋白, 酵母双杂确定了MeCatlase1和MeCatalase2分别与MeMYB60存在互作关系。本研究为深入研究转录因子MeMYB60在木薯响应非生物胁迫过程中的功能并解析其调控网络奠定了基础。

关键词: 木薯, 非生物胁迫, MYB转录因子, 表达特征, 互作蛋白筛选

Abstract:

Myeloblastosis (MYB) transcription factors widely involve in a variety of physiological and biochemical processes in plants, and play important regulatory roles in response to abiotic stress in plant. Based on the expression pattern of MYB members in cassava cultivars, an R2R3-MYB transcription factor, namely MeMYB60 was screened and cloned. Gene expression characteristics showed that MeMYB60 was specifically expressed in leaves of cassava, and negatively regulated by drought stress and low temperature. Moreover, this gene was also responded to ABA treatment in leaves of cassava. Promoter activity analysis showed that MeMYB60 could be expressed in guard cells, indicating that the expression of this transcription factor gene may be related to stomatal movement regulation in cassava. MeMYB60 protein was predominately located in the nucleus and had transcriptional activation activity. Its transcriptional activation domain was in the range of 194th-343rd amino acid residues at the C-terminal of the protein. The cDNA library of drought stressed cassava leaves was screened by using the 1st-194th amino acid residues at the N-terminal of MeMYB60 protein as bait. Subsequently, 18 proteins had been that may interact with MeMYB60. Yeast-two-hybrid analysis determined that MeCatlase1 and MeCataase2 are potential interactors of MeMYB60, respectively. These results lay a foundation for further functional study of MeMYB60 in cassava in response to abiotic stress and are helpful for the regulatory network investigation of MeMYB60.

Key words: cassava, the abiotic stress, MYB transcription factor, the relative expression pattern, the interaction protein screening

表1

PCR引物名称及序列"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
用途
Function
MeMYB60_SalI_EcoRI_5° TCGAATTCGAATTCATGGGAAGACCTCCTTGCTGTG 基因克隆Gene cloning
MeMYB60-full_BamHI_3° TAGGATCCGAATATTGGAGACAGTTCCATG 基因克隆Gene cloning
MeMYB60_Promoter_PstI_5° TACTGCAGGGAAGACGAACTCATTGATATC 启动子克隆Isolation of promoter
MeMYB60_Promoter_SalI_3° TCGAATTCACAGCAAGGAGGTCTTCCCAT 启动子克隆Isolation of promoter
Me_ACT1_QP1 GGAATGGTGAAGGCTGGGTTTGC 荧光定量PCR qRT-PCR
Me_ACT1_QP2 AGTTGCTGACAATACCATGCTCA 荧光定量PCR qRT-PCR
MeMYB60_QP1 CCATTGCAGCACATGACTCGTCATC 荧光定量PCR qRT-PCR
MeMYB60_QP2 CATCTGGGTTCTCCAAGTTATTGTC 荧光定量PCR qRT-PCR
MeMYB60-308_BamHI-3° GAGGATCCCTGCTTCCTGATCTCTGCTGC 转录激活分析Transcriptional activation assay
MeMYB60-271_BamHI-3' GAGGATCCTTTGTCCCATGCAACAGTGTT 转录激活分析Transcriptional activation assay
MeMYB60-234_BamHI-3' GAGGATCCGTAACACTGCAGAGAAGTTGT 转录激活分析Transcriptional activation assay
MeMYB60-194_BamHI-3' GAGGATCCAGGCTTTGGAGATGATCTCAT 转录激活分析Transcriptional activation assay
MeCAT1-SalI-5' TCGTCGACATGGACCCAAGCAAGTTCATTCC 互作验证Protein interaction assay
MeCAT1-BamHI-3' TAGGATCCGAAATTTGGCCTCACGTTGAGAC 互作验证Protein interaction assay
MeCAT2-SalI-5' TCGTCGACATGAGCAACAATCACCCAAGTTCTC 互作验证Protein interaction assay
MeCAT2-BamHI-3' TCGGATCCAAAACTTGGCCTCACATTGAGAC 互作验证Protein interaction assay

图1

木薯叶片RNA及MeMYB60基因PCR扩增产物电泳图"

图2

MeMYB60 (XP_021622445.1)蛋白与其他植物MYB60蛋白的系统进化树及序列一致性"

图3

木薯MeMYB60与其他植物的同源蛋白氨基酸序列比对 黑色区块: 氨基酸一致性为100%。"

图4

木薯MeMYB60表达的组织特异性分析(A)及其在叶片中对不同胁迫的响应分析(B) 内参基因为MeActin1。**表示不同处理样品与对照样品(Control)相比差异极显著(P < 0.01)。误差线为每组处理的标准误差(n = 3)。"

图5

MeMYB60-eGFP融合蛋白的亚细胞定位"

图6

MeMYB60:eGFP融合基因在MeMYB60启动子驱动下的表达分析"

图7

MeMYB60蛋白序列及转录激活结构域分析"

表2

MeMYB60酵母cDNA文库筛选结果"

登录号
Accession No.
注释
Annotation
克隆数
Number of clones
Manes.13G077148.1 细胞色素b6-f 复合体铁硫亚基Cytochrome b6-f complex iron-sulfur subunit 2
Manes.04G085600.1 组织蛋白酶F Cathepsin F 1
Manes.14G167100.1 捕光复合物ii叶绿素a/b结合蛋白6
Light-harvesting complex ii chlorophyll a/b binding protein 6
1
Manes.01G009451.4 锚重复蛋白35 Ankyrin repeat protein skip 35 1
Manes.12G158200.5 线粒体核糖体蛋白147 Ribosomal protein l47, mitochondrial-related 1
Manes.08G108200.1 S-腺苷甲硫氨酸合酶4 S-adenosylmethionine synthase 4 1
Manes.09G074600.1 ATP依赖RNA解旋酶21 ATP-dependent RNA helicase DDX21 1
Manes.10G060650.1 DNAJ同源亚家族A成员2 DNAJ homolog subfamily A member 2 3
Manes.09G105200.1 吡哆醛5’-磷酸合酶PDXs亚基 Pyridoxal 5’-phosphate synthase PDXs subunit 2
Manes.07G116700.1 磷酸三糖异构酶 Triose-phosphate isomerase 1
Manes.08G168900.1 N-末端乙酰转移酶 N-terminal acetyltransferase 1
Manes.06G110100.1 BRCA1基因1旁蛋白 Next to BRCA1 gene 1 protein 1
Manes.01G011500.2 核酮糖二磷酸羧化酶 Ribulose-bisphosphate carboxylase 1
Manes.01G103400.7 FRNE类蛋白 FRNE protein-like 1
Manes.05G127800.3 叶绿体PSBp结构蛋白3 Chloroplastic PSBp domain-containing protein 3 2
Manes.05G130500.1 过氧化氢酶1 Catalase 1 1
Manes.02G113300.1 过氧化氢酶2 Catalase 2 1
Manes.10G066200.1 未知蛋白 Uncharacterized protein 2

图8

酵母双杂验证MeMYB60与木薯过氧化氢酶的蛋白互作关系"

[1] Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573-581.
doi: 10.1016/j.tplants.2010.06.005
[2] Yang Q, Yang X, Wang L, Zheng B, Cai Y, Ogutu C O, Zhao L, Peng Q, Liao L, Zhao Y, Zhou H, Han Y. Two R2R3-MYB genes cooperatively control trichome development and cuticular wax biosynthesis in Prunus persica. New Phytol, 2022, 234: 179-196.
doi: 10.1111/nph.17965
[3] Wang S, Shi M, Zhang Y, Pan Z, Xie X, Zhang L, Sun P, Feng H, Xue H, Fang C, Zhao J. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. Plant Physiol, 2022, 188: 2146-2165.
doi: 10.1093/plphys/kiac014 pmid: 35043961
[4] Gao R, Han T, Xun H, Zeng X, Li P, Li Y, Wang Y, Shao Y, Cheng X, Feng X, Zhao J, Wang L, Gao X. MYB transcription factors GmMYBA2 and GmMYBR function in a feedback loop to control pigmentation of seed coat in soybean. J Exp Bot, 2021, 72: 4401-4418.
doi: 10.1093/jxb/erab152
[5] Zhang Z, Li Z, Wang W, Jiang Z, Guo L, Wang X, Qian Y, Huang X, Liu Y, Liu X, Qiu Y, Li A, Yan Y, Xie J, Cao S, Kopriva S, Li L, Kong F, Liu B, Wang Y, Hu B, Chu C. Modulation of nitrate- induced phosphate response by the MYB transcription factor RLI1/HINGE1 in the nucleus. Mol Plant, 2021, 14: 517-529.
doi: 10.1016/j.molp.2020.12.005
[6] Yuan Y, Xu X, Luo Y, Gong Z, Hu X, Wu M, Liu Y, Yan F, Zhang X, Zhang W, Tang Y, Feng B, Li Z, Jiang C Z, Deng W. R2R3 MYB-dependent auxin signaling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. Plant Biotechnol J, 2021, 19: 138-152.
doi: 10.1111/pbi.13448
[7] Caballo C, Berbel A, Ortega R, Gil J, Millan T, Rubio J, Madueno F. The SINGLE FLOWER (SFL) gene encodes a MYB transcription factor that regulates the number of flowers produced by the inflorescence of chickpea. New Phytol, 2022, 234: 827-836.
doi: 10.1111/nph.18019 pmid: 35122280
[8] Ruan M B, Guo X, Wang B, Yang Y L, Li W Q, Yu X L, Zhang P, Peng M. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). J Exp Bot, 2017, 68: 3657-3672.
doi: 10.1093/jxb/erx202
[9] Liao W, Yang Y, Li Y, Wang G, Peng M. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission. Sci Rep, 2016, 6: 32006.
doi: 10.1038/srep32006 pmid: 27573926
[10] Zhang S, Chen X, Lu C, Ye J, Wang W. Genome-wide association studies of 11 agronomic traits in cassava (Manihot esculenta Crantz). Front Plant Sci, 2018, 9: 503.
doi: 10.3389/fpls.2018.00503
[11] Wang B, Guo X, Zhao P, Liao W, Zeng C, Zhou Y, Xiao J, Ruan M, Peng M, Bai Y, Chen Y. MeMYB26, a drought-responsive transcription factor in cassava (Manihot esculenta Crantz). Crop Breed Appl Biotechnol, 2021, 21: e34432114.
doi: 10.1590/1984-70332021v21n1a4
[12] 杨静园, 阮孟斌, 郭鑫, 彭明. 木薯MYB转录因子MeMYB2特性及功能分析. 热带作物学报, 2021, 42: 936-944.
Yang J Y, Ruan M B, Guo X, Peng M. Characterization and function analysis of cassava MYB transcription factor MeMYB2. Chin J Trop Crops, 2021, 42: 936-944. (in Chinese with English abstract)
[13] Schroeder J I, Kwak J M, Allen G J. Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature, 2001, 410: 327-330.
doi: 10.1038/35066500
[14] Schluter U, Muschak M, Berger D, Altmann T. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes. J Exp Bot, 2003, 54: 867-874.
doi: 10.1093/jxb/erg087
[15] Yoo C Y, Pence H E, Jin J B, Miura K, Gosney M J, Hasegawa P M, Mickelbart M V. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via trans repression of SDD1. Plant Cell, 2010, 22: 4128-4141.
doi: 10.1105/tpc.110.078691
[16] Yoo C Y, Hasegawa P M, Mickelbart M V. Regulation of stomatal density by the GTL1 transcription factor for improving water use efficiency. Plant Signal Behav, 2011, 6: 1069-1071.
doi: 10.4161/psb.6.7.15254 pmid: 21691149
[17] Yang S L, Tran N, Tsai M Y, Ho C K. Misregulation of MYB16 expression causes stomatal cluster formation by disrupting polarity during asymmetric cell divisions. Plant Cell, 2022, 34: 455-476.
doi: 10.1093/plcell/koab260
[18] Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196-1200.
doi: 10.1016/j.cub.2005.05.048 pmid: 16005291
[19] Oh J E, Kwon Y, Kim J H, Noh H, Hong S W, Lee H. A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol, 2011, 77: 91-103.
doi: 10.1007/s11103-011-9796-7
[20] Simeoni F, Skirycz A, Simoni L, Castorina G, de Souza L P, Fernie A R, Alseekh S, Giavalisco P, Conti L, Tonelli C, Galbiati M. The AtMYB60 transcription factor regulates stomatal opening by modulating oxylipin synthesis in guard cells. Sci Rep, 2022, 12: 533.
doi: 10.1038/s41598-021-04433-y pmid: 35017563
[21] Liang Y K, Dubos C, Dodd I C, Holroyd G H, Hetherington A M, Campbell M M. AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol, 2005, 15: 1201-1206.
doi: 10.1016/j.cub.2005.06.041
[22] Seo P J, Xiang F, Qiao M, Park J Y, Lee Y N, Kim S G, Lee Y H, Park W J, Park C M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol, 2009, 151: 275-289.
doi: 10.1104/pp.109.144220
[23] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138-1152.
doi: 10.1105/tpc.111.083485
[24] Reinhardt Howeler N L, Thomas G. Save and grow: cassava a guide to sustainable production intensification. Food and Agriculture Organization of the United Nations (FAO), Rome, 2013.
[25] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[26] Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Moller B L, Zhang P, Luo M C, Xiao G, Liu J, Yang J, Chen S, Rabinowicz P D, Chen X, Zhang H B, Ceballos H, Lou Q, Zou M, Carvalho L J, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara R M, Jorgensen K, Neale R L, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma P A, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon L J, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, Lopez-Lavalle L A, Wu J, You F M, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun, 2014, 5: 5110.
doi: 10.1038/ncomms6110 pmid: 25300236
[27] Bredeson J V, Lyons J B, Prochnik S E, Wu G A, Ha C M, Edsinger-Gonzales E, Grimwood J, Schmutz J, Rabbi I Y, Egesi C, Nauluvula P, Lebot V, Ndunguru J, Mkamilo G, Bart R S, Setter T L, Gleadow R M, Kulakow P, Ferguson M E, Rounsley S, Rokhsar D S. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol, 2016, 34: 562-570.
doi: 10.1038/nbt.3535 pmid: 27088722
[28] Hu W, Ji C, Liang Z, Ye J, Ou W, Ding Z, Zhou G, Tie W, Yan Y, Yang J, Ma L, Yang X, Wei Y, Jin Z, Xie J, Peng M, Wang W, Guo A, Xu B, Guo J, Chen S, Wang M, Zhou Y, Li X, Li R, Xiao X, Wan Z, An F, Zhang J, Leng Q, Li Y, Shi H, Ming R, Li K. Resequencing of 388 cassava accessions identifies valuable loci and selection for variation in heterozygosity. Genome Biol, 2021, 22: 316.
doi: 10.1186/s13059-021-02524-7 pmid: 34784936
[29] Hu W, Ji C, Shi H, Liang Z, Ding Z, Ye J, Ou W, Zhou G, Tie W, Yan Y, Yang J, Yang X, Wei Y, Jin Z, Xie J, Peng M, Wang W, Guo A, Xu B, Guo J, Chen S, Ma L, Wang M, Yang Z, Li X, Li R, Guo S, Xiao X, Wan Z, An F, Zhang J, Leng Q, Li Y, Ming R, Li K. Allele-defined genome reveals biallelic differentiation during cassava evolution. Mol Plant, 2021, 14: 851-854.
doi: 10.1016/j.molp.2021.04.009 pmid: 33866024
[30] 高巍, 刘会利, 田新权, 张慧, 宋洁, 杨勇, 龙璐, 宋纯鹏. 海岛棉转录因子基因GbMYB60的克隆、表达及抗逆性分析. 作物学报, 2016, 42: 1342-1351.
doi: 10.3724/SP.J.1006.2016.01342
Gao W, Liu H L, Tian X Q, Zhang H, Song J, Yang Y, Long L, Song C P. Cloning, expression, and functional analysis of transcription factor gene GbMYB60 in cotton. Acta Agron Sin, 2016, 42: 1342-1351. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01342
[31] Li S X, Cheng Z, Li Z, Dong S, Yu X, Zhao P, Liao W, Yu X, Peng M. MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava. Theor Appl Genet, 2021, 135: 817-832.
doi: 10.1007/s00122-021-04000-z pmid: 34837123
[32] Yan Y, Liu W, Wei Y, Shi H. MeCIPK23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava. Plant Biotechnol J, 2019, 18: 1504-1506.
doi: 10.1111/pbi.13321
[33] Ruan M B, Yu X L, Guo X, Zhao P J, Peng M. Role of cassava CC-type glutaredoxin MeGRXC3 in regulating sensitivity to mannitol-induced osmotic stress dependent on its nuclear activity. BMC Plant Biol, 2022, 22: 41.
doi: 10.1186/s12870-022-03433-y
[34] Yan Y, Wang P, Lu Y, Bai Y, Wei Y, Liu G, Shi H. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. Plant J, 2021, 107: 847-860.
doi: 10.1111/tpj.15350
[35] Xu J, Duan X, Yang J, Beeching J R, Zhang P. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signal Behav, 2013, 8: e24525.
doi: 10.4161/psb.24525
[36] Wei Y, Liu W, Hu W, Yan Y, Shi H. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. New Phytol, 2020, 226: 476-491.
doi: 10.1111/nph.16346 pmid: 31782811
[37] Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W. Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol, 2014, 165: 759-773.
doi: 10.1104/pp.114.237925
[1] 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977.
[2] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[3] 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686.
[4] 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413.
[5] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[6] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[7] 李相辰, 沈旭, 周新成, 陈新, 王海燕, 王文泉. 木薯PEPC基因家族成员鉴定及表达分析[J]. 作物学报, 2022, 48(12): 3108-3119.
[8] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[9] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[10] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[11] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[12] 陈夕军, 唐滔, 李丽丽, 陈宸, 陈煜文, 张亚芳, 左示敏. 水稻多聚半乳糖醛酸酶抑制蛋白家族OsPGIP结构及基因表达特征
分析
[J]. 作物学报, 2020, 46(12): 1884-1893.
[13] 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175.
[14] 孙婷婷,王文举,娄文月,刘峰,张旭,王玲,陈玉凤,阙友雄,许莉萍,李大妹,苏亚春. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
[15] 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .