欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2097-2104.doi: 10.3724/SP.J.1006.2023.24184

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生根部结瘤性状QTL定位

黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳()   

  1. 中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2022-08-09 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-02-22
  • 通讯作者: 姜慧芳
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13);中国农业科学院科技创新工程项目(2022-2060299-089-031)

Identification of major QTLs for nodule formation in peanut

HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2022-08-09 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-02-22
  • Contact: JIANG Hui-Fang
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-13);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(2022-2060299-089-031)

摘要:

花生是我国重要的豆科油料作物和经济作物。根瘤是花生共生固氮的重要场所, 研究花生根瘤形成的遗传基础, 有助于更好地研究花生根瘤固氮能力和固氮特性。然而, 关于花生根瘤形成的研究较少, 调控花生根瘤形成的遗传机制不清楚。本研究通过对一个高世代RIL群体的根部结瘤性状进行调查, 鉴定到7份根部不结瘤家系, 根部不结瘤家系的叶绿素含量, 以及株高、单株鲜重、单株干重均显著低于双亲。利用前期构建的SSR标记遗传连锁图, 在A08和B07染色体上各鉴定到1个主效QTL qPNA08qPNB07。通过InDel标记加密, 将QTL qPNA08的区间由4.7 Mb缩小至1.6 Mb, 遗传变异解释率由9.1%增加至16.4%; qPNB07的区间由9.9 Mb缩小至1.8 Mb, 遗传变异解释率由7.1%增加至9.9%。根据基因功能注释, 2个QTL区间分别鉴定到4个和2个结瘤素基因存在变异位点。本研究将为解析花生根瘤形成发育以及共生固氮提供理论依据。

关键词: 花生, 结瘤, QTL定位, 连锁分析

Abstract:

Peanut is an important oil and economic crop of legumes in China. Nodules are important for symbiotic nitrogen fixation in peanut. Dissecting the genetic basis of nodule formation could promote the understanding of nitrogen fixation ability and characteristics of nodules in peanut. However, there are few studies on nodule formation and the genetic basis of nodule formation remained unclear in peanut. In this study, the nodules were investigated in a high generation RIL population and seven lines were identified without nodule. The chlorophyll content, plant height, fresh weight per plant, and dry weight per plant of the lines without nodule were significantly lower than those of parents. Using the previous genetic linkage map based on SSR markers, major QTLs qPNA08 and qPNB07 were identified on chromosome A08 and B07, respectively. The InDel markers in the two major QTLs were developed by the genome resequencing data of parents and performed amplification in the RILs. The interval of QTLs qPNA08 and qPNB07 was reduced to 1.6 Mb and 1.8 Mb, respectively. Meanwhile, the phenotypic variation explained of these two QTLs was increased to 16.4% and 9.9%, respectively. There were four and two nodulin genes variation loci in the two target intervals, respectively. This study provided the understanding for unveiling the genetic basis of formation and development of nodule and symbiotic nitrogen fixation in peanut.

Key words: peanut, nodule formation, QTLs mapping, linkage analysis

图1

花生植株根部结瘤 A: 结瘤的根; B: 不结瘤的根。"

表1

不结瘤家系和亲本的叶片叶绿素含量和农艺性状鉴定"

材料
Accession
叶绿素
Chlorophyll content (SPAD)
株高
Plant height
(cm)
单株植株鲜重
Fresh weight per plant
(g)
单株荚果干重
Dry weight per plant
(g)
2019 2020 2019 2020 2019 2020 2019 2020
L039 28.81 29.07 30.33 28.23 168.3 129.0 24.2 27.4
L053 26.34 27.54 32.33 33.75 126.3 126.9 21.6 27.4
L086 26.27 24.43 32.70 36.46 157.5 139.0 20.9 24.8
L097 27.37 28.38 35.13 38.75 160.0 208.8 24.4 21.0
L099 25.03 24.37 51.89 52.44 187.0 218.0 25.7 29.6
L135 29.22 29.97 37.12 39.63 139.0 145.0 20.2 20.1
L140 20.41 25.14 38.52 39.12 202.5 119.0 16.1 19.5
中花10号Zhonghua 10 43.91 45.80 47.25 50.90 493.3 322.5 56.6 58.1
ICG12625 40.92 46.18 66.56 61.24 530.3 411.0 32.8 37.3

表2

花生根部结瘤性状QTL定位"

位点
QTL
连锁群
Linkage group
阈值
LOD
遗传变异解释率
PVE (%)
加性效应
Additive effect
标记区间
Marker internal
物理位置
Physical position (Mb)
qPNA08 A08 3.7 9.1 0.067 AHGS1880-AGGS1495 9.5-14.2
qPNB07 B07 3.1 7.1 -0.061 Ai07B24086-Ai07B26973 118.7-128.6

表3

标记加密后的根部结瘤性状主效QTL信息"

位点
QTL
连锁群
Linkage group
阈值
LOD
遗传变异解释率
PVE (%)
加性效应
Additive effect
标记区间
Marker internal
物理位置
Physical position (Mb)
qPNA08 A08 5.9 16.4 0.100 InDelA08-3-InDelA08-6 10.8-12.4
qPNB07 B07 3.7 9.9 -0.074 InDelB07-13-InDelB07-17 126.4-128.1

图2

标记加密后的根部结瘤性状主效QTL"

表4

主效QTL候选区间内SNP和InDel注释结果"

类别
Category
qPNA08 qPNB07
数量
Number
比例
Ratio (%)
数量
Number
比例
Ratio (%)
基因间区Intergenic region 183 77.22 226 84.01
上游/下游区Upstream/downstream region 20 8.44 23 8.55
上游区Upstream region 11 4.64 15 5.58
下游区Downstream region 6 2.53 8 2.97
上游区&下游区Upstream & downstream region 3 1.27 0 0
基因区Genic region 34 14.35 20 7.43
内含子Intronic 18 7.59 14 5.20
外显子Exonic 8 3.38 3 1.12
同义突变Synonymous 3 1.27 0 0
非同义突变Nonsynonymous 5 2.11 1 0.37
终止突变Stopgain 0 0 1 0.37
非移码缺失Nonframeshift deletion 0 0 1 0.37
5′UTR区5′UTR 4 1.69 2 0.74
3′UTR区3′UTR 3 1.27 1 0.37
剪切区Splicing region 1 0.42 0 0

表5

基因区存在变异位点的结瘤素基因"

基因
Gene ID
染色体
Chromosome
位置
Position
中花10号基因型
Genotype in
Zhonghua 10
ICG12625基因型
Genotype in ICG12625
变异位置
Variation
location
arahy 0GM2Z0 A08 11170576 GA G 上游区Upstream
arahy 9F81FQ A08 11024163 A G 上游区Upstream
A08 11024537 C T 上游区Upstream
A08 11020291 CAT C 3′UTR区3′UTR
arahy L4R73E A08 11107037 G C 剪切区Splicing
arahy M7858J A08 11066800 A ATAT 上游区Upstream
arahy AT5BZQ B07 126823960 T C 上游区Upstream
B07 126822807 CCT C 5′UTR区5′UTR
arahy DE00KI B07 127083363 A G 上游区Upstream

表6

主效QTL区间内结瘤素基因在根和根瘤中的表达"

基因
Gene ID
染色体
Chromosome
基因位置
Position (bp)

Root
根瘤
Nodule
arahy.9F81FQ A08 11020073-11024051 123.72 8.76
arahy.L4R73E A08 11104688-11110744 54.76 4.52
arahy.M7858J A08 11061653-11066507 9.91 71.95
arahy.0GM2Z0 A08 11168701-11170133 0.14 8.91
arahy.AT5BZQ B07 127473205-127478066 99.18 18.578
arahy.QHG6EX B07 127589943-127595947 31.83 0.57
arahy.I1VTPH B07 127508511-127513030 2.99 19.23
arahy.DE00KI B07 127733203-127737565 0.59 10.17
[1] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166. (in Chinese with English abstract)
[2] 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38: 207-213.
Wu Z F, Chen D X, Zheng Y M, Wang C B, Sun X W, Li X D, Wang X X, Shi C R, Feng H, Yu T Y. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin J Oil Crop Sci, 2016, 38: 207-213. (in Chinese with English abstract)
[3] 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30: 961-968.
doi: 10.13287/j.1001-9332.201903.019
Zheng Y M, Du L T, Wang C X, Wu Z F, Sun X W, Yu T Y, Shen P, Wang C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chin J Appl Ecol, 2019, 30: 961-968. (in Chinese with English abstract)
[4] Oldroyd G E, Downie J A. Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol, 2004, 5: 566-576.
[5] Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R. NSP1 of the GRAS protein family is essential for rhizobia Nod factor-induced transcription. Science, 2005, 308: 1789-1791.
doi: 10.1126/science.1111025
[6] Hirsch S, Kim J, Muñoz A, Heckmann A B, Downie J A, Oldroyd G E.GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 2009, 21: 545-557.
doi: 10.1105/tpc.108.064501 pmid: 19252081
[7] Ferguson B J, Indrasumunar A, Hayashi S, Lin M H, Lin Y H, Reid D E, Gresshoff P M. Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol, 2010, 52: 61-76.
doi: 10.1111/j.1744-7909.2010.00899.x
[8] Oldroyd G E, Downie J A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol, 2008, 59: 519-546.
doi: 10.1146/annurev.arplant.59.032607.092839 pmid: 18444906
[9] Krusell L, Madsen L H, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002, 420: 422-426.
doi: 10.1038/nature01207
[10] Searle I R, Men A E, Laniya T S, Buzas D M, Iturbe-Ormaetxe I, Carroll B J, Gresshoff P M. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 2003, 299: 109-112.
doi: 10.1126/science.1077937 pmid: 12411574
[11] De Smet I. Lateral root initiation: one step at a time. New Phytol, 2012, 193: 867-873.
pmid: 22403823
[12] Wang T, Guo J, Peng Y, Lyu X, Liu B, Sun S, Wang X. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science, 2021, 374: 65-71.
doi: 10.1126/science.abh2890 pmid: 34591638
[13] Kanchan K, Anindya K, Zaigam R A, Emeric D, Dany S, Pierre C, Fabienne C, Maitrayee D. Transcriptomic analysis with the progress of symbiosis in ‘crack-entry’ legume Arachis hypogaea highlights its contrast with ‘infection thread’ adapted legumes. Mol Plant Microbe Interact, 2019, 32: 271-285.
doi: 10.1094/MPMI-06-18-0174-R
[14] Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibanez F, Wang J, Guo B, Sudini H K, Gopalakrishnan S, DasGupta M, Varshney R K, Pandey M K. Molecular basis of root nodule symbiosis between Bradyrhizobium and ‘crack-entry’ legume groundnut (Arachis hypogaea L.). Plants, 2020, 9: 276.
doi: 10.3390/plants9020276
[15] Kinkema M, Scott P T, Gresshoff P M. Legume nodulation: successful symbiosis through short and long-distance signaling. Funct Plant Biol, 2006, 33: 707-721.
doi: 10.1071/FP06056 pmid: 32689281
[16] Madsen L H, Tirichine L, Jurkiewicz A, Sullivan J T, Heckmann A B, Bek A S, Ronson C W, James E K, Stougaard J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun, 2010, 1: 10.
doi: 10.1038/ncomms1009 pmid: 20975672
[17] Nigam S N, Nambiar P T C, Dwivedi S L, Gibbons R W, Dart P J. Genetics of nonnodulation in groundnut (Arachis hypogaea L.) studies with single and mixed Rhizobium strains. Euphytica, 1982, 31: 691-693.
doi: 10.1007/BF00039207
[18] Essomba N B, Coffelt T A, Branch W D, Van Scoyoc S W. Inheritance of stem color and non-nodulation in peanut. Peanut Sci, 1991, 18: 126-131.
doi: 10.3146/i0095-3679-18-2-16
[19] Peng Z, Liu F, Wang L, Zhou H, Paudel D, Tan L, Maku J, Gallo M, Wang J. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.)nodulation. Sci Rep, 2017, 7: 40066.
doi: 10.1038/srep40066 pmid: 28059169
[20] Liu N, Chen H, Huai D, Xia F, Huang L, Chen W, Wu B, Ren X, Luo H, Zhou X, Chen Y, Lei Y, Liao B, Jiang H. Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.). Mol Breed, 2019, 39: 23.
doi: 10.1007/s11032-019-0934-2
[21] Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci, 2016, 7: 1446.
pmid: 27746793
[22] van Kammen A. Suggested nomenclature for plant genes involved in nodulation and symbiosis. Plant Mol Biol Rep, 1984, 2: 43-45.
[23] Nap J P, Bisseling T. Developmental biology of a plant prokaryote symbiosis, the legume root nodule. Science, 1990, 250: 948-954.
pmid: 17746918
[24] Gleason C, Chaudhuri S, Yang T, Muñoz A, Poovaiah B W, Oldroyd G E. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature, 2006, 441: 1149-1152.
doi: 10.1038/nature04812
[25] Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen A S, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, Stougaard J. Deregulation of a Ca2+/calmodulin- dependent kinase leads to spontaneous nodule development. Nature, 2006. 441: 1153-1156.
doi: 10.1038/nature04862
[26] Wan X, Hontelez J, Lillo A, Guarnerio C, van de Peut D, Fedorova E, Bisseling T, Franssen H. Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. J Exp Bot, 2007, 58:2033-2041.
pmid: 17452749
[27] Yan Z, Hossain M S, Arikit S, Valdés-López O, Zhai J, Wang J, Libault M, Ji T, Qiu L, Meyers B C, Stacey G. Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. New Phytol, 2015, 207: 748-759.
doi: 10.1111/nph.13365 pmid: 25783944
[28] Greene E A, Erard M, Dedieu A, Barker D G. MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins. Plant Mol Biol, 1998, 36: 775-783.
pmid: 9526510
[29] Vijn I, Yang W C, Pallisgård N, Ostergaard Jensen E, van Kammen A, Bisseling T. VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobium-induced nodule formation on Vicia sativa roots. Plant Mol Biol, 1995, 28: 1111-1119.
pmid: 7548828
[30] de Blank C, Mylona P, Yang W C, Katinakis P, Bisseling T, Franssen H.Characterization of the soybean early nodulin cDNA clone GmENOD55. Plant Mol Biol, 1993, 22: 1167-1171.
pmid: 8400132
[1] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[2] 王菲菲, 张胜忠, 胡晓辉, CHU Ye, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[3] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[4] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[5] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[6] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[7] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[8] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[9] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响[J]. 作物学报, 2023, 49(3): 833-844.
[10] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876.
[11] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[12] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
[13] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[14] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[15] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .