欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2288-2295.doi: 10.3724/SP.J.1006.2023.22056

• 研究简报 • 上一篇    下一篇

水稻种子快速萌发突变体rgs1的鉴定及调控基因克隆

贾璐绮(), 孙悠, 田然, 张学菲, 代永东, 崔志波, 李杨羊, 冯新宇, 桑贤春(), 王晓雯()   

  1. 西南大学农学与生物科技学院 / 转基因植物与安全控制重庆市重点实验室, 重庆 400716
  • 收稿日期:2022-09-27 接受日期:2022-11-25 出版日期:2023-08-12 网络出版日期:2022-12-02
  • 通讯作者: 桑贤春,王晓雯
  • 作者简介:E-mail: 632063809@qq.com
  • 基金资助:
    重庆市自然科学基金项目(cstc2020jcyj-msxm0539);国家重点研发计划项目(2022YFD1201600);国家级大学生创新创业训练计划项目(202210635039);国家自然科学基金项目(32171964)

Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice

JIA Lu-Qi(), SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun(), and WANG Xiao-Wen()   

  1. College of Agronomy and Biotechnology, Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400716, China
  • Received:2022-09-27 Accepted:2022-11-25 Published:2023-08-12 Published online:2022-12-02
  • Contact: SANG Xian-Chun,and WANG Xiao-Wen
  • Supported by:
    Natural Science Foundation of Chongqing, China(cstc2020jcyj-msxm0539);National Key Research and Development Program of China(2022YFD1201600);College Students’ Innovation and Entrepreneurship Training Scientific Research Project(202210635039);National Natural Science Foundation of China(32171964)

摘要:

水稻种子快速萌发, 可减短吸水膨胀至出土成苗时间, 减少有害生物危害, 进而有效提高种子成苗率, 有利于培养强壮秧苗。为此, 本研究对缙恢10号EMS (甲基磺酸乙酯)诱变体库进行了筛选, 从中鉴定到一个种子萌发快且矮化多蘖的突变体rgs1, 进一步分析发现矮化是由于各节间均缩短造成的, 而多蘖则是分蘖芽发育较快引起的。遗传分析表明rgs1的突变性状受单隐性核基因调控, 定位区间内叶绿体ζ-胡萝卜素异构酶编码基因LOC_Os12g21710的第3个外显子发生了G至A的碱基替换, 导致蛋白翻译提前终止, 从而确定为目的基因。qPCR分析发现, 与野生型相比, 突变体中独角金内酯(SL)合成基因HTD1D27D10及信号传导相关基因D14TB1的表达均极显著降低, SL信号途径抑制因子D53的表达则极显著升高, 表明rgs1矮化多蘖性状与SL缺陷有关。在rgs1中, 脱落酸(ABA)合成代谢关键酶基因OsNCED1几乎无表达, MOC3FON1的表达极显著升高, 表明rgs1种子的快速萌发与ABA合成缺陷有关。RGS1可能是水稻体内精准调控SL和ABA协同作用的一个关键基因, 从而调控水稻种子萌发、株高、分蘖等的发育。

关键词: 水稻(Oryza sativa L.), 矮化多蘖, 种子萌发, 叶绿体ζ-胡萝卜素异构酶(T20/MIT1), 脱落酸(ABA)

Abstract:

Rice seed absorbed water and germinated rapidly in the paddy field, which could reduce the probability of damage from the pest and germs by shortening the stay time in soil, and thus enhancing seed surviving rate and facilitating the formation of strong seedlings. To exploer the molecular mechanism of seed germination, a mutant rgs1 (exhibiting rapid seed germination, dwarfism, and multi-tillers etc) was identified by screening the EMS (ethyl methanesulfonate) induced library of Jinhui 10 (WT). The dwarfism of rgs1 originated from the shortened internodes and the characteristic of multi-tiller was caused by the rapid growth of tiller buds. Genetic analysis showed that the mutational traits of rgs1 was controlled by a single recessive nuclear gene. LOC_Os12g21710, encoding a chloroplast ζ-carotene isomerase in the mapping region, had a base substitution (G in rgs1 and A in wild type) in the third exon, resulting in the earlier termination of protein translation, which was regarded as the candidate gene of RGS1. The qRT-PCR analysis showed that, compared with WT, the relative expression levels of HTD1, D27, and D10 controlling strigolactone (SLs) synthesis and of D14 and TB1 regulating SLs signal transduction decreased significantly and the relative expression level of D53 acting as a repressor of SLs signaling increased significantly, suggesting that the mutational characteristics of rgs1 were related with the SLs pathway. The transcriptional level of OsNCED1, encoding a key enzyme of abscisic acid (ABA) synthesis, was almost absent in rgs1, while the relative expression levels of MOC3 and FON1 were significantly enhanced, indicating that the rapid seed germination of rgs1 was associated with the defect of ABA synthesis. Therefore, we predicted that RGS1 should be a key gene regulating the cooperation of SL and ABA pathway, thus regulating seed germination, plant height, and tiller number in rice.

Key words: rice (Oryza sativa L.), tillering dwarf, seed germination, chloroplast ζ-carotene isomerase (T20/MIT1), abscisic acid (ABA)

表1

基因定位及相关基因定量引物序列"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
In12-1 GCTATGTCAAACACGGTCTTATT CTGGTGTATCCAACGCTTGT
In12-2 AGAGAGAGGAGAGGCTAGAG AAGTAGTTTGATTCTTTCATCCC
ACTIN GACCCAGATCATGTTTGAGACCT CAGTGTGGCTGACACCATCAC
HTD1 TCAAGCTGCTCCTACCAGTGGTT TGGTTGGCGTAGCTTGGGTTT
D27 GATGGCTACGAGAGCCTGATAGAT AGATTCCATAACCTCACACGGC
D10 CGTTCGTGACGTTCCACTTCATC TGTTGGCGTTGTGCTCGCA
D14 TTCTTGAACGACAGCGACTACCAC TTGAAGAGGGTGCGGCTGAA
D53 AAACGGTCACCTCTTGCTGCA TGTCATTCCTGTTAGGACCACGG
D3 TCAACCCACGGTTCAGCGATT TCCAGCACATTGTGCTGGAGAT
TB1 ATGGACATACCGCTTTACCAACAG GGTGGTAGTAGAAGAAGGTGGAATG
MOC3 GATCAAGATCCTGCGGGAGCTGTAC GAGGCGCTTCTTCTGGCGCTC
FON1 TGCGTGAAGGAGGACAACATCATC AGCAGCAGGTTCGTCTCCCTGTT

图1

野生型(WT)和突变体(rgs1)的种子萌发及脱落酸合成关键基因的形态特征和qRT-PCR分析 A~D: WT和rgs1种子播种在芽床上萌发1 d (Fig. A)、2 d (Fig. B)、3 d (Fig. C)和4 d (Fig. D)的形态特征, Bar: 5 mm; E: WT和rgs1种子播种后胚根长统计; D2: 种子萌发48 h; D3: 种子萌发72 h; D4: 种子萌发96 h; F~H: ABA合成途径关键基因在WT和rgs1胚根中的表达; *: 在P < 0.05水平差异显著; **: 在P < 0.01水平差异显著。"

图2

野生型(WT)和突变体(rgs1)的形态学和细胞学观察 A: WT和rgs1分蘖期植株, 标尺为20.00 cm; B: WT和rgs1成熟期植株, 标尺为20.00 cm; C: WT和rgs1的穗及倒1~5节间(从左至右), 标尺为5.00 cm; D: WT和rgs1株高构成因素统计分析(PL、1st、2nd、3rd、4th、5th分别代表穗长、倒1节间、倒2节间、倒3节间、倒4节间和倒5节间); E: WT和rgs1的有效穗数; F、G: WT和rgs1的四叶期茎秆基部石蜡切片, 红色箭头所指处为分蘖芽, 标尺为200 μm; *在P < 0.05水平差异显著; **在P < 0.01水平差异显著。"

图3

RGS1目的基因的分子定位及鉴定 A: RGS1在12号染色体上的分子定位; B: RGS1候选基因LOC_Os12g21710, 黑框代表外显子; C: 野生型WT和rgs1突变位点测序验证, *为突变位点, 红色字母为突变碱基。"

图4

水稻分蘖发育调控基因在野生型(WT)和突变体rgs1中的表达分析 A: RGS1在野生型缙恢10号中的表达模式; B~H: 分蘖调控相关基因在WT和rgs1中的表达分析; **: 在P < 0.01水平差异显著。"

[1] Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot, 2011, 629: 3289-3309.
[2] Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol, 2012, 63: 507-533.
doi: 10.1146/annurev-arplant-042811-105550 pmid: 22136565
[3] Liu L F, Lai Y Y, Cheng J Q, Wang L, Du W L, Wang Z F, Zhang H S. Dynamic quantitative trait locus analysis of seed vigor at three maturity stages in rice. PLoS One, 2014, 9: e115732.
doi: 10.1371/journal.pone.0115732
[4] Jiang W, Lee J, Jin Y M, Qiao Y, Piao R, Jang S M, Woo M O, Kwon S W, Liu X, Pan H Y, Du X, Koh H J. Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice. Mol Cells, 2011, 31: 385-392.
doi: 10.1007/s10059-011-0049-z pmid: 21399992
[5] Jiang N F, Shi S L, Shi H, Khanzada H, Wassan G M, Zhu C L, Peng X S, Yu Q Y, Chen X R, He X P, Fu J R, Hu L F, Xu J, Ouyang L J, Sun X T, Zhou D H, He H H, Bian J M. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci, 2017, 8: 1223.
doi: 10.3389/fpls.2017.01223 pmid: 28747923
[6] He Y Q, Yang B, He Y, Zhan C F, Cheng Y H, Zhang J H, Zhang H S, Cheng J P, Wang Z F. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. Plant J, 2019, 97: 1089-1104.
doi: 10.1111/tpj.2019.97.issue-6
[7] Zhao J, He Y Q, Huang S L, Wang Z F. Advances in the identification of quantitative trait loci and genes involved in seed vigor in rice. Front Plant Sci, 2021, 12: 659307.
doi: 10.3389/fpls.2021.659307
[8] He Y, Chen S S, Liu K X, Chen Y J, Cheng Y H, Zeng P, Zhu P W, Xie T, Chen S L, Zhang H S, Cheng J P. OsHIPL1, a hedgehog-interacting protein-like 1 protein, increases seed vigour in rice. Plant Biotechnol J, 2022, 20: 1346-1362.
doi: 10.1111/pbi.v20.7
[9] Shen Y, Shen L K, Shen Z X, Jing W, Ge H L, Zhao J Z, Zhang W H. The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ, 2015, 38: 2766-2779.
doi: 10.1111/pce.12586
[10] Tang L Q, Xu H Y, Wang Y F, Wang H M, Li Z Y, Liu X X, Shu Y Z, Li G, Liu W N, Ying J Z, Tong X H, Yao J L, Xiao W F, Tang S Q, Ni S, Zhang J. OsABF1 represses gibberellin biosynthesis to regulate plant height and seed germination in rice (Oryza sativa L.). Int J Mol Sci, 2021, 22: 12220.
doi: 10.3390/ijms222212220
[11] Feng L, Gao Z R, Xiao G Q, Huang R F, Zhang H W. Leucine-rich repeat receptor-like kinase FON1 regulates drought stress and seed germination by activating the expression of ABA responsive genes in rice. Plant Mol Biol Rep, 2014, 32: 1158-1168.
doi: 10.1007/s11105-014-0718-0
[12] Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA, 2010, 107: 5792-5797.
doi: 10.1073/pnas.0911965107
[13] Sun L L, Yuan Z, Wang D X, Li J B, Shi J, Hu Y Y, Yu J, Chen X F, Chen S X, Liang W Q, Zhang D B. Carbon starved anther modulates sugar and ABA metabolism to protect rice seed germination and seedling fitness. Plant Physiol, 2021, 187: 2405-2418.
doi: 10.1093/plphys/kiab391 pmid: 34618084
[14] Song S, Wang G F, Wu H, Fan X W, Liang L W, Zhao H, Li S L, Hu Y, Liu H Y, Ayaad M, Xing Y Z. OsMFT2is involved in the regulation of ABA signaling-mediated seed germination through interacting with OsbZIP23/66/72 in rice. Plant J, 2020, 103: 532-546.
doi: 10.1111/tpj.v103.2
[15] Hobo T, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA, 1999, 96: 15348-15353.
doi: 10.1073/pnas.96.26.15348 pmid: 10611387
[16] Ye H, Feng J H, Zhang L H, Zhang J F, Mispan M S, Cao Z Q, Beighley D H, Yang J C, Gu X Y. Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiol, 2015, 169: 2152-2165.
doi: 10.1104/pp.15.01202 pmid: 26373662
[17] Hu Y, Song S, Weng X Y, You A Q, Xing Y Z. The heading-date gene Ghd7 inhibits seed germination by modulating the balance between abscisic acid and gibberellins. Crop J, 2021, 9: 297-304.
doi: 10.1016/j.cj.2020.09.004
[18] Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767.
doi: 10.1038/ng.143
[19] Ito S, Yamagami D, Asami T. Effects of gibberellin and strigolactone on rice tiller bud growth. J Pestic Sci, 2018, 43: 220-223.
doi: 10.1584/jpestics.D18-013 pmid: 30363138
[20] Liu X, Hu Q L, Yan J J, Sun K, Liang Y, Jia M R, Meng X B, Fang S, Wang Y Q, Jing Y H, Liu G F, Wu D X, Chu C C, Smith S M, Chu J F, Wang Y H, Li J Y, Wang B. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol Plant, 2020, 13: 1784-1801.
doi: 10.1016/j.molp.2020.10.001 pmid: 33038484
[21] Lin H, Wang R X, Qian Q, Yan M X, Meng X B, Fu Z M, Yan C Y, Jiang B, Su Z, Li J Y, Wang Y H. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512-1525.
doi: 10.1105/tpc.109.065987 pmid: 19470589
[22] Zou J H, Zhang S Y, Zhang W P, Li G, Chen Z X, Zhai W X, Zhao X F, Pan X B, Xie Q, Zhu L H. The rice HIGH- TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687-698.
doi: 10.1111/tpj.2006.48.issue-5
[23] Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/ DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019-1029.
doi: 10.1111/j.1365-313X.2007.03210.x
[24] Liu T Z, Zhang X, Zhang H, Cheng Z J, Liu J, Zhou C L, Luo S, Luo W F, Li S, Xing X X, Chang Y Q, Shi C L, Ren Y L, Zhu S S, Lei C L, Guo X P, Wang J, Zhao Z C, Wang H Y, Zhai H Q, Lin Q B, Wan J M. Dwarf and high tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. Plant Cell, 2022, 34: 3301-3318.
doi: 10.1093/plcell/koac169
[25] Zhao J F, Wang T, Wang M X, Liu Y Y, Yuan S J, Gao Y A, Yin L, Sun W, Peng L X, Zhang W H, Wang J M, Li X Y. Dwarf3participates in an scf complex and associates with dwarf14 to suppress rice shoot branching. Plant Cell Physiol, 2014, 55: 1096-1109.
doi: 10.1093/pcp/pcu045
[26] Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, Liu X, Chen W Q, Chu J F, Yan C Y, Ueno K, Ito S, Asami T, Cheng Z J, Wang J, Lei C, Zhai H Q, Wu C Y, Wang H Y, Zheng N, Wan J M. D14 SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406-410.
doi: 10.1038/nature12878
[27] Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401-405.
doi: 10.1038/nature12870
[28] Ma L, Sang X C, Zhang T, Yu Z Y, Li Y F, Zhao F M, Wang Z W, Wang Y T, Yu P, Wang N, Zhang C W, Ling Y H, Yang Z L, He G H. Abnormal vascular bundles regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol, 2017, 213: 275-286.
doi: 10.1111/nph.14142 pmid: 27545518
[29] 陶怡然, 熊毓贞, 谢佳, 田维江, 张晓琼, 张孝波, 周倩, 杨正林, 桑贤春, 王晓雯. 水稻矮化大粒突变体sdb1的鉴定与基因定位. 作物学报, 2018, 44: 1621-1630.
doi: 10.3724/SP.J.1006.2018.01621
Tao Y R, Xiong Y Z, Xie J, Tian W J, Zhang X Q, Zhang X B, Zhou Q, Sang X C, Wang X W. Identification and gene mapping of sdb1mutant with a semi-dwarfism and bigger seed in rice. Acta Agron Sin, 2018, 44: 1621-1630. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01621
[30] Ali F, Qanmber G, Li F G, Wang Z. Updated role of ABA in seed maturation, dormancy, and germination. J Adv Res, 2022, 35: 199-214.
doi: 10.1016/j.jare.2021.03.011 pmid: 35003801
[31] 张祖建, 谢成林, 谢仁康, 郎有忠, 杨岚, 张菊芳, 朱庆森. 苏中地区直播水稻的群体生产力及氮肥运筹的效应. 作物学报, 2011, 37: 677-685.
doi: 10.3724/SP.J.1006.2011.00677
Zhang Z J, Xie C L, Xie R K, Lang W Z, Yang L, Zhang J F, Shu Q S. Population production capacity of direct-seeding rice in central Jiangsu region and effects of nitrogen application. Acta Agron Sin, 2011, 37: 677-685. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00677
[32] Chen Y, Li F Q, Wurtzel E T. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol, 2010, 153: 66-79.
doi: 10.1104/pp.110.153916 pmid: 20335404
[33] Liu L H, Ren M M, Peng P, Chun Y, Li L, Zhao J F, Fang J J, Peng L X, Yan J J, Chu J F, Wang Y Q, Yuan S J, Li X Y. MIT1, encoding a 15-cis-ζ-carotene isomerase, regulates tiller number and stature in rice. J Genet Genomics, 2021, 48: 88-91.
doi: 10.1016/j.jgg.2020.11.008 pmid: 33658152
[34] Guo S Y, Xu Y Y, Liu H H, Mao Z W, Zhang C Z, Ma Y, Zhang Q R, Meng Z, Chong K. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun, 2013, 4: 1566.
doi: 10.1038/ncomms2542
[35] Liu W Z, Wu C, Fu Y P, Hu G C, Si H M, Zhu L, Luan W J, He Z Q, Sun Z X. Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta, 2009, 230: 649-658.
doi: 10.1007/s00425-009-0975-6
[36] Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50: 1416-1424.
doi: 10.1093/pcp/pcp091 pmid: 19542179
[37] Shao G N, Lu Z F, Xiong J S, Wang B, Jing Y H, Meng X B, Liu G F, Ma H Y, Liang Y, Chen F, Wang Y H, Li J Y, Yu H. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice. Mol Plant, 2019, 12: 1090-1102.
doi: 10.1016/j.molp.2019.04.008
[38] Moon S, Jung K H, Lee D E, Lee D Y, Lee J, An K, Kang H G, An G. The rice FON1 gene controls vegetative and reproductive development by regulating shoot apical meristem size. Mol Cells, 2006, 21: 147-152.
[39] 张双双, 王立伟, 姚楠, 郭光艳, 夏玉凤, 秘彩莉. 水稻OsUBA基因的表达及其在促进种子萌发和开花中的功能. 作物学报, 2019, 45: 1327-1337.
doi: 10.3724/SP.J.1006.2019.82069
Zhang S S, Wang L W, Yao N, Guo G Y, Xia Y F, Bei C L. Expression of OsUBA and its function in promoting seed germination and flowering. Acta Agron Sin, 2019, 45: 1327-1337. (in Chinese with English abstract)
[40] Bunsick M, Toh S, Wong C, Xu Z, Ly G, McErlean C S P, Pescetto G, Nemrish K E, Sung P, Li J D, Scholes J D, Lumba S.SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga. Nat Plants, 2020, 6: 646-652.
doi: 10.1038/s41477-020-0653-z
[41] Zhu G H, Ye N H, Zhang J H. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol, 2009, 50: 644-651.
doi: 10.1093/pcp/pcp022 pmid: 19208695
[42] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40: 1141-1156.
doi: 10.3724/SP.J.1006.2014.01141
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40: 1141-1156. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01141
[43] Hwang S G, Chen H C, Huang W Y, Chu Y C, Shi C T, Cheng W H. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci, 2010, 178: 12-22.
doi: 10.1016/j.plantsci.2009.09.014
[44] Li Q H, Yu X T, Chen L, Zhao G, Li S Z, Zhou H, Dai Y, Sun N, Xie Y F, Gao J S, Li D H, Sun X, Guo N. Genome-wide identification and expression analysis of the NCED family in cotton (Gossypium hirsutum L.). PLoS One, 2021, 16: e0246021.
doi: 10.1371/journal.pone.0246021
[45] 刘杨, 王强盛, 丁艳锋, 刘正辉, 李刚华, 王绍华. 水稻休眠分蘖芽萌发过程中内源激素水平的变化. 作物学报, 2009, 35: 356-362.
doi: 10.3724/SP.J.1006.2009.00356
Liu Y, Wang Q S, Ding Y F, Liu Z H, Li G H, Wang S H. Endogenous phytohormone changes in the release of dormant tillering bud in rice. Acta Agron Sin, 2009, 35: 356-362. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00356
[46] Luo L, Takahashi M, Kameoka H, Qin R Y, Shiga T, Kanno Y, Seo M, Ito M, Xu G H, Kyozuka J. Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice. Plant J, 2019, 97: 1006-1021.
doi: 10.1111/tpj.14266
[1] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[2] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[3] 张双双,王立伟,姚楠,郭光艳,夏玉凤,秘彩莉. 水稻OsUBA基因的表达及其在促进种子萌发和开花中的功能[J]. 作物学报, 2019, 45(9): 1327-1337.
[4] 宋松泉,刘军,徐恒恒,张琪,黄荟,伍贤进. 乙烯的生物合成与信号及其对种子萌发和休眠的调控[J]. 作物学报, 2019, 45(7): 969-981.
[5] 严青青,张巨松,李星星,王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1): 100-110.
[6] 常博文,钟鹏,刘杰,唐中华,高亚冰,于洪久,郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1): 118-130.
[7] 朱广龙,宋成钰,于林林,陈许兵,智文芳,刘家玮,焦秀荣,周桂生. 外源生长调节物质对甜高粱种子萌发过程中盐分胁迫的缓解效应及其生理机制[J]. 作物学报, 2018, 44(11): 1713-1724.
[8] 田润苗, 张雪海, 汤继华, 白光红, 付志远. 玉米种子萌发相关性状的全基因组关联分析[J]. 作物学报, 2018, 44(05): 672-685.
[9] 徐恒恒,黎妮,刘树君,王伟青,王伟平,张红,程红焱,宋松泉. 种子萌发及其调控的研究进展[J]. 作物学报, 2014, 40(07): 1141-1156.
[10] 商学芳;董树亭;郑世英;王丽燕. 玉米种子萌发过程中Na+、K+和Ca2+含量变化与耐盐性的关系[J]. 作物学报, 2008, 34(02): 333-336.
[11] 杨建昌;刘凯;张慎凤;王学明;王志琴;刘立军. 水稻减数分裂期颖花中激素对水分胁迫的响应[J]. 作物学报, 2008, 34(01): 111-118.
[12] 罗音;王玉军;谢胜利;赵新西;杨兴洪;王玮. 等渗水分与盐分胁迫对烟草种子萌发的影响及外源甜菜碱的保护作用[J]. 作物学报, 2005, 31(08): 1029-1034.
[13] 郭安红;刘庚山;任三学;安顺清;阳园燕. 玉米根、茎、叶中脱落酸含量和产量形成对土壤干旱的响应[J]. 作物学报, 2004, 30(09): 888-893.
[14] 马成仓;李清芳;束良佐;张经余. 硅对玉米种子萌发和幼苗生长作用机制初探[J]. 作物学报, 2002, 28(05): 665-669.
[15] 陶汉之;陶迁;程茱萸;都卫星. 外源激素和微量元素对茶籽萌发过程中酶活性影响的研究[J]. 作物学报, 1999, 25(06): 712-717.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .