欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2275-2287.doi: 10.3724/SP.J.1006.2023.21060

• 耕作栽培·生理生化 • 上一篇    下一篇

基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测

林芬芳1,2,3(), 陈星宇1, 周维勋1, 王倩2, 张东彦2,*()   

  1. 1 南京信息工程大学遥感与测绘工程学院, 江苏南京 210044
    2 农业生态大数据分析与应用技术国家地方联合工程研究中心(安徽大学), 安徽合肥 230601
    3 黄河中下游数字地理技术教育部重点实验室(河南大学), 河南开封 475004
  • 收稿日期:2022-09-07 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-02-28
  • 通讯作者: 张东彦
  • 作者简介:E-mail: linfenfang@126.com
  • 基金资助:
    国家自然科学基金项目(42271364);江苏省科技计划项目(BK20211287);黄河中下游数字地理技术教育部重点实验室(河南大学)开放课题项目(GTYR202104)

Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm

LIN Fen-Fang1,2,3(), CHEN Xing-Yu1, ZHOU Wei-Xun1, WANG Qian2, ZHANG Dong-Yan2,*()   

  1. 1 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2 National Engineering Research Center for Agro-Ecological Big Data Analysis and Application (Anhui University), Hefei 230601, Anhui, China
    3 Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Kaifeng 475004, Henan, China
  • Received:2022-09-07 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-02-28
  • Contact: ZHANG Dong-Yan
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(42271364);Science and Technology Plan in Jiangsu Province(BK20211287);Open Fund of Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University)the Ministry of Education(GTYR202104)

摘要:

小麦赤霉病具有发病快、周期短的特点, 利用深度学习特征提取方法建立病害严重度检测模型, 可为小麦赤霉病的防治提供科学指导。研究于2018—2020年间采集3个品种小麦在扬花期、灌浆期和成熟期的麦穗高光谱数据, 通过形态学处理去除麦芒, 提取出麦穗光谱曲线, 使用多源散射校正对光谱进行去噪处理, 再采用堆栈稀疏自编码器(Stacked Sparse Auto-encoder, SSAE)提取小麦赤霉病的光谱特征, 利用该特征分别结合Softmax分类器和偏最小二乘回归方法构建小麦赤霉病严重度判别和预测模型。通过预训练, 具有12~6个神经元的双层SSAE模型表现较好, 模型均方误差更低, 而且各个病害等级的特征差异明显; 以训练的SSAE模型提取的深度学习特征为基础分别建立赤霉病严重度等级判别模型和严重度预测模型, 在严重度等级判别的分类结果中, 模型的总体精度和Kappa系数分别为88.2%和0.84, 其中“淮麦35”品种的总体精度最高; 在严重度预测模型中, 模型对所有品种测试集的预测决定系数和均方根误差分别为0.927和0.062, 对各品种的预测决定系数均在0.95左右; 相比常见的几种小麦赤霉病光谱指数, 基于SSAE深度学习特征的赤霉病预测模型精度更高。高光谱遥感数据量大、光谱波段多, 堆栈稀疏自编码器通过在自编码器模型中加入稀疏表示的限定条件, 并增加隐含层数及隐含神经元数来构建更为复杂的模型, 所提取的光谱特征更能全方面地体现小麦赤霉病的光谱特征, 利用该特征构建的小麦赤霉病检测模型具有更高的精度, 可为精准监测小麦赤霉病提供科学依据。

关键词: 赤霉病, 堆栈稀疏自编码器, 高光谱, 检测, 小麦

Abstract:

Fusarium head blight (FHB) has the characteristics of rapid onset and short cycle. The deep learning feature extraction method was used to establish a disease severity detection model to provide guidance for the prevention and control of FHB. The hyperspectral data of wheat ears from flowering to maturity under three varieties from 2018 to 2020 were collected. The spectral curves of wheat ears were obtained by morphological processing and multi-source scattering correction. Then spectral features of FHB were extracted by stacked sparse auto-encoder (SSAE), combined with Softmax classifier and the partial least squares regression method to detect FHB. Through pre-training, the two-layer SSAE model with 12-6 neurons performed better, the mean square error of the model was lower, and the characteristics of each disease level were significantly different. The deep learning features extracted by the trained SSAE model were the basis of the establishment of FHB disease severity level discrimination model and severity prediction model. The overall accuracy and Kappa coefficient of the model were 88.2% and 0.84, respectively, and the accuracy was the highest for the variety of ‘Huaimai 35’. The prediction coefficient of determination (R2) and root mean square error (RMSE) of the model for the test set of all varieties were 0.927 and 0.062 in the severity prediction model, respectively, and R2 for each variety was around 0.95. The FHB prediction model based on SSAE deep learning features has higher accuracy than those with several common FHB spectral indices. Hyperspectral remote sensing had the characteristics of large amount of data and many spectral bands. The stack sparse auto-encoder builded a more complex model by adding the limiting conditions of sparse representation to the auto-encoder model, and increasing the number of hidden layers and hidden neurons. The extracted spectral features can better reflect the spectral characteristics of FHB in all aspects, so the detection model of FHB constructed by using these features has higher accuracy, which provides a reference for timely and accurate monitoring of FHB.

Key words: Fusarium head blight, stacked sparse auto-encoder, hyperspectral, detection, wheat

图1

研究方法流程图"

图2

麦穗形态学处理 (a) 原始影像; (b) 形态学处理后影像; (c) 二值化影像。"

图3

YDbDr空间下麦穗的Dr分量(a)和麦穗的OTSU阈值分割结果(b)"

表1

小麦赤霉病病害严重度等级"

级别
Grade
病害严重度DI值范围
Range of DI
病害等级
Grade of disease
1 0<DI<0.05 健康 Healthy
2 0.05≤DI<0.20 轻度 Slight
3 0.20≤DI<0.50 中度 Moderate
4 DI≥0.50 重度 Serious

图4

堆栈稀疏自编码器结构 图中第1个框表示数据输入层, 第2个框表示第1层SAE, 第3个框表示第2层SAE, 第4个框表示输出层, 第5个框表示连接的分类器或回归方法。"

图5

不同品种和病害等级下经MSC校正后的小麦麦穗反射光谱曲线 图中不同颜色代表不同的病害等级, 其中黑色表示健康, 红色表示轻度, 蓝色表示中度, 绿色表示重度。"

图6

各层不同神经元数量组合下模型的训练均方误差"

图7

每层SAE提取的各病害等级特征 (a) 第1层; (b) 第2层。不同线型代表不同的病害等级, 其中双点划线表示健康, 短划线表示轻度, 直线表示中度, 点线表示重度。"

图8

不同品种下小麦赤霉病严重度等级判别模型的总体精度和Kappa系数"

图9

不同品种下各病害等级的生产者精度(a)和用户精度(b)"

图10

预测模型精度 (a) 所有品种测试集; (b) 西农979测试集; (c) 淮麦35测试集; d) 漯麦10测试集。"

表2

小麦赤霉病光谱指数及其计算公式"

光谱指数
Spectral index
光谱指数全称
Full name of spectral index
计算公式
Formula of calculation
REHBI Red-edge head blight index $\frac{\left( 842-665 \right)\times \left( {{R}_{\text{Re3}}}-{{R}_{\text{R}}} \right)-\left( 783-665 \right)\times \left( {{R}_{\text{NIR}}}-{{R}_{\text{R}}} \right)}{\text{2}}$
FDI Fusarium disease index $\frac{{{R}_{560}}-{{R}_{663}}}{{{R}_{560}}+{{R}_{663}}}$
WSI Wheat scab index $\frac{\text{S}{{\text{D}}_{450-488}}-\text{S}{{\text{D}}_{500-540}}}{\text{S}{{\text{D}}_{450-488}}+{{\operatorname{SD}}_{500-540}}}$
FCI Fusarium classification index $\frac{2\left( {{R}_{668}}-{{R}_{471}} \right)-{{R}_{539}}}{4}$
HBI Head blight index ${{R}_{550-560}}-{{R}_{665-675}}$

图11

深度学习特征和各小麦赤霉病光谱指数预测精度比较"

[1] 张昊, 陈万权. 小麦赤霉菌群体结构和病害监控技术研究进展. 植物保护学报, 2022, 49: 250-262.
Zhang H, Chen W Q. Research progresses on population structure of pathogen and monitoring and controlling technology of Fusarium head blight in wheat. Acta Phytophy Sin, 2022, 49: 250-262. (in Chinese with English abstract)
[2] 陶晡, 齐永志, 屈赟, 曹志艳, 赵绪生, 甄文超.基于增强回归树的海河平原小麦赤霉病预测模型构建与验证. 中国农业
科学, 2021, 54: 3860-3870.
Tao B, Qi Y Z, Qu Y, Cao Z Y, Zhao X S, Zhen W C. Construction and verification of fusarium head blight prediction model in Haihe plain based on boosted regression tree. Sci Agric Sin, 2021, 54: 3860-3870. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.18.006
[3] 邢瑜琪, 姚卫平, 户雪敏, 戴纪琛, 张太学, 黄卫利, 胡小平. 基于监测预警的小麦赤霉病药剂防治效果评价. 植物保护, 2021, 47: 323-326.
Xing Y Q, Yao W P, Hu X M, Dai J S, Zhang T X, Huang W L, Hu X P. Evaluation of control effects of pesticides on wheat scab based on monitoring and early warning system. Plant Prot, 2021, 47: 323-326. (in Chinese with English abstract)
[4] 黄文江, 师越, 董莹莹, 叶回春, 邬明权, 崔贝, 刘林毅. 作物病虫害遥感监测研究进展与展望. 智慧农业, 2019, 1(4): 1-11.
Huang W J, Shi Y, Dong Y Y, Ye H C, Wu M Q, Cui B, Liu L Y. Progress and prospects of crop diseases and pests monitoring by remote sensing. Smart Agric, 2019, 1(4): 1-11. (in Chinese with English abstract)
doi: 10.12133/j.smartag.2019.1.4.201905-SA005
[5] 孙瑞琳, 孙全, 孙成明, 刘涛, 李冬双, 吴峰峰. 基于不同平台的小麦病虫害遥感监测研究进展. 中国农机化学报, 2021, 42(3): 142-150.
doi: 10.13733/j.jcam.issn.2095-5553.2021.03.020
Sun R L, Sun Q, Sun C M, Liu T, Li D S, Wu F F. Recent advances in remote sensing monitoring on wheat pests and diseases based on different platforms. J Chin Agric Mech, 2021, 42(3): 142-150. (in Chinese with English abstract)
[6] Zhang N, Yang G, Pan Y, Yang X, Zhao C. A review of advanced technologies and development for hyperspectral-based plant disease detection in the past three decades. Remote Sens (Basel), 2020, 12: 3188.
[7] Qiu R C, Yang C, Moghimi A, Zhang M, Steffenson B J, Hirsch C D. Detection of fusarium head blight in wheat using a deep neural network and color imaging. Remote Sens (Basel), 2019, 11: 2658.
[8] 鲍文霞, 孙庆, 胡根生, 黄林生, 梁栋, 赵健. 基于多路卷积神经网络的大田小麦赤霉病图像识别. 农业工程学报, 2020, 36(11): 174-181.
Bao W X, Sun Q, Hu G S, Huang L S, Liang D, Zhao J. Image recognition of field wheat scab based on multi-way convolutional neural network. Trans CSAE, 2020, 36(11): 174-181. (in Chinese with English abstract)
[9] 邓国强, 王君婵, 杨俊, 刘涛, 李冬双, 孙成明. 基于图像和改进U-net模型的小麦赤霉病穗识别. 麦类作物学报, 2021, 41: 1432-1440.
Deng G Q, Wang J C, Yang J, Liu T, Li D S, Sun C M. Identification of fusarium head blight in wheat ears based on image and improved U-net model. J Triticeae Crops, 2021, 41: 1432-1440. (in Chinese with English abstract)
[10] 戴雨舒, 仲晓春, 孙成明, 杨俊, 刘涛, 刘升平. 基于图像处理和Deeplabv3+模型的小麦赤霉病识别. 中国农机化学报, 2021, 42(9): 209-215.
doi: 10.13733/j.jcam.issn.2095-5553.2021.09.29
Dai Y S, Zhong X C, Sun C M, Yang J, Liu T, Liu S P. Identification of fusarium head blight in wheat-based on image processing and Deeplabv3+ model. J Chin Agric Mech, 2021, 42(9): 209-215. (in Chinese with English abstract)
[11] Zhang D Y, Wang Z C, Jin N, Gu C Y, Chen Y, Huang Y B. Evaluation of efficacy of fungicides for control of wheat fusarium head blight based on digital imaging. IEEE Access, 2020, 8: 109876-109890.
doi: 10.1109/Access.6287639
[12] Zhang D Y, Gu C Y, Wang Z C, Zhou X G, Li W F. Evaluating the efficacy of fungicides for wheat scab control by combined image processing technologies. Biosyst Eng, 2021, 211: 230-246.
doi: 10.1016/j.biosystemseng.2021.09.008
[13] 张凝, 杨贵军, 赵春江, 张竞成, 杨小冬, 潘瑜春, 黄文江, 徐波, 李明, 朱西存, 李振海. 作物病虫害高光谱遥感进展与展望. 遥感学报, 2021, 25: 403-422.
Zhang N, Yang G J, Zhao C J, Zhang J C, Yang X D, Pan Y C, Huang W J, Xu B, Li M, Zhu X C, Li Z H. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests. J Remote Sens, 2021, 25: 403-422. (in Chinese with English abstract)
[14] Behmann J, Steinrucken, Plumer L. Detection of early plant stress responses in hyperspectral images. ISPRS J Photogr, 2014, 93: 98-111.
doi: 10.1016/j.isprsjprs.2014.03.016
[15] Zhang J C, Huang Y B, Pu R L, Gonzalez-moreno P, Yuan L, Wu K H, Huang W J. Monitoring plant diseases and pests through remote sensing technology: a review. Comput Electron Agric, 2019, 165: 104943.
doi: 10.1016/j.compag.2019.104943
[16] Xiao Y X, Dong Y Y, Huang W J, Liu L Y, Mm H Q. Wheat fusarium head blight detection using UAV-based spectral and texture features in optimal window size. Remote Sens (Basel), 2021, 13: 2437.
[17] Liu L Y, Dong Y Y, Huang W J, Dd X P, Ma H Q. Monitoring wheat fusarium head blight using unmanned aerial vehicle hyperspectral imagery. Remote Sens (Basel), 2020, 12: 3811.
[18] Alisaac E, Behmann J, Kuska M T, Dehne H W, Mahlein A K. Hyperspectral quantification of wheat resistance to fusarium head blight: comparison of two fusarium species. Eur J Plant Pathol, 2018, 152: 869-884.
doi: 10.1007/s10658-018-1505-9
[19] Whetton R L, Hassall K L, Waine T W, Mouazen A M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 1: Laboratory study. Biosyst Eng, 2018, 166: 101-115.
doi: 10.1016/j.biosystemseng.2017.11.008
[20] Whetton R L, Waine T W, Mouazen A M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 2: On-line field measurement. Biosyst Eng, 2018, 167: 144-158.
doi: 10.1016/j.biosystemseng.2018.01.004
[21] Zelazny W R, Chrpova J, Hamouz P. Fusarium head blight detection from spectral measurements in a field phenotyping setting: a pre-registered study. Biosyst Eng, 2021, 211: 97-113.
doi: 10.1016/j.biosystemseng.2021.08.019
[22] Ma H Q, Huang W J, Jing Y S, Pignatti S, Laneve G, Dong Y Y, Ye H C, Liu L Y, Guo A T, Jiang J. Identification of fusarium head blight in winter wheat ears using continuous wavelet analysis. Sensors (Basel), 2020, 20: 2001.
doi: 10.3390/s20072001
[23] Ma H Q, Huang W J, Dong Y Y, Liu L Y, Guo A T. Using UAV-based hyperspectral imagery to detect winter wheat fusarium head blight. Remote Sens-Basel, 2021, 13: 3024.
doi: 10.3390/rs13153024
[24] Thenkabail P S, Smith R B, Depauwd E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ, 2000, 71: 158-182.
doi: 10.1016/S0034-4257(99)00067-X
[25] Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich W B. Early detection of fusarium infection in wheat using hyper-spectral imaging. Comput Electron Agric, 2011, 75: 304-312.
doi: 10.1016/j.compag.2010.12.006
[26] Liu L Y, Dong Y Y, Huang W J, Du X P, Ma H Q. A disease index for efficiently detecting wheat fusarium head blight using Sentinel-2 multispectral imagery. IEEE Access, 2020, 8: 52181-52191.
doi: 10.1109/Access.6287639
[27] Zhang D Y, Wang Q, Lin F F, Yin X, Gu C Y, Qiao H B. Development and evaluation of a new spectral disease index to detect wheat fusarium head blight using hyperspectral imaging. Sensors (Basel), 2020, 20: 2260.
[28] 丁文娟.基于不同尺度的冬小麦赤霉病高光谱遥感监测. 安徽大学硕士学位论文, 安徽合肥, 2019.
Ding W J. Hyperspectral Remote Sensing Monitoring of Winter Wheat Head Blight Based on Different Scales. MS Thesis of Anhui University, Hefei, Anhui, China, 2019. (in Chinese with English abstract)
[29] Zhang N, Pan Y C, Feng H K, Zhao X Q, Yang X G, Ding C L, Yang G J. Development of fusarium head blight classification index using hyperspectral microscopy images of winter wheat spikelets. Biosyst Eng, 2019, 186: 83-99.
doi: 10.1016/j.biosystemseng.2019.06.008
[30] Jin X, Jie L, Wang S, Qi H, Li S. Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field. Remote Sens (Basel), 2018, 10: 395.
[31] 何晓军, 徐爱功, 李玉. 基于模糊相似性的彩色形态学图像处理方法. 计算机应用研究, 2019, 36(1): 258-263.
He X J, Xu A G, Li Y. Color morphological image processing method based on fuzzy similarity. Appl Res Comput, 2019, 36(1): 258-263. (in Chinese with English abstract)
[32] Zhang X, Sun J, Li P, Zeng F, Wang H. Hyperspectral detection of salted sea cucumber adulteration using different spectral preprocessing techniques and SVM method. LWT-Food Sci Technol, 2021, 152: 112295.
doi: 10.1016/j.lwt.2021.112295
[33] 中华人民共和国农业部. 小麦赤霉病测报技术规范, GB/T 157962011, 2011.
Ministry of Agriculture. Rules for Monitoring and Forecast of the Wheat Head Blight (Fusarium graminearum Schw. /Gibberella zeae (Schw.) Petch), GB/T 15796-2011, 2011. (in Chinese)
[34] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man CY-S, 1979, 9: 62-66.
[35] Wang D Y, Fu Y Y, Yang G J, Yang X D, Liang D, Zhou C Q, Zhang N, Wu H, Zhang D Y. Combined use of FCN and Harris corner detection for counting wheat ears in field conditions. IEEE Access, 2019, 7: 178930-178941.
doi: 10.1109/Access.6287639
[36] 马红强, 马时平, 许悦雷, 吕超, 辛鹏, 朱明明. 基于改进栈式稀疏去噪自编码器的图像去噪. 计算机工程与应用, 2018, 54(4): 199-204.
Ma H Q, Ma S P, Xu Y L, Lyu C, Xin P, Zhu M M. Image denoising based on improved stacked sparse denoising auto- encoder. Comp Engr Appl, 2018, 54(4): 199-204. (in Chinese with English abstract)
[37] Bai Y, Xiong Y, Huang J, Zhou J, Zhang B. Accurate prediction of soluble solid content of apples from multiple geographical regions by combining deep learning with spectral fingerprint features. Postharvest Biol Technol, 2019, 156: 110943.
doi: 10.1016/j.postharvbio.2019.110943
[38] Ahman M, Alqarni M A, Khan A M, Hussain R, Mazzara M, Distefano S. Segmented and non-segmented stacked denoising autoencoder for hyperspectral band reduction. Optik, 2019, 180: 370-378.
doi: 10.1016/j.ijleo.2018.10.142
[39] 戴晓爱, 郭守恒, 任清, 杨晓霞, 刘汉湖. 基于堆栈式稀疏自编码器的高光谱影像分类. 电子科技大学学报, 2016, 45: 382-386.
Dai X A, Guo S H, Ren Q, Yang X X, Liu H H. Hyperspectral remote sensing image classification using the stacked sparse autoencoder. J Univ Elec Sci Technol Chin, 2016, 45: 382-386. (in Chinese with English abstract)
[40] Zhao C H, Wan X Q, Zhao G P, Cui B, Liu W, Qi B. Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest. Eur J Remote Sens, 2017, 50: 47-63.
doi: 10.1080/22797254.2017.1274566
[41] Wan X Q, Zhao C H. Local receptive field constrained stacked sparse autoencoder for classification of hyperspectral images. J Opt Soc Am A, 2017, 34: 1011-1020.
doi: 10.1364/JOSAA.34.001011 pmid: 29036085
[42] Shao Z F, Zhang L J, Wang L. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass. IEEE J-Stars, 2017, 10: 5569-5582.
[43] Zhang L J, Shao Z F, Liu J C, Cheng Q M. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and Landsat 8 data. Remote Sens (Basel), 2019, 11: 1459.
[44] Fan Y Y, Zhang C, Liu Z Y, Qiu Z J, He Y. Cost-sensitive stacked auto-encoder models to detect striped stem borer infestation on rice based on hyperspectral imaging. Knowl-Based Syst, 2019, 168: 49-58.
[45] Yang D, Yuan J H, Chang Q, Zhao H Y, Cao Y. Early determination of mildew status in storage maize kernels using hyperspectral imaging combined with the stacked sparse auto-encoder algorithm. Infrared Phys Technol, 2020, 109: 103412.
doi: 10.1016/j.infrared.2020.103412
[1] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[2] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[3] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[4] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[5] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[6] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[7] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[8] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[9] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[10] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[11] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[12] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667.
[13] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[14] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454.
[15] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .