欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2385-2397.doi: 10.3724/SP.J.1006.2023.24232

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析

杜翠翠1(), 吴明星1(), 张雅婷1, 谢婉婕1, 张积森2,*(), 王恒波1,*()   

  1. 1农业农村部福建甘蔗生物学与遗传育种重点实验室 / 国家甘蔗工程技术研究中心 / 福建农林大学农学院, 福建福州 350002
    2广西大学亚热带农业生物资源保护与利用国家重点实验室, 广西南宁 530004
  • 收稿日期:2022-10-16 接受日期:2023-02-10 出版日期:2023-09-12 网络出版日期:2023-02-21
  • 通讯作者: *张积森, E-mail: zjisen@126.com; 王恒波, E-mail: wanghengbo_0354@126.com
  • 作者简介:杜翠翠, E-mail: 1875327155@qq.com
    吴明星, E-mail: 1622076451@qq.com第一联系人:**同等贡献
  • 基金资助:
    国家重点研发计划项目(2021YFF1000104);大学生创新创业训练计划项目(X202210389051);财政部和农业农村部国家现代农业产业技术体系建设专项(糖料, CARS-17)

Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.)

DU Cui-Cui1(), WU Ming-Xing1(), ZHANG Ya-Ting1, XIE Wan-Jie1, ZHANG Ji-Sen2,*(), WANG Heng-Bo1,*()   

  1. 1Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Affairs / National Sugarcane Engineering Technology Research / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2022-10-16 Accepted:2023-02-10 Published:2023-09-12 Published online:2023-02-21
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2021YFF1000104);National Undergraduate Innovation and Entrepreneurship Training Program Project(X202210389051);China Agriculture Research System of MOF and MARA(Sugar, CARS-17)

摘要:

SWEET蛋白通过调控植物体内糖分的运输、分配、转化和贮藏, 广泛参与植物生长发育及响应病原菌胁迫的生理生化过程。为揭示SWEET基因在甘蔗生长发育及其与赤条病菌互作中的生物学功能, 本研究基于甘蔗割手密种全长转录组文库和比较基因组学, 根据注释SsSWEET11基因序列设计特异引物, 利用RT-PCR技术从甘蔗割手密种cDNA文库中扩增该基因的全长序列, 运用多种生物信息工具分析其特征, 构建系统进化树; 采用不同组织和抗、感赤条病的甘蔗品种分析SsSWEET11的表达模式; 利用瞬时表达和亚细胞定位分析SsSWEET11的功能。结果表明, 从甘蔗割手密种克隆获得SsSWEET11基因(登录号为OP554214), 该基因全长927 bp, 编码308个氨基酸残基, 具有2个MtN3_saliva结构域和7次跨膜结构域。系统进化树分析显示, SsSWEET11属于SWEET蛋白家族第III亚家族成员, 与高粱SbSWEET11相似性高达97.41%。qRT-PCR分析表明, ShSWEET11基因在不同组织中组成型表达, 在蔗叶和根中表达量显著高于其他组织; 赤条病菌胁迫下, ScSWEET11基因在抗病品种ROC22和感病品种MT11-610中呈现完全不同的表达趋势, 与对照相比, 抗病品种中该基因的表达量显著下调, 而感病品种中, 在胁迫48 h和72 h后该基因的表达量显著上调, 分别为对照的5.90倍和5.43倍。亚细胞定位表明, SsSWEET11-GFP融合蛋白定位在质膜上。瞬时过表达SsSWEET11基因1 d后, 二氨基联苯胺(Diaminobenzidine, DAB)对本氏烟叶片进行染色, 叶片颜色没有变化, 再接种烟草青枯菌、茄病镰刀菌蓝色变种7 d后, 过表达植株叶片发病比对照组严重, 且过敏反应相关基因、茉莉酸和水杨酸代谢途径相关基因呈现上调表达, 而乙烯通路相关基因则没有响应, 表明SsSWEET11基因参与茉莉酸和水杨酸信号传导通路, 且病原菌侵染本氏烟草叶片能够诱发过敏反应。研究结果不仅为开发与甘蔗抗赤条病菌性状关联的分子标记提供积累, 也为深入解析赤条病侵染甘蔗的分子机制奠定一定的基础。

关键词: 割手密种, SWEET基因, 糖转运蛋白, 赤条病菌, 基因功能, 甘蔗

Abstract:

SWEET (Sugars Will Eventually be Exported Transporter) proteins are widely involved in the physiological and biochemical processes of plant growth and development and response to pathogen stress by regulating the transportation, distribution, transformation, and storage of sugar in plants. This study revealed the biological function of SWEET genes in the growth and development of sugarcane and its interaction with red stripe pathogen Acidovorax avenae subsp. avenae (Aaa). Firstly, based on the PacBio full-length transcriptome cDNA library of S. spontaneum SES208 and comparative genomics, the specific primers were designed according to the re-annotated SsSWEET11 gene sequence. The full-length sequence was mined from the cDNA library by quantitative RT-PCR technology. The characteristics of the SWEET proteins were analyzed using various biological information tools, and the SWEET proteins from some plants were constructed a phylogenetic tree. Secondly, RT-qPCR detected the relative expressions of the SsSWEET11 gene with different tissues and two cultivars, ROC22 (resistant to red stripe) and MT11-610 (susceptible to red stripe). Finally, transient overexpression and subcellular localization performed the function of the SsSWEET11 gene. The results showed that the full-length cDNA sequence of the SsSWEET11 gene (GenBank accession number: OP554214) was cloned from S. spontaneum SES208, with an open reading frame of 927 bp and encoding 308 amino acid residues, which contained two MtN3_saliva domains and seven transmembrane domains. Phylogenetic analysis revealed that the SWEET protein family could be divided into four subfamilies, and SsSWEET11 belonged to subfamily III. The amino acid sequence similarity between SsSWEET11 and SbSWEET11 protein from sorghum is 97.99%. qRT-PCR demonstrated that the SsSWEET11 gene was constitutively expressed in different tissues of S. spontaneum and the relative expression level in leaves and roots was significantly higher than that in other tissues. Under the stress of Aaa, the SsSWEET11 gene presented a different expression pattern between sugarcane cultivars (ROC22) and (MT11-610) and was significantly reduced in the resistant sugarcane cultivar compared with the blank control. However, the expression of ShSWEET11 was significantly up-regulated in the susceptible sugarcane cultivar after 48 hours post-inoculation (hpi) and 72 hpi, which were 5.90 times and 5.43 times higher than the control, respectively. Subcellular localization indicated that the SsSWEET11-GFP fusion protein was located in the plasma membrane. After transiently overexpression of the SsSWEET11 gene for one day, the color of Nicotiana benthamiana leaves remained unchanged by DAB staining, and seven days after inoculation with Pseudomonas solanacearum, and Fusarium solani var. coeruleum, the incidence of transient overexpression of ShSWEET11 gene in N. benthamiana leaves were more susceptible than that of the control. Allergic reaction-related genes, jasmonic acid, and salicylic acid metabolism pathway-related genes were up-regulated, but ethylene pathway-related genes did not respond, suggesting that the SsSWEET11 gene is involved in jasmonic acid and salicylic acid signal transduction pathways, and the infection of N. benthamiana leaves by pathogens can induce an allergic reaction. These results not only provided an accumulation for the development of molecular markers associated with sugarcane resistance to Aaa but also laid a foundation for in-depth analysis of the molecular mechanism in sugarcane in response to Aaa infection.

Key words: Saccharum spontaneum, SsSWEET11 gene, sucrose transporter protein, red stripe pathogen, gene function, sugarcane

表1

本研究所用引物序列"

名称
Name
引物序列
Primer sequences (5°-3°)
备注
Note
CDS-SWEET11-F_27 AATCGAGCATCACCTTAGCAGTAGC 基因克隆
Gene cloning
CDS-SWEET11-R_1194 TCGTCCGAGTCGATCCGAGCC
CDS-SsSWEET11-F_72 GGAAGGAAGTCGCACTAGGAA
SsSWEET11-QF AGGTGTACCGCAAGAAGTCG 定量PCR引物
qRT-PCR primers
SsSWEET11-QR AGCGCGTAGAAGATCCACAG
GAPDH-F CACGGCCACTGGAAGCA 内参基因
Reference gene
GAPDH-R TCCTCAGGGTTCCTGATGCC
pMDC202-SsSWEET11-F CTCGACTCTAGAACTAGTATGGCAGGAGGCCTCTTCTCCAT 过表达载体构建
Construction of overexpression vector
pMDC202-SsSWEET11-R ATTTTTTCTACCGGTACCCACCGCGGCGGCGGGGAC
pSuper-1300-SsSWEET11-F GGGGCCCGGGGTCGACATGGCAGGAGGCCTCTTCTCCAT 亚细胞定位载体构建
Construction of subcellular localization vector
pSuper-1300-SsSWEET11-R CCCTTGCTCACCATGGTACCCACCGCGGCGGCGGGGAC

图1

SsSWEET11序列分析及跨膜结构域预测 A: SsSWEET11核酸序列及其推导的氨基酸序列(红色下画线部位为2个保守结构域MtN3_saliva)。B: SsSWEET11蛋白跨膜结构域预测。"

图2

不同物种SWEET蛋白序列多重比对"

图3

SWEET家族成员系统进化树的构建与保守基序的预测 SWEET成员分别来自AtSWEETs: 拟南芥; OsSWEETs: 水稻; SbSWEETs: 高粱; XP_021614562.1 (MeSWEET10a): 木薯; KU686986.1 (StSWEET11) and XM_006344629.2 (StSWEET16): 马铃薯; KAH9797555.1 (CsSWEET2a): 甜橘; GH_D03G1971 (GhSWEET10D): 棉花; Medtr3g098930.1 (MtSWEET11): 苜蓿。"

图4

SsSWEET11基因在不同组织中的表达量 误差线为每组处理的标准误差(n = 3)。不同小写字母表示在5%概率水平差异显著。"

图5

抗、感甘蔗品种受到赤条病菌侵染后ShSWEET11基因的表达模式 ROC22为抗病品种, MT11-610为感病品种。横坐标为赤条病菌的侵染时间, 纵坐标为表达量。误差线为每组处理的标准误差(n = 3)。不同小写字母表示在5%概率水平差异显著。"

图6

SsSWEET11基因在烟草叶片中的瞬时表达及免疫相关基因的表达量 A-1和B-1分别表示SsSWEET11基因在烟草叶片中瞬时表达后接种烟草茄病镰刀菌蓝色变种和烟草青枯菌的表型及DAB染色结果, symptom 0 d表示瞬时过表达SsSWEET11基因 1 d, symptom 1 d和7 d分别表示瞬时过表达SsSWEET11基因后接种病原菌的时间。A-2和B-2瞬时表达SsSWEET11基因后烟草免疫相关基因的表达量。a为注射后叶片表型, b为在显微镜下叶片表型, c为DAB染色叶片表型, d为在显微镜下DAB染色的叶片表型。35S::00表示空载体, 35S::SsSWEET11表示重组载体。"

图7

SsSWEET11蛋白的亚细胞定位 在明场、绿色荧光、叠加场3个视野下拍摄的照片。35S::GFP和35S::SsSWEET11::GFP分别代表空载体和重组载体的GV3101菌液注射本氏烟叶片的结果。标尺为50 μm。"

[1] Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/ Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome, 2021, 3: 673566.
[2] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析. 作物学报, 2023, 49: 46-61.
doi: 10.3724/SP.J.1006.2023.24005
Wang H B, Zhang C, Wu M X, Li X, Jiang Z L, Lin R X, Guo J L, Que Y X. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar. Acta Agron Sin, 2023, 49: 46-61. (in Chinese with English abstract)
[3] 张风娟, 李健, 杜成忠, 杨丽涛, 李杨瑞, 邢永秀. 不同甘蔗品种叶片气孔对水分胁迫的响应. 广西植物, 2014, 34: 821-827.
Zhang F J, Li J, Du C Z, Yang L T, Li Y R, Xing Y X. Stomatal response to water stress in leaves of different sugarcane cultivars. Guihaia, 2014, 34: 821-827. (in Chinese with English abstract)
[4] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析. 作物学报, 2023, 49: 97-104.
doi: 10.3724/SP.J.1006.2023.14239
Li J, Zhou J R, Chu N, Sun H D, Huang M T, Fu H Y, Gao S J. Gene cloning and expression analysis of ScPR10 in sugarcane under Acidovorax avenae subsp. avenae infection. Acta Agron Sin, 2023, 49: 97-104. (in Chinese with English abstract)
[5] Fontana P D, Rago A M, Fontana C A, Vignolo G M, Cocconcelli P S, Mariotti J A. Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in Northwestern Argentina. Eur J Plant Pathol, 2013, 137: 525-534.
doi: 10.1007/s10658-013-0263-y
[6] 胡丽萍, 张峰, 徐惠, 刘光敏, 王亚钦, 何洪巨. 植物SWEET基因家族结构、功能及调控研究进展. 生物技术通报, 2017, 33(4): 27-37.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004
Hu L P, Zhang F, Xu H, Liu G M, Wang Y Q, He H J. Research advances in the structure, function and regulation of SWEET gene family in plants. Biol Bull, 2017, 33(4): 27-37. (in Chinese with English abstract)
[7] Ayre B G. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant, 2011, 4: 377-394.
doi: 10.1093/mp/ssr014 pmid: 21502663
[8] 黄成, 李旭楠, 李诗燕, 王锦达. 植物SWEET基因家族的研究进展. 中国农学通报, 2022, 38(17): 17-26.
doi: 10.11924/j.issn.1000-6850.casb2021-0669
Huang C, Li X N, Li S Y, Wang J D. Research progress of plant SWEET gene family. Chin Agri Sci Bull, 2022, 38(17): 17-26. (in Chinese with English abstract)
[9] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
doi: 10.1038/nature09606
[10] 胡伟长. 甘蔗SWEET基因家族的演化与功能分析. 福建农林大学硕士学位论文, 福建福州, 2017.
Hu W C. The Evolution and Function of SWEET Genes in Saccharum. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2017. (in Chinese with English abstract)
[11] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究. 作物学报, 2023, 49: 129-139.
doi: 10.3724/SP.J.1006.2023.24023
Wu X L, Wu Z D, Wan C F, Du Y, Gao Y, Li Z X, Wang Z Q, Tang D B, Wang J C, Zhang K. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato. Acta Agron Sin, 2023, 49: 129-139. (in Chinese with English abstract)
[12] Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-211.
doi: 10.1126/science.1213351
[13] Guo W J, Nagy R, Chen H Y, Pfrunder S, Yu Y C, Santelia D, Frommer W B, Martinoia E. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol, 2014, 164: 777-789.
doi: 10.1104/pp.113.232751
[14] Liu X, Zhang Y, Yang C, Tian Z, Li J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep, 2016, 6: 24563.
doi: 10.1038/srep24563 pmid: 27102826
[15] 麻明英, 郝晨星, 张凯, 肖桂华, 苏翰英, 文康, 邓子牛, 马先锋. 甜橙SWEET2a促进柑橘溃疡病菌侵染. 园艺学报, 2022, 49: 1247-1260.
doi: 10.16420/j.issn.0513-353x.2021-0323
Ma M Y, Hao C X, Zhang K, Xiao G H, Su H Y, Wen K, Deng Z N, Ma X F. CsSWEET2a promotes the infection of Xanthomonas citri subsp. citri. Acta Hortic Sin, 2022, 49: 1247-1260. (in Chinese with English abstract)
[16] Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S. Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport. J Integr Plant Biol, 2014, 56: 559-570.
doi: 10.1111/jipb.12173
[17] Chen L Q, Lin I W, Qu X Q, Sosso D, McFarlane H E, Londoño A, Samuels A L, Frommer W B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell, 2015, 27: 607-619.
doi: 10.1105/tpc.114.134585
[18] Seo P J, Park J M, Kang S K, Kim S G, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8
[19] Yang B, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006, 103: 10503-10508.
doi: 10.1073/pnas.0604088103
[20] Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol, 2013, 200: 808-819.
doi: 10.1111/nph.12411 pmid: 23879865
[21] Hu W C, Hua X T, Zhang Q, Wang J P, Shen Q C, Zhang X T, Wang K, Yu Q Y, Lin Y R, Ming R G, Zhang J S. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biol, 2018, 18: 270.
doi: 10.1186/s12870-018-1495-y
[22] Hua X T, Shen Q C, Li Y H, Zhou D, Zhang Z, Akbar S, Wang Z C, Zhang J S. Functional characterization and analysis of transcriptional regulation of sugar transporter SWEET13c in sugarcane Saccharum spontaneum. BMC Plant Biol, 2022, 22: 363.
doi: 10.1186/s12870-022-03749-9
[23] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析. 作物学报, 2021, 47: 1275-1296.
doi: 10.3724/SP.J.1006.2021.04192
Su Y C, Li C N, Su W H, You C H, Cen G L, Zhang C, Ren Y J, Que Y X. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar. Acta Agron Sin, 2021, 47: 1275-1296. (in Chinese with English abstract)
[24] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[25] Xue B T, Guo J L, Que Y X, Fu Z W, Wu L G, Xu L P. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane. Int J Mol Sci, 2014, 15: 8846-8862.
doi: 10.3390/ijms15058846 pmid: 24857916
[26] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[27] Mao H Y, Wang W J, Su W H, Su Y C, Liu F, Li C N, Wang L, Zhang X, Xu L P, Que Y X. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. Plant Cell Rep, 2019, 38: 637-655.
doi: 10.1007/s00299-019-02394-1
[28] Sohn S I, Kim Y H, Kim B R, Lee S Y, Lim C K, Hur J H, Lee J Y. Transgenic tobacco expressing the hrpN(EP) gene from Erwinia pyrifoliae triggers defense responses against botrytis cinerea. Mol Cells, 2007, 24: 232-239.
[29] Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C J, Broglie R. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 1991, 254: 1194-1197.
doi: 10.1126/science.254.5035.1194 pmid: 17776411
[30] Chen N, Goodwin P H, Hsiang T. The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J Exp Bot, 2003, 54: 2449-2456.
pmid: 14565949
[31] Feng L, Frommer W B. Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem Sci, 2015, 40: 480-486.
doi: 10.1016/j.tibs.2015.05.005 pmid: 26071195
[32] Gao Y, Wang Z Y, Kumar V, Xu X F, Yuan D P, Zhu X F, Li T Y, Jia B, Xuan Y H. Genome-wide identification of the SWEET gene family in wheat. Gene, 2018, 642: 284-292.
doi: 10.1016/j.gene.2017.11.044
[33] Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 2014, 508: 546-549.
[34] Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant, 2013, 6: 665-674.
doi: 10.1093/mp/sst035 pmid: 23430047
[35] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lyu M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2
[36] 沈翘楚. 甘蔗SWEET基因家族关键成员的功能分析. 福建农林大学硕士学位论文, 福建福州, 2020.
Shen Q C. Functional Analysis of Key SWEET Gene Members in Sugarcane. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2020 (in Chinese with English abstract).
[37] 梁大曲, 石长双, 涂晶晶, 徐刚, 吴峰. 马尾松PmSWEET基因的克隆、亚细胞定位及表达分析. 植物生理学报, 2022, 58: 447-457.
Liang D Q, Shi C S, Tu J J, Xu G, Wu F. Cloning, subcellular localization and expression analysis of PmSWEET gene in Pinus massoniana. Plant Physiol J, 2022, 58: 447-457. (in Chinese with English abstract)
doi: 10.1104/pp.58.4.447
[38] Gao Y, Zhang C, Han X, Wang Z Y, Ma L, Yuan P, Wu J N, Zhu X F, Liu J M, Li D P, Hu Y B. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Mol Plant Pathol, 2018, 19: 2149-2161.
doi: 10.1111/mpp.2018.19.issue-9
[39] Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M. Seed filling in domesticated maize and rice depends on SWEET- mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422
[40] Feng C Y, Han J X, Han X X, Jiang J. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene, 2015, 573: 261-272.
doi: 10.1016/j.gene.2015.07.055
[41] Chong J, Piron M C, Meyer S, Merdinoglu D, Bertsch C, Mestre P. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. J Exp Bot, 2014, 65: 6589-6601.
doi: 10.1093/jxb/eru375
[42] Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen H T. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome resequence analysis. BMC Genomics, 2015, 16: 520.
doi: 10.1186/s12864-015-1730-y
[43] Chen H Y, Huh J H, Yu Y C, Ho L H, Chen L Q, Tholl D, Frommer W B, Guo W J. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J, 2015, 83: 1046-1058.
doi: 10.1111/tpj.2015.83.issue-6
[44] Guan Y F, Huang X Y, Zhu J, Gao J F, Zhang H X, Yang Z N. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol, 2008, 147: 852-863.
doi: 10.1104/pp.108.118026
[45] Klemens P A, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol, 2013, 163: 1338-1352.
doi: 10.1104/pp.113.224972
[46] Kryvoruchko I S, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu C I, Guan D, Murray J, Benedito V A, Frommer W B, Udvardi M K. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiol, 2016, 171: 554-565.
doi: 10.1104/pp.15.01910 pmid: 27021190
[47] Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward J M, Frommer W B. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 2000, 12: 1153-1164.
doi: 10.1105/tpc.12.7.1153 pmid: 10899981
[48] Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol, 2015, 25: 53-62.
doi: 10.1016/j.pbi.2015.04.005
[49] Cox K L, Meng F, Wilkins K E, Li F, Wang P, Booher N J, Carpenter S C D, Chen L Q, Zheng H, Gao X, Zheng Y, Fei Z, Yu J Z, Isakeit T, Wheeler T, Frommer W B, He P, Bogdanove A J, Shan L. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat Commun, 2017, 8: 15588.
doi: 10.1038/ncomms15588
[50] 李明. 马铃薯糖转运蛋白StSWEET基因的克隆及功能分析. 青海大学硕士学位论文, 青海西宁, 2019.
Li M. Cloning and Functional Analysis of StSWEET in Potato. MS Thesis of Qinghai University, Xining, Qinghai, China, 2019. (in Chinese with English abstract)
[51] Cao J, Li M, Chen J, Liu P, Li Z. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Sci Rep, 2016, 6: 37674.
doi: 10.1038/srep37674
[1] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[2] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[3] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[4] 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768.
[5] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[6] 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364.
[7] 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425.
[8] 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538.
[9] 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676.
[10] 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664.
[11] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[12] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[13] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[14] 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613.
[15] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[3] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[4] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[5] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[6] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[7] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[8] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[9] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[10] 邱崇力. 普通小麦与六倍体小黑麦杂交不亲和性的研究 Ⅰ.杂种的胚胎发育[J]. 作物学报, 1986, (01): 49 -56 .