作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2385-2397.doi: 10.3724/SP.J.1006.2023.24232
杜翠翠1(), 吴明星1(), 张雅婷1, 谢婉婕1, 张积森2,*(), 王恒波1,*()
DU Cui-Cui1(), WU Ming-Xing1(), ZHANG Ya-Ting1, XIE Wan-Jie1, ZHANG Ji-Sen2,*(), WANG Heng-Bo1,*()
摘要:
SWEET蛋白通过调控植物体内糖分的运输、分配、转化和贮藏, 广泛参与植物生长发育及响应病原菌胁迫的生理生化过程。为揭示SWEET基因在甘蔗生长发育及其与赤条病菌互作中的生物学功能, 本研究基于甘蔗割手密种全长转录组文库和比较基因组学, 根据注释SsSWEET11基因序列设计特异引物, 利用RT-PCR技术从甘蔗割手密种cDNA文库中扩增该基因的全长序列, 运用多种生物信息工具分析其特征, 构建系统进化树; 采用不同组织和抗、感赤条病的甘蔗品种分析SsSWEET11的表达模式; 利用瞬时表达和亚细胞定位分析SsSWEET11的功能。结果表明, 从甘蔗割手密种克隆获得SsSWEET11基因(登录号为OP554214), 该基因全长927 bp, 编码308个氨基酸残基, 具有2个MtN3_saliva结构域和7次跨膜结构域。系统进化树分析显示, SsSWEET11属于SWEET蛋白家族第III亚家族成员, 与高粱SbSWEET11相似性高达97.41%。qRT-PCR分析表明, ShSWEET11基因在不同组织中组成型表达, 在蔗叶和根中表达量显著高于其他组织; 赤条病菌胁迫下, ScSWEET11基因在抗病品种ROC22和感病品种MT11-610中呈现完全不同的表达趋势, 与对照相比, 抗病品种中该基因的表达量显著下调, 而感病品种中, 在胁迫48 h和72 h后该基因的表达量显著上调, 分别为对照的5.90倍和5.43倍。亚细胞定位表明, SsSWEET11-GFP融合蛋白定位在质膜上。瞬时过表达SsSWEET11基因1 d后, 二氨基联苯胺(Diaminobenzidine, DAB)对本氏烟叶片进行染色, 叶片颜色没有变化, 再接种烟草青枯菌、茄病镰刀菌蓝色变种7 d后, 过表达植株叶片发病比对照组严重, 且过敏反应相关基因、茉莉酸和水杨酸代谢途径相关基因呈现上调表达, 而乙烯通路相关基因则没有响应, 表明SsSWEET11基因参与茉莉酸和水杨酸信号传导通路, 且病原菌侵染本氏烟草叶片能够诱发过敏反应。研究结果不仅为开发与甘蔗抗赤条病菌性状关联的分子标记提供积累, 也为深入解析赤条病侵染甘蔗的分子机制奠定一定的基础。
[1] | Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/ Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome, 2021, 3: 673566. |
[2] |
王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析. 作物学报, 2023, 49: 46-61.
doi: 10.3724/SP.J.1006.2023.24005 |
Wang H B, Zhang C, Wu M X, Li X, Jiang Z L, Lin R X, Guo J L, Que Y X. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar. Acta Agron Sin, 2023, 49: 46-61. (in Chinese with English abstract) | |
[3] | 张风娟, 李健, 杜成忠, 杨丽涛, 李杨瑞, 邢永秀. 不同甘蔗品种叶片气孔对水分胁迫的响应. 广西植物, 2014, 34: 821-827. |
Zhang F J, Li J, Du C Z, Yang L T, Li Y R, Xing Y X. Stomatal response to water stress in leaves of different sugarcane cultivars. Guihaia, 2014, 34: 821-827. (in Chinese with English abstract) | |
[4] |
李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析. 作物学报, 2023, 49: 97-104.
doi: 10.3724/SP.J.1006.2023.14239 |
Li J, Zhou J R, Chu N, Sun H D, Huang M T, Fu H Y, Gao S J. Gene cloning and expression analysis of ScPR10 in sugarcane under Acidovorax avenae subsp. avenae infection. Acta Agron Sin, 2023, 49: 97-104. (in Chinese with English abstract) | |
[5] |
Fontana P D, Rago A M, Fontana C A, Vignolo G M, Cocconcelli P S, Mariotti J A. Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in Northwestern Argentina. Eur J Plant Pathol, 2013, 137: 525-534.
doi: 10.1007/s10658-013-0263-y |
[6] |
胡丽萍, 张峰, 徐惠, 刘光敏, 王亚钦, 何洪巨. 植物SWEET基因家族结构、功能及调控研究进展. 生物技术通报, 2017, 33(4): 27-37.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004 |
Hu L P, Zhang F, Xu H, Liu G M, Wang Y Q, He H J. Research advances in the structure, function and regulation of SWEET gene family in plants. Biol Bull, 2017, 33(4): 27-37. (in Chinese with English abstract) | |
[7] |
Ayre B G. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant, 2011, 4: 377-394.
doi: 10.1093/mp/ssr014 pmid: 21502663 |
[8] |
黄成, 李旭楠, 李诗燕, 王锦达. 植物SWEET基因家族的研究进展. 中国农学通报, 2022, 38(17): 17-26.
doi: 10.11924/j.issn.1000-6850.casb2021-0669 |
Huang C, Li X N, Li S Y, Wang J D. Research progress of plant SWEET gene family. Chin Agri Sci Bull, 2022, 38(17): 17-26. (in Chinese with English abstract) | |
[9] |
Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
doi: 10.1038/nature09606 |
[10] | 胡伟长. 甘蔗SWEET基因家族的演化与功能分析. 福建农林大学硕士学位论文, 福建福州, 2017. |
Hu W C. The Evolution and Function of SWEET Genes in Saccharum. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2017. (in Chinese with English abstract) | |
[11] |
吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究. 作物学报, 2023, 49: 129-139.
doi: 10.3724/SP.J.1006.2023.24023 |
Wu X L, Wu Z D, Wan C F, Du Y, Gao Y, Li Z X, Wang Z Q, Tang D B, Wang J C, Zhang K. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato. Acta Agron Sin, 2023, 49: 129-139. (in Chinese with English abstract) | |
[12] |
Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-211.
doi: 10.1126/science.1213351 |
[13] |
Guo W J, Nagy R, Chen H Y, Pfrunder S, Yu Y C, Santelia D, Frommer W B, Martinoia E. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol, 2014, 164: 777-789.
doi: 10.1104/pp.113.232751 |
[14] |
Liu X, Zhang Y, Yang C, Tian Z, Li J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep, 2016, 6: 24563.
doi: 10.1038/srep24563 pmid: 27102826 |
[15] |
麻明英, 郝晨星, 张凯, 肖桂华, 苏翰英, 文康, 邓子牛, 马先锋. 甜橙SWEET2a促进柑橘溃疡病菌侵染. 园艺学报, 2022, 49: 1247-1260.
doi: 10.16420/j.issn.0513-353x.2021-0323 |
Ma M Y, Hao C X, Zhang K, Xiao G H, Su H Y, Wen K, Deng Z N, Ma X F. CsSWEET2a promotes the infection of Xanthomonas citri subsp. citri. Acta Hortic Sin, 2022, 49: 1247-1260. (in Chinese with English abstract) | |
[16] |
Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S. Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport. J Integr Plant Biol, 2014, 56: 559-570.
doi: 10.1111/jipb.12173 |
[17] |
Chen L Q, Lin I W, Qu X Q, Sosso D, McFarlane H E, Londoño A, Samuels A L, Frommer W B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell, 2015, 27: 607-619.
doi: 10.1105/tpc.114.134585 |
[18] |
Seo P J, Park J M, Kang S K, Kim S G, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8 |
[19] |
Yang B, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006, 103: 10503-10508.
doi: 10.1073/pnas.0604088103 |
[20] |
Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol, 2013, 200: 808-819.
doi: 10.1111/nph.12411 pmid: 23879865 |
[21] |
Hu W C, Hua X T, Zhang Q, Wang J P, Shen Q C, Zhang X T, Wang K, Yu Q Y, Lin Y R, Ming R G, Zhang J S. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biol, 2018, 18: 270.
doi: 10.1186/s12870-018-1495-y |
[22] |
Hua X T, Shen Q C, Li Y H, Zhou D, Zhang Z, Akbar S, Wang Z C, Zhang J S. Functional characterization and analysis of transcriptional regulation of sugar transporter SWEET13c in sugarcane Saccharum spontaneum. BMC Plant Biol, 2022, 22: 363.
doi: 10.1186/s12870-022-03749-9 |
[23] |
苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析. 作物学报, 2021, 47: 1275-1296.
doi: 10.3724/SP.J.1006.2021.04192 |
Su Y C, Li C N, Su W H, You C H, Cen G L, Zhang C, Ren Y J, Que Y X. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar. Acta Agron Sin, 2021, 47: 1275-1296. (in Chinese with English abstract) | |
[24] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[25] |
Xue B T, Guo J L, Que Y X, Fu Z W, Wu L G, Xu L P. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane. Int J Mol Sci, 2014, 15: 8846-8862.
doi: 10.3390/ijms15058846 pmid: 24857916 |
[26] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[27] |
Mao H Y, Wang W J, Su W H, Su Y C, Liu F, Li C N, Wang L, Zhang X, Xu L P, Que Y X. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. Plant Cell Rep, 2019, 38: 637-655.
doi: 10.1007/s00299-019-02394-1 |
[28] | Sohn S I, Kim Y H, Kim B R, Lee S Y, Lim C K, Hur J H, Lee J Y. Transgenic tobacco expressing the hrpN(EP) gene from Erwinia pyrifoliae triggers defense responses against botrytis cinerea. Mol Cells, 2007, 24: 232-239. |
[29] |
Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C J, Broglie R. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 1991, 254: 1194-1197.
doi: 10.1126/science.254.5035.1194 pmid: 17776411 |
[30] |
Chen N, Goodwin P H, Hsiang T. The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J Exp Bot, 2003, 54: 2449-2456.
pmid: 14565949 |
[31] |
Feng L, Frommer W B. Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem Sci, 2015, 40: 480-486.
doi: 10.1016/j.tibs.2015.05.005 pmid: 26071195 |
[32] |
Gao Y, Wang Z Y, Kumar V, Xu X F, Yuan D P, Zhu X F, Li T Y, Jia B, Xuan Y H. Genome-wide identification of the SWEET gene family in wheat. Gene, 2018, 642: 284-292.
doi: 10.1016/j.gene.2017.11.044 |
[33] | Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 2014, 508: 546-549. |
[34] |
Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant, 2013, 6: 665-674.
doi: 10.1093/mp/sst035 pmid: 23430047 |
[35] |
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lyu M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2 |
[36] | 沈翘楚. 甘蔗SWEET基因家族关键成员的功能分析. 福建农林大学硕士学位论文, 福建福州, 2020. |
Shen Q C. Functional Analysis of Key SWEET Gene Members in Sugarcane. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2020 (in Chinese with English abstract). | |
[37] | 梁大曲, 石长双, 涂晶晶, 徐刚, 吴峰. 马尾松PmSWEET基因的克隆、亚细胞定位及表达分析. 植物生理学报, 2022, 58: 447-457. |
Liang D Q, Shi C S, Tu J J, Xu G, Wu F. Cloning, subcellular localization and expression analysis of PmSWEET gene in Pinus massoniana. Plant Physiol J, 2022, 58: 447-457. (in Chinese with English abstract)
doi: 10.1104/pp.58.4.447 |
|
[38] |
Gao Y, Zhang C, Han X, Wang Z Y, Ma L, Yuan P, Wu J N, Zhu X F, Liu J M, Li D P, Hu Y B. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Mol Plant Pathol, 2018, 19: 2149-2161.
doi: 10.1111/mpp.2018.19.issue-9 |
[39] |
Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M. Seed filling in domesticated maize and rice depends on SWEET- mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422 |
[40] |
Feng C Y, Han J X, Han X X, Jiang J. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene, 2015, 573: 261-272.
doi: 10.1016/j.gene.2015.07.055 |
[41] |
Chong J, Piron M C, Meyer S, Merdinoglu D, Bertsch C, Mestre P. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. J Exp Bot, 2014, 65: 6589-6601.
doi: 10.1093/jxb/eru375 |
[42] |
Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen H T. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome resequence analysis. BMC Genomics, 2015, 16: 520.
doi: 10.1186/s12864-015-1730-y |
[43] |
Chen H Y, Huh J H, Yu Y C, Ho L H, Chen L Q, Tholl D, Frommer W B, Guo W J. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J, 2015, 83: 1046-1058.
doi: 10.1111/tpj.2015.83.issue-6 |
[44] |
Guan Y F, Huang X Y, Zhu J, Gao J F, Zhang H X, Yang Z N. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol, 2008, 147: 852-863.
doi: 10.1104/pp.108.118026 |
[45] |
Klemens P A, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol, 2013, 163: 1338-1352.
doi: 10.1104/pp.113.224972 |
[46] |
Kryvoruchko I S, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu C I, Guan D, Murray J, Benedito V A, Frommer W B, Udvardi M K. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiol, 2016, 171: 554-565.
doi: 10.1104/pp.15.01910 pmid: 27021190 |
[47] |
Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward J M, Frommer W B. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 2000, 12: 1153-1164.
doi: 10.1105/tpc.12.7.1153 pmid: 10899981 |
[48] |
Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol, 2015, 25: 53-62.
doi: 10.1016/j.pbi.2015.04.005 |
[49] |
Cox K L, Meng F, Wilkins K E, Li F, Wang P, Booher N J, Carpenter S C D, Chen L Q, Zheng H, Gao X, Zheng Y, Fei Z, Yu J Z, Isakeit T, Wheeler T, Frommer W B, He P, Bogdanove A J, Shan L. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat Commun, 2017, 8: 15588.
doi: 10.1038/ncomms15588 |
[50] | 李明. 马铃薯糖转运蛋白StSWEET基因的克隆及功能分析. 青海大学硕士学位论文, 青海西宁, 2019. |
Li M. Cloning and Functional Analysis of StSWEET in Potato. MS Thesis of Qinghai University, Xining, Qinghai, China, 2019. (in Chinese with English abstract) | |
[51] |
Cao J, Li M, Chen J, Liu P, Li Z. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Sci Rep, 2016, 6: 37674.
doi: 10.1038/srep37674 |
[1] | 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497. |
[2] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[3] | 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484. |
[4] | 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768. |
[5] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[6] | 杨晓祎, 王慧慧, 张艳雯, 侯典云, 张红晓, 康国章, 胥华伟. 利用CRISPR/Cas9探究水稻OsPIN5c基因功能[J]. 作物学报, 2023, 49(2): 354-364. |
[7] | 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425. |
[8] | 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538. |
[9] | 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676. |
[10] | 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664. |
[11] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
[12] | 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104. |
[13] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[14] | 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613. |
[15] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
|