欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 138-148.doi: 10.3724/SP.J.1006.2024.34041

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于CRISPR/Cas9的棉花GhbHLH71基因编辑突变体的分析

上官小霞*(), 杨琴莉, 李换丽   

  1. 山西农业大学棉花研究所, 山西运城 044000
  • 收稿日期:2023-03-01 接受日期:2023-05-24 出版日期:2024-01-12 网络出版日期:2023-06-16
  • 通讯作者: *上官小霞, E-mail: sgxx74@126.com
  • 基金资助:
    山西省基础研究计划项目(20210302123409);山西农业大学博士人才引进科研启动项目(2022BQ08)

Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton

SHANG-GUAN Xiao-Xia*(), YANG Qin-Li, LI Huan-Li   

  1. Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, Shanxi, China
  • Received:2023-03-01 Accepted:2023-05-24 Published:2024-01-12 Published online:2023-06-16
  • Contact: *E-mail: sgxx74@126.com
  • Supported by:
    Basic Research Program of Shanxi Province(20210302123409);Doctoral Talent Introduction Scientific Research Initiation Project of Shanxi Agricultural University(2022BQ08)

摘要:

碱性/螺旋-环-螺旋(basic/helix-loop-helix, bHLH)转录因子在植物的生长发育、次生代谢、信号转导、逆境胁迫等方面起重要的调控作用。棉花GhbHLH71基因cDNA全长996 bp, 编码331个氨基酸残基, 蛋白序列中含有保守的bHLH结构域, 属于bHLH转录因子家族成员。实时荧光定量分析结果表明, GhbHLH71基因在棉花纤维快速伸长期3~12 DPA (days post anthesis, DPA)相对高表达, 暗示其主要在棉花纤维发育过程中发挥作用。构建该基因的CRISPR/Cas9基因编辑载体进行了棉花遗传转化, T0代再生株经过Cas9基因的PCR检测以及靶位点突变情况检测分析, 获得6个T0代基因编辑突变体。T1代不同突变株系在棉花生长发育期的表型性状与对照相比无明显差异, 但成熟纤维的长度与对照相比皆明显变短。T2代突变株系可以稳定遗传T1代株系纤维变短的表型。其中4#和8#株系连续2代的纤维长度与对照相比缩短比率皆达20%以上, 表明GhbHLH71基因的突变主要影响了棉花纤维细胞的伸长。本研究为深入了解棉花中bHLH转录因子的生物学功能以及棉花纤维发育的分子机制提供了一定的参考。

关键词: 棉花, bHLH转录因子, GhbHLH71基因, 纤维发育, CRISPR/Cas9基因编辑

Abstract:

The basic/helix-loop-helix (bHLH) transcription factors play important regulatory roles in plant growth and development, secondary metabolism, signal transduction, and stress responses. The cDNA of cotton GhbHLH71 gene is 996 bp in length, encoding 331 amino acid residues. Protein sequence of GhbHLH71 contains a conserved bHLH structural domain, which is a member of the bHLH transcription factor family. The qRT-PCR showed that GhbHLH71 gene was relatively highly expressed at 3-12 DPA (days post anthesis, DPA) at rapid elongation stage in cotton fiber, implying that it mainly played a role in cotton fiber development. A CRISPR/Cas9 gene editing vector of GhbHLH71 gene was constructed, and then was transferred into upland cotton (Gossypium hirsutum L.). Six T0 mutant plants were obtained after PCR detection of Cas9 gene and mutation detection of target loci. The phenotypic traits of different T1 GhbHLH71 gene mutant plants were not significantly different from the control during cotton growth and development, but the fiber length of T1 mutants was significantly shorter compared with the control, and T2 generation mutant lines stably inherited the shortened fiber phenotype of T1 generation lines. The shortened fiber lengths of the 4# and 8# mutant lines in two consecutive generations were more than 20% shorter compared with the control, indicating that the mutation of GhbHLH71 gene mainly affected the elongation of cotton fiber cells. This study provides some insight into the biological functions of bHLH transcription factors in cotton and the molecular mechanism of cotton fiber development.

Key words: cotton, bHLH transcription factor, GhbHLH71 gene, fiber development, CRIPSR/Cas9 gene editing system

图1

棉花基因编辑载体示意图"

表1

本研究所用引物列表"

引物
Primer name
引物序列
Primer sequences (5°-3°)
功能
Function
His3-RT-F GAAGCCTCATCGATACCGTC Real-time RT-PCR检测 Real-time RT-PCR analysis
His3-RT-R CTACCACTACCATCATGG Real-time RT-PCR检测 Real-time RT-PCR analysis
bHLH71-RT-F ATGCTAGAAAGCGGTTTAGTCT Real-time RT-PCR检测 Real-time RT-PCR analysis
bHLH71-RT-R TCCAATGGTGACTCCTCCACA Real-time RT-PCR检测 Real-time RT-PCR analysis
bHLH71-1-F ATGCTAGAAAGCGGTTTAGTCT 基因克隆 Gene cloning
bHLH71-2172-R TCAACATAAGGCAGTGGCATCT 基因克隆 Gene cloning
CRS25-F ATGCTAGAAAGCGGTTTAGTCT 编辑位点突变检测 Edit site mutation detection
CRS25-R CCCTCAATCAGTCCAGTTTTC 编辑位点突变检测 Edit site mutation detection
CRS25-Hi-F ggagtgagtacggtgtgcCTCAATGGAAGAACAATCTACT Hi-TOM编辑位点突变检测
Hi-TOM edit site mutation detection
CRS25-Hi-R gagttggatgctggatggTTGAGTCTCGGCCTCTTCTTT 编辑位点突变检测 Edit site mutation detection
Cas9-787-F AATCTGATCGCCCAGCTGCCC 阳性植株鉴定 Positive plants detection
Cas9-1550-R GAAGTTCCAGGGGGTGATGGT 阳性植株鉴定 Positive plants detection

图2

GhbHLH71蛋白氨基酸序列及保守结构域 A: GhbHLH71蛋白氨基酸序列。bHLH保守结构域用下画线标记, 推测的DNA结合位点用棕色标记。B: GhbHLH71蛋白结构域预测。"

图3

GhbHLH71基因在棉花不同组织的表达特征分析"

图4

不同T0代再生植株的Cas9基因的PCR检测 M: DNA分子量标准; +: 质粒模板阳性对照; 1~11: 不同T0代再生株。"

图5

不同T0株系GhbHLH71基因CRISPR/Cas9编辑效率检测 A: 不同T0株系靶位点基因编辑结果。蓝色标记为sgRNA1和sgRNA2序列, 加粗且下画线标记为protospacer adjacent motif (PAM)序列, 红色标记为GhbHLH71基因A、D基因组中sgRNA1序列差异位点, 蓝色破折号表示碱基缺失, 黄色标记为碱基插入或突变。B: 不同T0株系靶位点测序峰图。下画线表示sgRNA1或sgRNA2位置, 箭头所示为突变位点。"

图6

不同T1、T2代GhbHLH71基因编辑株系纤维表型分析 A: 不同 T1株系棉花纤维长度表型及统计分析, n > 10, **P < 0.01。B: 不同T2株系棉花纤维长度表型及统计分析, n > 10, **P < 0.01。"

图7

GhbHLH71基因4#和8#株系T2代材料CRISPR/Cas9编辑效率检测 图中黄色标记为未突变的sgRNA1或sgRNA2序列, A、D分别代表GhbHLH71基因的A和D基因组, 8-1至8-5代表8#株系的5个单株, 4-1至4-5代表4#株系的5个单株, 后面的数字代表单克隆编号。CRS25-F为测序所用引物, 蓝色标记为插入或突变的碱基, 破折号表示碱基缺失。"

表2

T2代株系的Hi-TOM编辑突变检测"

株系
Line
突变编号
Mutation number
Reads读数
Reads
number
突变比率
Mutation
ratio (%)
左侧突变类型
Left variation type
右侧突变类型
Right variation type
左侧突变信息
Left variation
右侧突变序列
Right variation
8#-1 1 2434 43.06 SNP SNP C->T, A->G A->G, G->T
2 1656 29.29 SNP SNP G->A G->A
3 718 12.70 1D, SNP 1D, SNP C->T, G, A->G G, A->G, G->T
4 436 7.71 1I, SNP 1I, SNP A, G->A A, G->A
5 409 7.24 1I, SNP 1I, SNP T, G->A T, G->A
8#-2 1 1676 33.58 1I, SNP 1I, SNP A, G->A A, G->A
2 1582 31.70 SNP SNP C->T, A->G A->G, G->T
3 937 18.77 1I, SNP 1I, SNP A, G->A A, G->A, G->T
4 796 15.95 SNP SNP C->T, A->G A->G
8#-3 1 1258 31.53 SNP SNP G->A G->A
2 827 20.73 1D, SNP 1D, SNP C->T, G, A->G G, A->G, G->T
3 735 18.42 SNP SNP G->A G->A, G->T
4 648 16.24 SNP SNP C->T, A->G A->G, G->T
5 522 13.08 1D, SNP 1D, SNP C->T, G, A->G G, A->G
4#-1 1 1352 22.47 1D, SNP 1D, SNP C->T, G, A->G G, A->G, G->T
2 1192 19.81 1I, SNP 1I, SNP A, G->A A, G->A
3 1096 18.22 1I, SNP 1I, SNP C->T, T, G->A T, G->A
4 1081 17.97 3D, SNP 3D, SNP C->T, CAA, A->G AAC, A->G, G->T
5 464 7.71 3D, SNP 3D, SNP C->T, CAA, A->G AAC, A->G
6 426 7.08 1D, SNP 1D, SNP C->T, G, A->G G, A->G
7 406 6.75 1I, SNP 1I, SNP T, G->A T, G->A, G->T
4#-2 1 2493 40.96 1D, SNP 1D, SNP C->T, G, A->G G, A->G, G->T
2 1087 17.86 1I, SNP 1I, SNP C, G->A C, G->A
3 1079 17.73 3D, SNP 3D, SNP CAG, G->A GCA, G->A
4 987 16.22 1D, SNP 1D, SNP C->T, G, A->G G, A->G
5 440 7.23 1I, SNP 1I, SNP C, G->A C, G->A, G->T
4#-3 1 2984 50.10 3D, SNP 3D, SNP CAG, G->A GCA, G->A
2 2162 31.26 1I, SNP 1I, SNP C->T, A, A->G A, A->G, G->T
4 644 10.81 3D, SNP 3D, SNP CAG, G->A GCA, G->A, G->T
5 466 7.82 1I, SNP 1I, SNP C->T, A, A->G A, A->G
[1] Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci, 2021, 22: 7152.
doi: 10.3390/ijms22137152
[2] 张全琪, 朱家红, 倪燕妹, 张治礼. 植物bHLH转录因子的结构特点及其生物学功能. 热带亚热带植物学报, 2011, 19(1): 84-90.
Zhang Q Q, Zhu J H, Ni Y M, Zhang Z L. The structure and function of plant bHLH transcription factors. J Trop Subtrop Bot, 2011, 19(1): 84-90. (in Chinese with English abstract)
[3] Zhang L Y, Bai M Y, Wu J, Zhu J Y, Wang H, Zhang Z. Antagonistic HLH/ bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 2009, 21: 3767-3780.
doi: 10.1105/tpc.109.070441
[4] 李欣, 李影, 曲子越, 孙璐, 王思瑶, 詹亚光, 尹静. bHLH转录因子在茉莉酸信号诱导植物次生产物合成中的作用及分子机制. 植物生理学报, 2017, 53: 1-8.
Li X, Li Y, Qu Z Y, Sun L, Wang S Y, Zhan Y G, Yin J. The molecular mechanism and the function of bHLH regulating jasmonic acid mediated secondary metabolites synthesis. Plant Physiol J, 2017, 53: 1-8. (in Chinese with English abstract)
[5] Guo J, Sun B, He H, Zhang Y, Tian H, Wang B. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. Int J Mol Sci, 2021, 22: 4921.
doi: 10.3390/ijms22094921
[6] Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun, 2018, 503: 397-401.
doi: 10.1016/j.bbrc.2018.07.123
[7] 赵安娜, 罗光明, 罗扬婧, 宋丹丹, 夏鸿东, 任洪曼, 张攀. bHLH转录因子在植物缺铁调控网络中的作用机制. 农业生物技术学报, 2021, 29: 2427-2435.
Zhao A N, Luo G M, Luo Y J, Song D D, Xia H D, Ren H M, Zhang P. Mechanism of bHLH transcription factors in the regulatory network of plant iron deficiency. J Agric Biotechnol, 2021, 29: 2427-2435. (in Chinese with English abstract)
[8] 王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展. 生命科学研究, 2016, 20: 358-364.
Wang C, Lan H Y. Research progresses on functions of plant bHLH transcription factors involved in abiotic stresses. Life Sci Res, 2016, 20: 358-364. (in Chinese with English abstract)
[9] Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011, 66: 94-116.
doi: 10.1111/tpj.2011.66.issue-1
[10] Liu B, Guan X, Liang W, Chen J, Fang L, Hu Y, Guo W, Rong J, Xu G, Zhang T. Divergence and evolution of cotton bHLH proteins from diploid to allotetraploid. BMC Genomics, 2018, 19: 162.
doi: 10.1186/s12864-018-4543-y pmid: 29471803
[11] 丁冬, 李嘉欣, 魏玉磊, 吕尤, 赵训超, 刘梦, 邵文静, 盖胜男, 张今杰, 徐晶宇. 拟南芥和玉米中膜结合bHLH转录因子的鉴定与分析. 植物生理学报, 2020, 56: 700-710.
Ding D, Li J X, Wei Y L, Lyu Y, Zhao X C, Liu M, Shao W J, Gai S N, Zhang J J, Xu J Y. Identification and analysis of membrane-bound bHLH transcription factors in Arabidopsis thaliana and maize. Plant Physiol J, 2020, 56: 700-710. (in Chinese with English abstract)
[12] Lu R, Zhang J, Liu D, Wei Y L, Wang Y, Li X B. Characterization of bHLH/HLH genes that are involved in brassinosteroid (BR) signaling in fiber development of cotton (Gossypium hirsutum). BMC Plant Biol, 2018, 18: 304.
doi: 10.1186/s12870-018-1523-y
[13] Shang-Guan X X, Yang C Q, Zhang X F, Wang L J. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). Physiol Plant, 2016, 158: 200-212.
doi: 10.1111/ppl.12450 pmid: 27080593
[14] Zhao B, Cao J F, Hu G J, Chen Z W, Wang L Y, Shangguan X X, Wang L J, Mao Y B, Zhang T Z, Wendel J F, Chen X Y. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation. New Phytol, 2018, 218: 1061-1075.
doi: 10.1111/nph.15063 pmid: 29465754
[15] Gao Z, Sun W, Wang J, Zhao C, Zuo K. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers. Plant Sci, 2019, 286: 7-16.
doi: S0168-9452(19)30265-1 pmid: 31300144
[16] Liu Z H, Chen Y, Wang N N, Chen Y H, Wei N, Lu R, Li Y, Li X B. A basic helix-loop-helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. New Phytol, 2020, 225: 2439-2452.
doi: 10.1111/nph.v225.6
[17] 上官小霞, 王凌健, 李燕娥, 梁运生, 吴霞. 对转蚕丝芯蛋白轻链基因棉花的分析. 作物学报, 2007, 33: 697-702.
Shang-Guan X X, Wang L J, Li Y E, Liang Y S, Wu X. Analysis of cotton (Gossypium hirsutum L.) plants transformed with a silkwormfibroin light chain gene. Acta Agron Sin, 2007, 33: 697-702. (in Chinese with English abstract)
[18] 李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东. 基于棉花U6启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018, 44: 227-235.
doi: 10.3724/SP.J.1006.2018.00227
Li J Y, Lei J F, Dai P H, Yao R, Qu Y Y, Chen Q J, Li Y, Liu X D. Establishment of CRISPR/Cas9 genome editing system based on GbU6 promoters in cotton (Gossypium barbadense L.). Acta Agron Sin, 2018, 44: 227-235. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00227
[19] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究. 作物学报, 2021, 47: 427-437.
doi: 10.3724/SP.J.1006.2021.04178
Zhou G T, Lei J F, Dai P H, Liu C, Li Y, Liu X D. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing. Acta Agron Sin, 2021, 47: 427-437. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04178
[20] Qin L, Li J, Wang Q, Xu Z, Sun L, Alariqi M, Manghwar H, Wang G, Li B, Ding X, Rui H, Huang H, Lu T, Lindsey K, Daniell H, Zhang X, Jin S. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J, 2020, 18: 45-56.
doi: 10.1111/pbi.13168 pmid: 31116473
[21] Long L, Guo D D, Gao W, Yang W W, Hou L P, Ma X N, Miao Y C, Botella J R, Song C P. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 2018, 14: 85.
doi: 10.1186/s13007-018-0353-0 pmid: 30305839
[22] Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H, Jin S, Zhang X. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J, 2018, 16: 137-150.
doi: 10.1111/pbi.12755 pmid: 28499063
[23] Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z, Zhang X, Jin S. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechnol J, 2021, 19: 424-426.
doi: 10.1111/pbi.v19.3
[24] Li B, Liang S, Alariqi M, Wang F, Wang G, Wang Q, Xu Z, Yu L, Naeem Zafar M, Sun L, Si H, Yuan D, Guo W, Wang Y, Lindsey K, Zhang X, Jin S. The application of temperature sensitivity CRISPR/LbCpf1 (LbCas12a) mediated genome editing in allotetraploid cotton (G. hirsutum) and creation of nontransgenic, gossypol-free cotton. Plant Biotechnol J, 2021, 19: 221-223.
doi: 10.1111/pbi.v19.2
[25] Huang G, Huang J Q, Chen X Y, Zhu Y X. Recent advances and future perspectives in cotton research. Annu Rev Plant Biol, 2021, 72: 437-462.
doi: 10.1146/annurev-arplant-080720-113241 pmid: 33428477
[26] Wang Z, Yang Z, Li F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol J, 2019, 17: 1706-1722.
doi: 10.1111/pbi.13167 pmid: 31111642
[27] Shan C M, Shangguan X X, Zhao B, Zhang X F, Chao L M, Yang C Q, Wang L J, Zhu H Y, Zeng Y D, Guo W Z, Zhou B L, Hu G J, Guan X Y, Chen Z J, Wendel J F, Zhang T Z, Chen X Y. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun, 2014, 5: 5519.
doi: 10.1038/ncomms6519
[28] Walford S A, Wu Y, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development. Plant J, 2011, 65: 785-797.
doi: 10.1111/tpj.2011.65.issue-5
[29] Ma D, Hu Y, Yang C, Liu B, Fang L, Wan Q, Liang W, Mei G, Wang L, Wang H, Ding L, Dong C, Pan M, Chen J, Wang S, Chen S, Cai C, Zhu X, Guan X, Zhou B, Zhu S, Wang J, Guo W, Chen X, Zhang T. Genetic basis for glandular trichome formation in cotton. Nat Commun, 2016, 7: 10456.
doi: 10.1038/ncomms10456 pmid: 26795254
[30] Meng C M, Zhang T Z, Guo W Z. Molecular cloning and characterization of a novel Gossypium hirsutum L. bHLH gene in response to ABA and drought stresses. Plant Mol Biol Rep, 2009, 27: 381-387.
doi: 10.1007/s11105-009-0112-5
[31] 光杨其, 宋桂成, 张金凤, 王晓楠, 唐灿明. 1个新棉花bHLH类基因GhbHLH130的克隆及表达分析. 棉花学报, 2014, 26: 363-370.
Guang Y Q, Song G C, Zhang J F, Wang X N, Tang C M. Molecular cloning and expression analysis of GhbHLH130, encoding a novel bHLH transcription factor in upland cotton (Gossypium hirsutum L.). Cotton Sci, 2014, 26: 363-370. (in Chinese with English abstract)
[32] Chen E, Wang X, Gong Q, Butt H I, Chen Y, Zhang C, Yang Z, Wu Z, Ge X, Zhang X, Li F, Zhang X. A novel GhBEE1-Like gene of cotton causes anther indehiscence in transgenic Arabidopsis under uncontrolled transcription level. Gene, 2017, 627: 49-56.
doi: 10.1016/j.gene.2017.06.007
[33] He X, Zhu L, Wassan G M, Wang Y, Miao Y, Shaban M, Hu H, Sun H, Zhang X. GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. Mol Plant Pathol, 2018, 19: 896-908.
doi: 10.1111/mpp.2018.19.issue-4
[1] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[2] 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528.
[3] 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236.
[4] 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137.
[5] 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208.
[6] 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198.
[7] 刘韬奋, 罗单, 张启鹏, 孙圆圆, 李培松, 田景山, 张旺锋, 向导, 张亚黎, 杨明凤, 勾玲. 乙烯利催熟对机采棉铃重和纤维品质的影响[J]. 作物学报, 2024, 50(1): 209-218.
[8] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[9] 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271.
[10] 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038.
[11] 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987.
[12] 娄善伟, 高飞, 王崇, 田晓莉, 杜明伟, 段留生. 不同甲哌鎓滴施剂型筛选及其对棉花生长发育调控效果研究[J]. 作物学报, 2023, 49(2): 552-560.
[13] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[14] 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273.
[15] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .