作物学报 ›› 2024, Vol. 50 ›› Issue (1): 138-148.doi: 10.3724/SP.J.1006.2024.34041
SHANG-GUAN Xiao-Xia*(), YANG Qin-Li, LI Huan-Li
摘要:
碱性/螺旋-环-螺旋(basic/helix-loop-helix, bHLH)转录因子在植物的生长发育、次生代谢、信号转导、逆境胁迫等方面起重要的调控作用。棉花GhbHLH71基因cDNA全长996 bp, 编码331个氨基酸残基, 蛋白序列中含有保守的bHLH结构域, 属于bHLH转录因子家族成员。实时荧光定量分析结果表明, GhbHLH71基因在棉花纤维快速伸长期3~12 DPA (days post anthesis, DPA)相对高表达, 暗示其主要在棉花纤维发育过程中发挥作用。构建该基因的CRISPR/Cas9基因编辑载体进行了棉花遗传转化, T0代再生株经过Cas9基因的PCR检测以及靶位点突变情况检测分析, 获得6个T0代基因编辑突变体。T1代不同突变株系在棉花生长发育期的表型性状与对照相比无明显差异, 但成熟纤维的长度与对照相比皆明显变短。T2代突变株系可以稳定遗传T1代株系纤维变短的表型。其中4#和8#株系连续2代的纤维长度与对照相比缩短比率皆达20%以上, 表明GhbHLH71基因的突变主要影响了棉花纤维细胞的伸长。本研究为深入了解棉花中bHLH转录因子的生物学功能以及棉花纤维发育的分子机制提供了一定的参考。
[1] |
Hao Y, Zong X, Ren P, Qian Y, Fu A. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci, 2021, 22: 7152.
doi: 10.3390/ijms22137152 |
[2] | 张全琪, 朱家红, 倪燕妹, 张治礼. 植物bHLH转录因子的结构特点及其生物学功能. 热带亚热带植物学报, 2011, 19(1): 84-90. |
Zhang Q Q, Zhu J H, Ni Y M, Zhang Z L. The structure and function of plant bHLH transcription factors. J Trop Subtrop Bot, 2011, 19(1): 84-90. (in Chinese with English abstract) | |
[3] |
Zhang L Y, Bai M Y, Wu J, Zhu J Y, Wang H, Zhang Z. Antagonistic HLH/ bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 2009, 21: 3767-3780.
doi: 10.1105/tpc.109.070441 |
[4] | 李欣, 李影, 曲子越, 孙璐, 王思瑶, 詹亚光, 尹静. bHLH转录因子在茉莉酸信号诱导植物次生产物合成中的作用及分子机制. 植物生理学报, 2017, 53: 1-8. |
Li X, Li Y, Qu Z Y, Sun L, Wang S Y, Zhan Y G, Yin J. The molecular mechanism and the function of bHLH regulating jasmonic acid mediated secondary metabolites synthesis. Plant Physiol J, 2017, 53: 1-8. (in Chinese with English abstract) | |
[5] |
Guo J, Sun B, He H, Zhang Y, Tian H, Wang B. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. Int J Mol Sci, 2021, 22: 4921.
doi: 10.3390/ijms22094921 |
[6] |
Sun X, Wang Y, Sui N. Transcriptional regulation of bHLH during plant response to stress. Biochem Biophys Res Commun, 2018, 503: 397-401.
doi: 10.1016/j.bbrc.2018.07.123 |
[7] | 赵安娜, 罗光明, 罗扬婧, 宋丹丹, 夏鸿东, 任洪曼, 张攀. bHLH转录因子在植物缺铁调控网络中的作用机制. 农业生物技术学报, 2021, 29: 2427-2435. |
Zhao A N, Luo G M, Luo Y J, Song D D, Xia H D, Ren H M, Zhang P. Mechanism of bHLH transcription factors in the regulatory network of plant iron deficiency. J Agric Biotechnol, 2021, 29: 2427-2435. (in Chinese with English abstract) | |
[8] | 王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展. 生命科学研究, 2016, 20: 358-364. |
Wang C, Lan H Y. Research progresses on functions of plant bHLH transcription factors involved in abiotic stresses. Life Sci Res, 2016, 20: 358-364. (in Chinese with English abstract) | |
[9] |
Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011, 66: 94-116.
doi: 10.1111/tpj.2011.66.issue-1 |
[10] |
Liu B, Guan X, Liang W, Chen J, Fang L, Hu Y, Guo W, Rong J, Xu G, Zhang T. Divergence and evolution of cotton bHLH proteins from diploid to allotetraploid. BMC Genomics, 2018, 19: 162.
doi: 10.1186/s12864-018-4543-y pmid: 29471803 |
[11] | 丁冬, 李嘉欣, 魏玉磊, 吕尤, 赵训超, 刘梦, 邵文静, 盖胜男, 张今杰, 徐晶宇. 拟南芥和玉米中膜结合bHLH转录因子的鉴定与分析. 植物生理学报, 2020, 56: 700-710. |
Ding D, Li J X, Wei Y L, Lyu Y, Zhao X C, Liu M, Shao W J, Gai S N, Zhang J J, Xu J Y. Identification and analysis of membrane-bound bHLH transcription factors in Arabidopsis thaliana and maize. Plant Physiol J, 2020, 56: 700-710. (in Chinese with English abstract) | |
[12] |
Lu R, Zhang J, Liu D, Wei Y L, Wang Y, Li X B. Characterization of bHLH/HLH genes that are involved in brassinosteroid (BR) signaling in fiber development of cotton (Gossypium hirsutum). BMC Plant Biol, 2018, 18: 304.
doi: 10.1186/s12870-018-1523-y |
[13] |
Shang-Guan X X, Yang C Q, Zhang X F, Wang L J. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum). Physiol Plant, 2016, 158: 200-212.
doi: 10.1111/ppl.12450 pmid: 27080593 |
[14] |
Zhao B, Cao J F, Hu G J, Chen Z W, Wang L Y, Shangguan X X, Wang L J, Mao Y B, Zhang T Z, Wendel J F, Chen X Y. Core cis-element variation confers subgenome-biased expression of a transcription factor that functions in cotton fiber elongation. New Phytol, 2018, 218: 1061-1075.
doi: 10.1111/nph.15063 pmid: 29465754 |
[15] |
Gao Z, Sun W, Wang J, Zhao C, Zuo K. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers. Plant Sci, 2019, 286: 7-16.
doi: S0168-9452(19)30265-1 pmid: 31300144 |
[16] |
Liu Z H, Chen Y, Wang N N, Chen Y H, Wei N, Lu R, Li Y, Li X B. A basic helix-loop-helix protein (GhFP1) promotes fibre elongation of cotton (Gossypium hirsutum) by modulating brassinosteroid biosynthesis and signalling. New Phytol, 2020, 225: 2439-2452.
doi: 10.1111/nph.v225.6 |
[17] | 上官小霞, 王凌健, 李燕娥, 梁运生, 吴霞. 对转蚕丝芯蛋白轻链基因棉花的分析. 作物学报, 2007, 33: 697-702. |
Shang-Guan X X, Wang L J, Li Y E, Liang Y S, Wu X. Analysis of cotton (Gossypium hirsutum L.) plants transformed with a silkwormfibroin light chain gene. Acta Agron Sin, 2007, 33: 697-702. (in Chinese with English abstract) | |
[18] |
李继洋, 雷建峰, 代培红, 姚瑞, 曲延英, 陈全家, 李月, 刘晓东. 基于棉花U6启动子的海岛棉CRISPR/Cas9基因组编辑体系的建立. 作物学报, 2018, 44: 227-235.
doi: 10.3724/SP.J.1006.2018.00227 |
Li J Y, Lei J F, Dai P H, Yao R, Qu Y Y, Chen Q J, Li Y, Liu X D. Establishment of CRISPR/Cas9 genome editing system based on GbU6 promoters in cotton (Gossypium barbadense L.). Acta Agron Sin, 2018, 44: 227-235. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00227 |
|
[19] |
周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究. 作物学报, 2021, 47: 427-437.
doi: 10.3724/SP.J.1006.2021.04178 |
Zhou G T, Lei J F, Dai P H, Liu C, Li Y, Liu X D. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing. Acta Agron Sin, 2021, 47: 427-437. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04178 |
|
[20] |
Qin L, Li J, Wang Q, Xu Z, Sun L, Alariqi M, Manghwar H, Wang G, Li B, Ding X, Rui H, Huang H, Lu T, Lindsey K, Daniell H, Zhang X, Jin S. High-efficient and precise base editing of C•G to T•A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J, 2020, 18: 45-56.
doi: 10.1111/pbi.13168 pmid: 31116473 |
[21] |
Long L, Guo D D, Gao W, Yang W W, Hou L P, Ma X N, Miao Y C, Botella J R, Song C P. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 2018, 14: 85.
doi: 10.1186/s13007-018-0353-0 pmid: 30305839 |
[22] |
Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H, Jin S, Zhang X. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J, 2018, 16: 137-150.
doi: 10.1111/pbi.12755 pmid: 28499063 |
[23] |
Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z, Zhang X, Jin S. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechnol J, 2021, 19: 424-426.
doi: 10.1111/pbi.v19.3 |
[24] |
Li B, Liang S, Alariqi M, Wang F, Wang G, Wang Q, Xu Z, Yu L, Naeem Zafar M, Sun L, Si H, Yuan D, Guo W, Wang Y, Lindsey K, Zhang X, Jin S. The application of temperature sensitivity CRISPR/LbCpf1 (LbCas12a) mediated genome editing in allotetraploid cotton (G. hirsutum) and creation of nontransgenic, gossypol-free cotton. Plant Biotechnol J, 2021, 19: 221-223.
doi: 10.1111/pbi.v19.2 |
[25] |
Huang G, Huang J Q, Chen X Y, Zhu Y X. Recent advances and future perspectives in cotton research. Annu Rev Plant Biol, 2021, 72: 437-462.
doi: 10.1146/annurev-arplant-080720-113241 pmid: 33428477 |
[26] |
Wang Z, Yang Z, Li F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Plant Biotechnol J, 2019, 17: 1706-1722.
doi: 10.1111/pbi.13167 pmid: 31111642 |
[27] |
Shan C M, Shangguan X X, Zhao B, Zhang X F, Chao L M, Yang C Q, Wang L J, Zhu H Y, Zeng Y D, Guo W Z, Zhou B L, Hu G J, Guan X Y, Chen Z J, Wendel J F, Zhang T Z, Chen X Y. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat Commun, 2014, 5: 5519.
doi: 10.1038/ncomms6519 |
[28] |
Walford S A, Wu Y, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development. Plant J, 2011, 65: 785-797.
doi: 10.1111/tpj.2011.65.issue-5 |
[29] |
Ma D, Hu Y, Yang C, Liu B, Fang L, Wan Q, Liang W, Mei G, Wang L, Wang H, Ding L, Dong C, Pan M, Chen J, Wang S, Chen S, Cai C, Zhu X, Guan X, Zhou B, Zhu S, Wang J, Guo W, Chen X, Zhang T. Genetic basis for glandular trichome formation in cotton. Nat Commun, 2016, 7: 10456.
doi: 10.1038/ncomms10456 pmid: 26795254 |
[30] |
Meng C M, Zhang T Z, Guo W Z. Molecular cloning and characterization of a novel Gossypium hirsutum L. bHLH gene in response to ABA and drought stresses. Plant Mol Biol Rep, 2009, 27: 381-387.
doi: 10.1007/s11105-009-0112-5 |
[31] | 光杨其, 宋桂成, 张金凤, 王晓楠, 唐灿明. 1个新棉花bHLH类基因GhbHLH130的克隆及表达分析. 棉花学报, 2014, 26: 363-370. |
Guang Y Q, Song G C, Zhang J F, Wang X N, Tang C M. Molecular cloning and expression analysis of GhbHLH130, encoding a novel bHLH transcription factor in upland cotton (Gossypium hirsutum L.). Cotton Sci, 2014, 26: 363-370. (in Chinese with English abstract) | |
[32] |
Chen E, Wang X, Gong Q, Butt H I, Chen Y, Zhang C, Yang Z, Wu Z, Ge X, Zhang X, Li F, Zhang X. A novel GhBEE1-Like gene of cotton causes anther indehiscence in transgenic Arabidopsis under uncontrolled transcription level. Gene, 2017, 627: 49-56.
doi: 10.1016/j.gene.2017.06.007 |
[33] |
He X, Zhu L, Wassan G M, Wang Y, Miao Y, Shaban M, Hu H, Sun H, Zhang X. GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171. Mol Plant Pathol, 2018, 19: 896-908.
doi: 10.1111/mpp.2018.19.issue-4 |
[1] | 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293. |
[2] | 李志坤, 贾文华, 朱伟, 刘伟, 马宗斌. 氮肥和缩节胺对棉花纤维产量及品质时间分布的影响[J]. 作物学报, 2024, 50(2): 514-528. |
[3] | 郭家鑫, 叶扬, 郭慧娟, 闵伟. 盐碱胁迫对棉花叶片蛋白质组的影响及差异性分析[J]. 作物学报, 2024, 50(1): 219-236. |
[4] | 肖胜华, 陆妍, 李安子, 覃耀斌, 廖铭静, 闭兆福, 卓柑锋, 朱永红, 朱龙付. 棉花AP2/ERF转录因子GhTINY2负调控植株抗盐性的功能分析[J]. 作物学报, 2024, 50(1): 126-137. |
[5] | 谭志新, 谢留伟, 李洪戈, 李芳军, 田晓莉, 李召虎. 基于AHP-隶属函数法的棉花子叶期耐低钾能力鉴定[J]. 作物学报, 2024, 50(1): 199-208. |
[6] | 孙尚文, 束红梅, 杨长琴, 张国伟, 王晓婧, 孟亚利, 王友华, 刘瑞显. 低温下环丙酸酰胺调控棉花内源激素促进噻苯隆脱叶的机制[J]. 作物学报, 2024, 50(1): 187-198. |
[7] | 刘韬奋, 罗单, 张启鹏, 孙圆圆, 李培松, 田景山, 张旺锋, 向导, 张亚黎, 杨明凤, 勾玲. 乙烯利催熟对机采棉铃重和纤维品质的影响[J]. 作物学报, 2024, 50(1): 209-218. |
[8] | 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497. |
[9] | 许乃银, 王扬, 王丹涛, 宁贺佳, 杨晓妮, 乔银桃. 棉花纤维质量指数的构建与WGT双标图分析[J]. 作物学报, 2023, 49(5): 1262-1271. |
[10] | 孟璐, 杜明伟, 黎芳, 齐海坤, 路正营, 徐东永, 李存东, 张明才, 田晓莉, 李召虎. 冀中地区高密种植条件下棉花药前群体大小和成熟度与化学脱叶催熟效果的关系[J]. 作物学报, 2023, 49(4): 1028-1038. |
[11] | 雷建峰, 李月, 代培红, 赵燚, 尤扬子, 贾建国, 赵帅, 曲延英, 刘晓东. 棉花中不同植物病毒介导的VIGE体系的研究[J]. 作物学报, 2023, 49(4): 978-987. |
[12] | 娄善伟, 高飞, 王崇, 田晓莉, 杜明伟, 段留生. 不同甲哌鎓滴施剂型筛选及其对棉花生长发育调控效果研究[J]. 作物学报, 2023, 49(2): 552-560. |
[13] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[14] | 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273. |
[15] | 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114. |
|