欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 32-41.doi: 10.3724/SP.J.1006.2024.34050

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生籽仁蔗糖含量遗传模型分析

郅晨阳1(), 薛晓梦1, 吴洁1, 李雄才2, 王瑾3, 晏立英1, 王欣1, 陈玉宁1, 康彦平1, 王志慧1, 淮东欣1,*(), 洪彦彬4, 姜慧芳1, 雷永1,*(), 廖伯寿1   

  1. 1中国农业科学院油料作物研究所 / 农业农村部遗传育种重点实验室, 湖北武汉 430062
    2襄阳市农业技术推广中心, 湖北襄阳 441021
    3河北省农林科学院粮油作物研究所, 河北石家庄 050035
    4广东省农业科学院作物研究所, 广东广州 510640
  • 收稿日期:2023-03-10 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-24
  • 通讯作者: *淮东欣, E-mail: dxhuai@caas.cn; 雷永, E-mail: leiyong@caas.cn
  • 作者简介:E-mail: 82101205102@caas.cn
  • 基金资助:
    广东省重点领域研发计划项目(2022B0202060004);湖北省重点研发计划项目(2021BBA077);河北省重点研发项目(21326316D);中国农业科学院科技创新工程项目(CAAS-ASTIP-2021-OCRI)

Analysis of genetic model of sucrose content in peanut

ZHI Chen-Yang1(), XUE Xiao-Meng1, WU Jie1, LI Xiong-Cai2, WANG Jin3, YAN Li-Ying1, WANG Xin1, CHEN Yu-Ning1, KANG Yan-Ping1, WANG Zhi-Hui1, HUAI Dong-Xin1,*(), HONG Yan-Bin4, JIANG Hui-Fang1, LEI Yong1,*(), LIAO Bo-Shou1   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Xiangyang Agricultural Technology Extension Center, Xiangyang 441021, Hubei, China
    3Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, Hebei, China
    4Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
  • Received:2023-03-10 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-24
  • Contact: *E-mail: dxhuai@caas.cn; E-mail: leiyong@caas.cn
  • Supported by:
    Key Area Research and Development Program of Guangdong Province(2022B0202060004);Key Area Research and Development Program of Hubei Province(2021BBA077);Key Area Research and Development Program of Hebei Province(21326316D);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)

摘要:

花生是我国重要的经济作物之一, 约40%的花生用于食用加工。蔗糖含量作为影响花生品质的重要指标, 与其风味及口感呈显著正相关。因此, 提高花生籽仁中蔗糖含量对花生品质改良具有重要意义。本研究利用NYBP×SYT5-1和19-1934×JHT1两个F2:3群体为试验材料, 分析花生籽仁蔗糖含量遗传模型, 同时分析了蔗糖含量与含油量、蛋白含量及籽仁相关性状间的相关性。结果表明, 花生籽仁蔗糖含量呈连续分布, 超亲分离现象明显且具有丰富变异。两群体中蔗糖含量与含油量均呈现显著负相关, 与蛋白质含量均显著正相关, 蔗糖含量与籽仁长、籽仁宽和百仁重的相关性在两群体间表现不一致。遗传分析结果表明, 在两群体中花生籽仁蔗糖含量都表现为主要受两对主基因的加性、显性效应调控, 存在明显互作, 且主基因间具有累加效应。本研究通过对籽仁蔗糖含量遗传模型分析, 初步了解了蔗糖含量的遗传规律, 对食用花生品种选育具有指导意义。

关键词: 花生, 蔗糖含量, 含油量, 相关性分析, 遗传模型

Abstract:

Peanut (Arachis hypogaea L.) is one of the important cash crops in China, and about 40% of peanuts are used for food production. The sucrose content was positively correlated with the flavor and taste of peanut and its products, thus increasing sucrose content in kernel was significant for the promotion of peanut quality. In this study, two F2:3 populations (NYBP×SYT5-1 and 19-1934×JHT1) were constructed to investigate the genetic model of sucrose content, and analyze the correlations between sucrose content with oil content, protein content, and other seed traits. The results showed that the sucrose contents of peanut kernel in two populations were continuously distributed and abundantly varied, and the transgressive segregation phenomenon were observed. In the two populations, sucrose content was significantly negatively correlated with oil content but significantly positively correlated with protein content. However, the correlations between sucrose content and kernel length, kernel width, and 100-kernel weight were inconsistent. The genetic analysis in two populations showed that the sucrose content in peanut kernel was mainly regulated by two pairs of main genes with the additive effect and dominant effect. There was the interaction between the two main genes, as well as the additive effect. This study initially reveals the genetic regulation of sucrose content in peanut kernels, which is beneficial for the breeding of edible peanut varieties and the cultivation of special varieties.

Key words: peanut, sucrose content, oil content, correlation analysis, genetic model

图1

花生籽仁蔗糖含量频数分布图 NYBP: 南阳白皮; JHT1: 冀花甜1号。"

附表1

F2:3群体蔗糖含量表型统计"

杂交组合
Cross
亲本
Parents
F2:3群体 F2:3 population
最小值
Minimum (%)
最大值
Maximum
(%)
平均值
Mean
(%)
标准差
SD
(%)
变异系数
CV
(%)
偏度
Skewness
峰度
Kurtosis
NYBP×SYT5-1
NYBP
(2.53%)a
SYT5-1
(6.41%)a
0.19
9.36
4.37
158.00
0.36
0.578
-0.194
19-1934×JHT1
19-1934
(2.61%)a
JHT1
(6.34%)a
0.09
9.51
3.75
2.03
0.54

图2

花生籽仁蔗糖含量与其他性状之间相关性 NYBP: 南阳白皮; JHT1: 冀花甜1号。**表示在0.01概率水平显著相关。"

表1

花生籽仁蔗糖含量遗传模型分析"

模型
Model
NYBP×SYT5-1 19-1934×JHT1
极大似然值
Maximum likelihood value
AIC值
AIC value
极大似然值
Maximum likelihood value
AIC值
AIC value
0MG -880.62 1765.24 -319.34 642.67
1MG-AD -854.67 1717.34 -303.63 615.25
1MG-A -861.88 1729.77 -311.98 629.95
1MG-EAD -859.98 1727.95 -305.59 619.18
1MG-NCD -856.16 1720.32 -319.34 646.68
2MG-ADI -855.91 1731.82 -319.32 658.64
2MG-AD -847.85 1707.69 -298.02 608.03
2MG-A -855.54 1719.08 -303.72 615.44
2MG-EA -854.99 1715.97 -314.18 634.36
2MG-CD -880.62 1769.28 -313.89 635.79
2MG-EAD -880.62 1767.28 -318.87 643.73

表2

花生籽仁蔗糖含量候选模型的适合性检验"

杂交组合
Cross
模型
Model
U12 P(U12) U22 P(U22) U32 P(U32) nW2 P(Nw2) DN P(Dn)
NYBP×
SYT5-1
1MG-AD 1.00E-04 0.9940 0.0002 0.9892 0.0006 0.9800 0.0218 0.9950 0.0166 0.9994
1MG-EAD 0.1167 0.7326 0.1007 0.7509 0.0029 0.9572 0.0789 0.7087 0.0379 0.5086
1MG-NCD 0.0274 0.8685 0.0162 0.8988 0.0175 0.8949 0.0317 0.9701 0.0200 0.9908
2MG-ADI 0.0204 0.8864 0.0047 0.9453 0.0778 0.7803 0.0333 0.9642 0.0189 0.9956
2MG-AD 0.0010 0.9751 0.0010 0.9753 0.0000 0.9976 0.0102 1.0000 0.0159 0.9997
2MG-A 0.0047 0.9452 0.0179 0.8936 0.0722 0.7881 0.0316 0.9707 0.0228 0.9651
2MG-EA 0.0344 0.8528 0.0269 0.8697 0.0039 0.9502 0.0504 0.8742 0.0327 0.6943
19-1934×
JHT1
1MG-AD 4.00E-04 0.9842 0.0033 0.9545 0.0230 0.8793 0.0330 0.9654 0.0482 0.8603
1MG-A 0.0821 0.7744 0.0765 0.7822 0.0000 0.9969 0.0844 0.6784 0.0517 0.7988
1MG-EAD 0.0059 0.9389 0.0337 0.8544 0.1912 0.6620 0.0429 0.9176 0.0474 0.8722
2MG-AD 0.0017 0.9669 0.0044 0.9472 0.0109 0.9169 0.0117 1.0000 0.0336 0.9939
2MG-A 1.2530 0.2630 0.8780 0.3487 0.3447 0.5571 0.2274 0.2240 0.0911 0.1561
2MG-EA 0.0772 0.7811 0.2187 0.6400 0.6310 0.4270 0.1651 0.3477 0.0721 0.3984
2MG-CD 0.0850 0.7707 0.0990 0.7530 0.0168 0.8968 0.0510 0.8705 0.0491 0.8444

表3

花生籽仁蔗糖含量一阶参数估计值"

组合
Cross
模型
Model
da db ha hb
NYBP×SYT5-1 1MG-AD 1.7069
1MG-EAD 0.7867
1MG-NCD 1.4272
2MG-ADI 1.3168 0.2617 -1.8727 0.2215
2MG-AD 1.6676 1.2171 -0.6996 -0.3973
2MG-A 0.3011 1.5194
2MG-EA 1.2261
19-1934×JHT1 1MG-AD 1.8713 1.6551
1MG-A 1.6177
1MG-EAD 1.8123
2MG-AD 1.7948 0.7131 1.9106 -0.1276
2MG-A 0.2584 2.3986
2MG-EA 0.8187
2MG-CD 1.7337 0.0692

表4

花生籽仁蔗糖含量二阶遗传参数估计值"

组合
Cross
模型
Model
主基因方差σmg
Major-gene
variance
主基因遗传率hmg
Heritability
(%)
NYBP×
SYT5-1
1MG-AD 1.3315 50.1478
1MG-EAD 0 0
1MG-NCD 1.5391 57.9683
2MG-ADI 1.5638 58.8963
2MG-AD 2.2810 85.9102
2MG-A 0.8810 33.1817
2MG-EA 1.7369 65.4163
19-1934×
JHT1
1MG-AD 0 0
1MG-A 3.8168 91.6497
1MG-EAD 1.9310 46.3678
2MG-AD 4.0724 97.7852
2MG-A 3.8973 93.5826
2MG-EA 4.0716 97.7679
2MG-CD 2.5741 61.8081
[1] 张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议. 中国油脂, 2020, 45(11): 116-122.
Zhang L W, Wang L W. Development status, problems and policy suggestions of peanut industry in China. China Oils Fats, 2020, 45(11): 116-122. (in Chinese with English abstract)
[2] 李双, 魏思雯, 吴凤凤. 植物活性肽的研究进展. 食品科技, 2022, 47(11): 85-92.
Li S, Wei S W, Wu F F. Research progress of plant active peptides. Food Sci Technol, 2022, 47(11): 85-92. (in Chinese with English abstract)
[3] 尹欣幸, 杨伟波, 符海泉, 李东霞. 鲜食花生市场前景与研究现状分析. 热带农业科学, 2019, 39(6): 111-116.
Yin X X, Yang W B, Fu H Q, Li D X. Market prospect and research progress of fresh-eating peanuts. Chin J Trop Agric, 2019, 39(6): 111-116. (in Chinese with English abstract)
[4] 唐月异, 王秀贞, 刘婷, 吴琪, 孙全喜, 王志伟, 张欣, 王传堂, 邵俊飞. 花生自然风干种子蔗糖含量近红外定量分析模型构建. 山东农业科学, 2018, 50(6): 159-162.
Tang Y Y, Wang X Z, Liu T, Wu Q, Sun Q X, Wang Z W, Zhang X, Wang C T, Shao J F. A near infrared spectroscopy model for predicting sucrose content of sun-dried peanut seeds. Shandong Agric Sci, 2018, 50(6): 159-162 (in Chinese with English abstract).
[5] 聂燕. 花生种子中可溶性糖的组成. 花生科技, 1993, (3): 34-35.
Nie Y. Composition of soluble sugars in peanut seeds. Peanut Sci Technol, 1993, (3): 34-35. (in Chinese with English abstract)
[6] 罗虹, 周桂元, 方洪标, 董桂军. 鲜食花生相关生化特性的研究. 花生学报, 2004, 33(4): 1-4.
Luo H, Zhou G Y, Fang H B, Dong G J. Studies on biochemical characters relative to direct edible peanut. J Peanut Sci, 2004, 33(4): 1-4. (in Chinese with English abstract)
[7] Bishi S K, Kumar L, Dagla M C, Mahatma M K, Rathnakumar A L, Lalwani H B, Misra J B. Characterization of Spanish peanut germplasm (Arachis hypogaea L.) for sugar profiling and oil quality. Ind Crop Prod, 2013, 51: 46-50.
doi: 10.1016/j.indcrop.2013.08.050
[8] Bishi S K, Lokesh K, Mahatma M K, Khatediya N, Chauhan S M, Misra J B. Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. Food Chem, 2015, 167: 107-114.
doi: 10.1016/j.foodchem.2014.06.076 pmid: 25148966
[9] 雷永, 王志慧, 淮东欣, 高华援, 晏立英, 李建国, 李威涛, 陈玉宁, 康彦平, 刘海龙, 王欣, 薛晓梦, 姜慧芳, 廖伯寿. 花生籽仁蔗糖含量近红外模型构建及在高糖品种培育中的应用. 作物学报, 2021, 47: 332-341.
doi: 10.3724/SP.J.1006.2021.04106
Lei Y, Wang Z H, Huai D X, Gao H Y, Yan L Y, Li J G, Li W T, Chen Y N, Kang Y P, Liu H Y, Wang X, Xue X M, Jiang H F, Liao B S. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed. Acta Agron Sin, 2021, 47: 332-341. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04106
[10] 胡美玲, 薛晓梦, 吴洁, 郅晨阳, 刘念, 陈小平, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 花生籽仁脂肪和蔗糖含量的胚、细胞质、母体遗传效应分析. 作物学报, 2022, 48: 2724-2732.
doi: 10.3724/SP.J.1006.2022.14201
Hu M L, Xue X M, Wu J, Zhi C Y, Liu N, Chen X P, Wang J, Yan L Y, Wang X, Chen Y N, Kang Y P, Wang Z H, Huai D X, Jiang H F, Lei Y, Liao B S. Genetic effect analysis of fat and sucrose content in peanut seed kernel from embryo, cytoplasm and mother. Acta Agron Sin, 2022, 48: 2724-2732. (in Chinese with English abstract)
[11] 秦利, 刘华, 张新友, 杜培, 代小冬, 孙子淇, 齐飞艳, 董文召, 黄冰艳, 韩锁义, 张忠信, 徐静. 花生籽仁蔗糖含量多世代联合群体主基因+多基因遗传模型分析. 中国油料作物学报, 2021, 43: 590-599.
Qin L, Liu H, Zhang X Y, Du P, Dai X D, Sun Z Q, Qi F Y, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Xu J. Genetic analysis of sugar content in peanut kernel via mixed major gene plus polygene inheritance model in multi-generation combined population. Chin J Oil Crop Sci, 2021, 43: 590-599. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2020185
[12] 张晓军, 赵瑞华, 于晓娜, 司彤, 邹晓霞, 王月福, 王铭伦.花生籽仁可溶性糖含量相关位点的分子标记方法及其应用. 中国专利: 202010304681. 6, 2020-06-26.
Zhang X J, Zhao R H, Yu X N, Si T, Zou X X, Wang Y F, Wang M L. Identification and application molecular markers of soluble sugar content in peanut seeds. China patent: 202010304681. 6, 2020-06-26. (in Chinese with English abstract)
[13] 姜慧芳, 李威涛, 黄莉, 刘念, 罗怀勇, 周小静, 陈伟刚, 淮东欣, 雷永, 廖伯寿.与花生蔗糖含量主效QTL位点连锁的分子标记及其应用. 中国专利: 202110034523, 2022-08-09.
Jiang H F, Li W T, Huang L, Liu N, Luo H Y, Zhou X J, Chen W G, Huai D X, Lei Y, Liao B S. Application of a molecular marker linked to the major QTL locus of sucrose content in peanut. China patent: 202110034523, 2022-08-09. (in Chinese with English abstract)
[14] Guo J, Qi F, Qin L, Zhang M, Sun Z, Li H, Cui M, Zhang M, Li C, Li X, Zhao Q, Luo D, Tian M, Liu H, Xu J, Miao L, Huang B, Dong W, Han S, Zhang X. Mapping of a QTL associated with sucrose content in peanut kernels using BSA-seq. Front Genet, 2023, 13: 1089389.
doi: 10.3389/fgene.2022.1089389
[15] 马钰聪, 赵雨露, 李佳伟, 刘彬, 王春妹, 张敏, 张利苹, 蒋晓霞, 穆国俊. 花生子仁糖代谢转录组-代谢组学联合分析. 植物遗传资源学报, 2022, 23: 1143-1154.
doi: 10.13430/j.cnki.jpgr.20211121001
Ma Y C, Zhao Y L, Li J W, Liu B, Wang C M, Zhang M, Zhang L P, Jiang X X, Mu G J. Transcriptome-metabolome combined analysis of kernel sugar metabolism in peanut (Arachis hypogaea L.). J Plant Genet Resour, 2022, 23: 1143-1154. (in Chinese with English abstract)
[16] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0. 作物学报, 2022, 48: 1416-1424.
doi: 10.3724/SP.J.1006.2022.14088
Wang J T, Zhang Y W, Du Y Q, Ren W L, Li H F, Sun W W, Ge C, Zhang Y M. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits. Acta Agron Sin, 2022, 48: 1416-1424. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14088
[17] 王志伟, 王秀贞, 马浪, 刘婷, 唐月异, 吴琪, 孙全喜, 王传堂. 花生籽仁食用感官品质近红外分析模型构建. 花生学报, 2022, 51(3): 77-82.
Wang Z W, Wang X Z, Ma L, Liu T, Tang Y Y, Wu Q, Sun Q X, Wang C T. Construction of near infrared spectroscopy models on prediction of eating quality of peanut kernel. J Peanut Sci, 2022, 51(3): 77-82. (in Chinese with English abstract)
[18] 朱军. 遗传学(第4版). 北京: 中国农业出版社, 2018.pp92-113.
Zhu J. Genetics, 4th edn. Beijing: China Agriculture Press, 2018. pp 92-113. (in Chinese)
[19] Beche E, Large E, Song Q J, Carter T E Jr, Taliercio E, Nelson R, Beissinger T, Shannon G, Scaboo A.Evaluation of seed composition and agronomic traits in bi-parental Glycine max by Glycine soja populations for developing genomic prediction models. 7th International Crop Science Congress, 2016. p 218.
[20] 李菁华, 张明聪, 金喜军, 王孟雪, 任春元, 张玉先, 胡国华, 宋晓慧. 高油型和高蛋白型大豆鼓粒期的糖分积累规律. 大豆科学, 2017, 36: 68-73.
Li J H, Zhang M C, Jin X J, Wang M X, Ren C Y, Zhang Y X, Hu G H, Song X H. Sugar accumulation rule of high oil and high protein soybean during the seed-filling period. Soybean Sci, 2017, 36: 68-73. (in Chinese with English abstract)
[21] 万林生, 孙红芹, 倪正斌, 严国红, 孙明法, 周汝琴. 甘蓝型油菜不同含油量品系不同部位碳水化合物积累差异性研究. 上海农业科技, 2017, (1): 41-42.
Wan L S, Sun H Q, Ni Z B, Yan G H, Sun M F, Zhou R Q. Study on the difference of carbohydrate accumulation in different parts of Oilseed rape. J. Shanghai Agric Sci Technol, 2017, (1): 41-42. (in Chinese with English abstract)
[22] Hill L M. Metabolism of sugars in the endosperm of developing seeds of oilseed rape. Plant Physiol, 2003, 131: 228-236.
pmid: 12529530
[23] Morley-Smith E R, Pike M J, Findlay K, Köckenberger W, Hill L M, Smith A M, Rawsthorne S. The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. Plant Physiol, 2008, 147: 2121-2130.
doi: 10.1104/pp.108.124644 pmid: 18562765
[24] 王树源. 油菜发育种子中油脂积累及其与ACL、PEPc和PAL酶活性的相关性研究. 南京农业大学硕士学位论文, 江苏南京, 2009.
Wang S Y. Study on Lipid Accumulation in Developing Seeds and Correlations of Oil Content with ACL, PEPc and PAL Activities in Brassica nupus. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2009. (in Chinese with English abstract)
[25] 张娟, 牛百晓, 鄂志国, 陈忱. 水稻胚乳发育遗传调控的研究进展. 中国水稻科学, 2021, 35: 326-341.
doi: 10.16819/j.1001-7216.2021.210307
Zhang J, Niu B X, E Z G, Chen C. Towards understanding the genetic regulations of endosperm development in rice. Chin J Rice Sci, 2021, 35: 326-341. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2021.210307
[26] 张洋, 刘爱忠. 蓖麻种子油脂累积与可溶性糖变化的关系. 生物技术通报, 2016, 32(6): 10.
Zhang Y, Liu A Z. The correlation between soluble carbohydrate metabolism and lipid accumulation in castor seeds. Bio-Technol Bull, 2016, 32(6): 10. (in Chinese with English abstract)
[27] Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422 pmid: 26523777
[28] Fei H, Yang Z, Lu Q, Wen X, Lu C. OsSWEET14 cooperates with OsSWEET11 to contribute to Kernel filling in rice. Plant Sci, 2021, 306: 110851.
doi: 10.1016/j.plantsci.2021.110851
[29] 郭磊. 甘蓝型油菜功能未知基因Bna88的研究. 湖南农业大学硕士学位论文, 湖南长沙, 2015.
Guo L. Study on the Unknown-function Gene Bna88 of Brassica napus. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2015. (in Chinese with English abstract)
[30] Li P, Wang L H, Liu H H, Yuan M. Impaired SWEET-mediated sugar transportation impacts starch metabolism in developing rice seeds. Crop J, 2022, 10: 98-108.
doi: 10.1016/j.cj.2021.04.012
[31] Patil G, Vuong T D, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F, Kumpatla S, Shannon J G, Varshney R K, Nguyen H T. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol J, 2018, 16: 1939-1953.
doi: 10.1111/pbi.12929 pmid: 29618164
[32] 王飞, 范斌, 张启鑫, 田佳昕. 施肥模式对花生碳氮代谢产物的影响. 耕作与栽培, 2022, 42(4): 34-38.
Wang F, Fan B, Zhang Q X, Tian J X. Effects of fertilization mode on carbon and nitrogen metabolites in peanut. Tillage Cult, 2022, 42(4): 34-38. (in Chinese with English abstract)
[33] 赵桂兰, 陈锦清, 尹爱萍, 胡张华, 钱雪燕, 郭东全. 获得转反义PEP基因超高油大豆新材料. 分子植物育种, 2005, 3: 792-796.
Zhao G L, Chen J Q, Yin A P, Hu Z H, Qian X Y, Guo D Q. A new high oil soybean with antisense PEP gene. Mol Plant Breed, 2005, 3: 792-796. (in Chinese with English abstract)
[34] 赵彦朋, 梁伟, 王丹, 王玉美, 刘正杰, 崔宇鹏, 华金平. 植物油脂合成调控与遗传改良研究进展. 中国农业科技导报, 2018, 20(1): 14-24.
doi: 10.13304/j.nykjdb.2017.0170
Zhao Y P, Liang W, Wang D, Wang Y M, Liu Z J, Cui Y P, Hua J P. Regulation of oil biosynthesis and genetic improvement in plant: advances and prospects. J Agric Sci Technol, 2018, 20(1): 14-24. (in Chinese with English abstract)
[35] Jones S I, Hunt M R, Vodkin L O. An embryo lethal transgenic line manifests global expression changes and elevated protein/oil ratios in heterozygous soybean plants. PLoS One, 2020, 15: e0233721.
doi: 10.1371/journal.pone.0233721
[36] 张婵娟, 申佳芳, 单志慧, 陈海峰, 曹东, 袁松丽, 黄毅, 陈李淼, 郝青南, 郭葳, 杨红丽, 陈水莲, 杨中路, 周新安.GmSWEET20蛋白及其编码基因在调控大豆单株荚数和产量中的应用. 中国专利: 202210748349, 2022-10-04.
Zhang C J, Shen J F, Shan Z H, Chen H F, Cao D, Huang Y, Chen L M, Hao Q N, Guo W, Yang H L, Chen S L, Yang Z L, Zhou X A.Application of GmSWEET20 protein and its encoding gene in regulating pod number and yield of soybean per plant. China patent: 202210748349, 2022-10-04 (in Chinese with English abstract).
[37] 李艳娇, 李文才, 孙琦, 赵勐, 李文兰, 于彦丽, 孟昭东. SWEET转运蛋白在作物中的功能研究及前景展望. 山东农业科学, 2019, 51(6): 154-159.
Li Y J, Li W C, Sun Q, Zhao M, Li W L, Yu Y L, Meng Z D. Functional research and prospect of SWEET transporter in crops. Shandong Agric Sci, 2019, 51(6): 154-159. (in Chinese with English abstract)
[38] 胡丽萍, 张峰, 徐惠, 刘光敏, 王亚钦, 何洪巨. 植物SWEET基因家族结构、功能及调控研究进展. 生物技术通报, 2017, 33(4): 27-37.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004
Hu L P, Zhang F, Xu H, Liu G M, Wang Y Q, He H J. Research advances in the structure, function and regulation of SWEET gene family in plants. Bio-Technol Bull, 2017, 33(4): 27-37. (in Chinese with English abstract)
[39] 陈昕钰, 陈铭鑫, 杨阳, 李波, 董召娣, 汪巧菊, 余徐润, 熊飞. 干旱胁迫下小麦颖果内源激素的变化及其与胚乳发育的关系. 麦类作物学报, 2019, 39(4): 9.
Chen X Y, Chen M X, Yang Y, Li B, Dong S D, Wang Q J, Yu X R, Xiong F. Relationship between changes of endogenous hormones and development of endosperm in wheat caryopsis under drought stress. J Triticeae Crops, 2019, 39(4): 9. (in Chinese with English abstract)
[40] 柯媛媛, 陈翔, 倪芊芊, 张乐乐, 魏凤珍, 李金才. 小麦干物质积累与分配规律研究进展. 大麦与谷类科学, 2021, 38(3): 1-7.
Ke Y Y, Chen X, Ni Q Q, Zhang L L, Wei F Z, Li J C. Research progress of dry matter accumulation and distribution pattern in wheat. Barl Cereal Sci, 2021, 38(3): 1-7. (in Chinese with English abstract)
[41] Wang S, Liu S, Wang J, Yokosho K, Tian Z. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110
[42] Sun C, Wang Y, Yang X, Tang L, Wan C, Liu J, Chen C, Zhang H, He C, Liu C, Wang Q, Zhang K, Zhang W, Yang B, Li S, Zhu J, Sun Y, Li W, Zhou Y, Wang P, Deng X. MATE transporter GFD1 cooperates with sugar transporters, mediates carbohydrate partitioning, and controls grain filling duration, grain size and number in rice. Plant Biotechnol J, 2023, 21: 621-634.
doi: 10.1111/pbi.v21.3
[1] 聂晓玉, 李真, 王天尧, 周元委, 徐正华, 王晶, 汪波, 蒯婕, 周广生. 种植密度对角果期弱光胁迫油菜籽粒油脂积累的影响[J]. 作物学报, 2024, 50(2): 493-505.
[2] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[3] 王菲菲, 张胜忠, 胡晓辉, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[4] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[5] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[6] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[7] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[8] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[9] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876.
[10] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
[11] 姜骁, 许静, 潘丽娟, 陈娜, 王通, 江晓东, 殷祥贞, 杨珍, 禹山林, 迟晓元. 花生产量相关性状与气象因子多环境相关性分析[J]. 作物学报, 2023, 49(11): 3110-3121.
[12] 郭建斌, 成良强, 李威涛, 刘念, 罗怀勇, 丁膺宾, 喻博伦, 陈伟刚, 黄莉, 周小静, 雷永, 廖伯寿, 姜慧芳. 花生蔗糖含量与蛋白质和含油量的相关性分析及蔗糖含量QTL定位[J]. 作物学报, 2023, 49(10): 2698-2704.
[13] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[14] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[15] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .