作物学报 ›› 2024, Vol. 50 ›› Issue (1): 42-54.doi: 10.3724/SP.J.1006.2024.34047
刘颖超1(), 方敦煌2, 徐海明1, 童治军2,*(), 肖炳光2,*()
LIU Ying-Chao1(), FANG Dun-Huang2, XU Hai-Ming1, TONG Zhi-Jun2,*(), XIAO Bing-Guang2,*()
摘要:
生物碱是烟草的重要化学成分。为明确烟草生物碱的遗传结构, 发掘控制相关性状的主效位点, 以烟草品种Y3、K326为亲本, 构建大小为271的重组自交系群体。分别于2018、2019和2020年在云南省昆明市石林、玉溪市研和种植群体材料, 检测总植物碱(TPA)、烟碱(NIC)、降烟碱(NOR)、假木贼碱(ANAB)和新烟草碱(ANAT) 5种生物碱表型。对群体进行基因组测序, 构建包含46,129个标记的遗传连锁图谱。利用基于混合线性模型的QTL定位方法及软件QTLNetwork 2.0, 进行QTL定位分析。共定位15个具有显著加性效应的QTL, 加性效应对表型贡献率为0.58%~11.57%。其中4个主效QTL即控制总植物碱的qTPA14、烟碱的qNIC14、假木贼碱的qANAB14和新烟草碱的qANAT14, 均可以解释相应性状10%以上的表型变异, 且均位于14号连锁群上。6个QTL具有显著的加性与环境互作效应, 对表型贡献率为0.80%~1.81%。5对QTL具有显著加性-加性上位性效应, 对表型的贡献率为0.15%~2.31%。2对QTL具有显著的上位性与环境互作效应, 对表型的贡献率为0.81%~1.16%。研究结果为进一步分离候选基因、解析遗传机理和促进烟草生物碱性状分子改良奠定了基础。
[1] | 邓建强, 刘利平, 王洪炜, 庄涛, 代辉, 陆承念, 刘俊. 恩施烟区烤烟上部叶总植物碱主控因素分析. 湖北农业科学, 2021, 60(6): 70-75. |
Deng J Q, Liu L P, Wang H W, Zhuang T, Dai H, Lu C N, Liu J. Analysis on main control factors of total plant alkaloid in upper leaf of flue-cured tobacco in Enshi tobacco area. Hubei Agric Sci, 2021, 60(6): 70-75. (in Chinese with English abstract) | |
[2] | 王威威, 席飞虎, 杨少峰, 江丽芳, 王峰吉. 烟草烟碱合成代谢调控研究进展. 亚热带农业研究, 2016, 12(1): 62-67. |
Wang W W, Xi F H, Yang S F, Jiang L F, Wang F J. Progress on nicotine metabolism regulation in tobacco. Subtrop Agric Res, 2016, 12(1): 62-67. (in Chinese with English abstract) | |
[3] |
李超, 史宏志, 刘国顺. 烟草烟碱转化及生物碱优化研究进展. 河南农业科学, 2007, (6): 14-17.
doi: 10.3969/j.issn.1004-3268.2007.06.004 |
Li C, Shi H Z, Liu G S. Research progress on nicotinic conversion and alkaloid optimization. J Henan Agric Sci, 2007, (6): 14-17. (in Chinese) | |
[4] | 林雨晟, 金洪石, 张皓楠, 金江华, 郭伟, 李玉娥, 赵铭钦, 刘鹏飞. 高效液相色谱同时检测不同类型烟叶中的多种生物碱含量. 中国烟草科学, 2021, 42(3): 83-89. |
Lin Y S, Jin H S, Zhang H N, Jin J H, Guo W, Li Y E, Zhao M Q, Liu P F. Simultaneous determination of alkaloids in different types of tobacco by HPLC. Chin Tob Sci, 2021, 42(3): 83-89. (in Chinese with English abstract) | |
[5] | 童治军, 焦芳婵, 陈学军, 吴兴富, 方敦煌, 肖炳光. 7个烤烟产量相关性状的QTL定位分析. 西北植物学报, 2018, 38: 1235-1243. |
Tong Z J, Jiao F C, Chen X J, Wu X F, Fang D H, Xiao B G. Mapping of quantitative trait loci underlying seven yield-related traits in flue-cured tobacco (Nicotiana tabacum L.). Acta Bot Boreali-Occident Sin, 2018, 38: 1235-1243. (in Chinese with English abstract) | |
[6] | 王思齐, 李海洋, 李荣华, 夏岩石, 张振臣, 袁清华, 郭培国. 烟草青枯病抗病的动态QTL分析. 中国烟草科学, 2020, 41(3): 1-8. |
Wang S Q, Li H Y, Li R H, Xia Y S, Zhang Z C, Yuan Q H, Guo P G. Dynamic QTL analysis for bacterial wilt resistance in tobacco. Chin Tob Sci, 2020, 41(3): 1-8. (in Chinese with English abstract) | |
[7] | 张雨生, 蒋彩虹, 胡晓莉, 赵强, 耿锐梅, 杨爱国, 程立锐, 王元英. 烟草抗赤星病主效QTL的候选基因初步筛选. 分子植物育种, 2018, 16: 4325-4332. |
Zhang Y S, Jiang C H, Hu X L, Zhao Q, Geng R M, Yang A G, Cheng L R, Wang Y Y. Preliminary screening of candidate genes for main QTL related with resistance to brown spot in tobacco. Mol Plant Breed, 2018, 16: 4325-4332. (in Chinese with English abstract) | |
[8] | 牟建英, 钱玉梅, 任民, 刘艳华, 张兴伟, 王志德, 潘应花. 烟草白粉病抗性基因的QTL定位. 中国烟草学报, 2013, 19(4): 105-108. |
Mou J Y, Qian Y M, Ren M, Liu Y H, Zhang X W, Wang Z D, Pan Y H. QTL analysis of resistance gene to powdery mildew in tobacco. Acta Tab Sin, 2013, 19(4): 105-108. (in Chinese with English abstract) | |
[9] | 姜自鹏, 赵会纳, 苑广迪, 蒋彩虹, 刘旦, 余世洲, 雷波, 程立锐, 杨爱国, 付宪奎. 烟草株高和叶数性状QTL定位及候选基因预测. 中国烟草科学, 2022, 43(2): 1-6. |
Jiang Z P, Zhao H N, Yuan G D, Jiang C H, Liu D, Yu S Z, Lei B, Cheng L R, Yang A G, Fu X K. QTL mapping and prediction of candidate genes for plant height and leaf number in tobacco. Chin Tob Sci, 2022, 43(2): 1-6 (in Chinese with English abstract) | |
[10] |
Julio E, Denoyes-Rothan B, Verrier J L, Dorlhac de Borne F. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006, 18: 69-91.
doi: 10.1007/s11032-006-9019-0 |
[11] |
Tong Z J, Xiu Z H, Yao M, Fang D H, Chen X J, Hu Y F, Zhou J H, He W M, Jiao F C, Zhang C, Zhao S C, Jin H, Jian J B, Xiao B G. Quantitative trait locus mapping and genomic selection of tobacco (Nicotiana tabacum L.) based on high-density genetic map. Plant Biotechnol Rep, 2021, 15: 845-854.
doi: 10.1007/s11816-021-00713-1 |
[12] |
Tong Z J, Fang D H, Chen X J, Jiao F C, Zhang Y H, Li Y P, Xiao B G. Genome-wide association study of leaf chemistry traits in tobacco. Breed Sci, 2020, 70: 253-264.
doi: 10.1270/jsbbs.19067 |
[13] |
肖炳光, 卢秀萍, 焦芳蝉, 李永平, 孙玉合, 郭兆奎. 烤烟几种化学成分的QTL初步分析. 作物学报, 2008, 34: 1762-1769.
doi: 10.3724/SP.J.1006.2008.01762 |
Xiao B G, Lu X P, Jiao F C, Li Y P, Sun Y H, Guo Z K. Preliminary QTL analysis of several chemical components in flue-cured tobacco (Nicotiana tabacum L.). Acta Agron Sin, 2008, 34: 1762-1769. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01762 |
|
[14] |
Melchinger A E, Utz H F, Piepho H P, Zeng Z B, Schön C C. The role of epistasis in the manifestation of heterosis: a systems- oriented approach. Genetics, 2007, 177: 1815-1825.
doi: 10.1534/genetics.107.077537 pmid: 18039883 |
[15] | 国家烟草专卖局. 烟草及烟草制品总植物碱的测定连续流动法:YC/T 160- 2002. 北京: 中国标准出版社, 2002. |
State Tobacco Monopoly Administration. Tobacco and Tobacco Products-Determination of Total Alkaloids-Continuous Flow Method: YC/T 160- 2002. Beijing: Standards Press of China, 2002. (in Chinese) | |
[16] | 国家烟草专卖局. 烟草及烟草制品烟碱、 降烟碱、新烟碱、麦斯明和假木贼碱的测定气相色谱-质谱联用法:YC/T 383- 2010. 北京: 中国标准出版社, 2010. |
State Tobacco Monopoly Administration. Tobacco and Tobacco Products-Determination of Nicotine, Nornicotine, Anatabine, Myosmine and Anabasine-GC-MSD Method:YC/T 383- 2010. Beijing: Standards Press of China, 2010. (in Chinese) | |
[17] |
Covarrubias-Pazaran G. Genome-assisted prediction of quantitative traits using the R package sommer. PLoS One, 2016, 11: e0156744.
doi: 10.1371/journal.pone.0156744 |
[18] |
Li S, Tian Y H, Wu K, Ye Y F, Zhang J Q, Liu Q, Hu M Y, Li H, Tong Y P, Harberd N P, Fu X D. Modulating plant growth- metabolism coordination for sustainable agriculture. Nature, 2018, 560: 595-600.
doi: 10.1038/s41586-018-0415-5 |
[19] |
Chen Y X, Chen Y S, Shi C M, Huang Z B, Zhang Y, Li S K, Li Y, Ye J, Yu C, Li Z, Zhang X Q, Wang J, Yang H M, Fang L, Chen Q. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience, 2018, 7: 1-6.
doi: 10.1093/gigascience/gix120 pmid: 29220494 |
[20] |
Edwards K D, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans A D, Bombarely A, Allen F, Hurst R, White B, Kernodle S P, Bromley J R, Sanchez-Tamburrino J P, Lewis R S, Mueller L A. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 2017, 18: 488.
doi: 10.1186/s12864-017-3849-5 |
[21] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[22] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[23] |
Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics, 2017, 33: 3726-3732.
doi: 10.1093/bioinformatics/btx494 pmid: 29036272 |
[24] |
Ouellette L A, Reid R W, Blanchard S G, Brouwer C R. LinkageMapView: rendering high-resolution linkage and QTL maps. Bioinformatics, 2018, 34: 306-307.
doi: 10.1093/bioinformatics/btx576 pmid: 28968706 |
[25] | 朱军. 运用混合线性模型定位复杂数量性状基因的方法. 浙江大学学报(自然科学版), 1999, 33: 327-335. |
Zhu J. Methods for locating genes for complex quantitative traits using mixed linear models. J Zhejiang Univ (Nat Sci Edn), 1999, 33: 327-335. (in Chinese) | |
[26] |
Yang J, Hu C C, Hu H, Yu R D, Xia Z, Ye X Z, Zhu J. QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008, 24: 721-723.
doi: 10.1093/bioinformatics/btm494 pmid: 18202029 |
[27] |
Min M K, Jang M, Lee M, Lee J, Song K, Lee Y, Choi K Y, Robinson D G, Hwang I. Recruitment of Arf1-GDP to Golgi by Glo3p-type ArfGAPs is crucial for golgi maintenance and plant growth. Plant Physiol, 2013, 161: 676-691.
doi: 10.1104/pp.112.209148 pmid: 23266962 |
[28] |
Wang L, Li H, Li J, Li G, Zahid M S, Li D, Ma C, Xu W, Song S, Li X, Wang S. Transcriptome analysis revealed the expression levels of genes related to abscisic acid and auxin biosynthesis in grapevine (Vitis vinifera L.) under root restriction. Front Plant Sci, 2022, 13: 959693.
doi: 10.3389/fpls.2022.959693 |
[29] |
Pozo M J, Van Der Ent S, Van Loon L C, Pieterse C M J. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytol, 2008, 180: 511-523.
doi: 10.1111/j.1469-8137.2008.02578.x pmid: 18657213 |
[30] | 苏雷, 姜岸鸣, 陈常伟, 吴克松, 程新胜. 仿生型信号分子对烟草生物碱的抑制作用机制. 烟草科技, 2013, (2): 72-76. |
Su L, Jiang A M, Chen C W, Wu K S, Cheng X S. Mechanism of inhibition action of bionic signal molecule to tobacco alkaloid. Tob Sci Technol, 2013, (2): 72-76 (in Chinese with English abstract). | |
[31] |
Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104-111.
doi: 10.1007/s001220000528 |
[32] |
孙晓雪, 孙健, 王敬国, 刘化龙, 赵宏伟, 梁银培, 邹德堂. 水稻赖氨酸和总黄酮含量的QTL定位及环境互作分析. 核农学报, 2017, 31: 1684-1692.
doi: 10.11869/j.issn.100-8551.2017.09.1684 |
Sun X X, Sun J, Wang J G, Liu H L, Zhao H W, Liang Y P, Zou D T. QTL mapping and environment interaction analysis of lysine content and total content of flavonoids in rice. J Nucl Agric Sci, 2017, 31: 1684-1692. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2017.09.1684 |
[1] | 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182. |
[2] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[3] | 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995. |
[4] | 崔芳芳, 孟林峰, 刘苗苗, 张建强, 王建革, 刘齐元. 烟草细胞质雄性不育系K326 MADS-box和SUPERMAN基因的特征[J]. 作物学报, 2023, 49(12): 3204-3214. |
[5] | 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128. |
[6] | 宋博文, 王朝欢, 赵哲, 陈淳, 黄明, 陈伟雄, 梁克勤, 肖武名. 基于高密度遗传图谱对水稻粒形QTL定位及分析[J]. 作物学报, 2022, 48(11): 2813-2825. |
[7] | 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198. |
[8] | 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877. |
[9] | 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667. |
[10] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[11] | 山雨思, 辛正琦, 何潇, 代欢欢, 吴能表. 外源茉莉酸甲酯对UV-B胁迫下颠茄生物碱积累及TAs代谢途径调控的机制探究[J]. 作物学报, 2020, 46(12): 1894-1904. |
[12] | 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869. |
[13] | 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61. |
[14] | 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418. |
[15] | 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482. |
|