欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (1): 55-66.doi: 10.3724/SP.J.1006.2024.33011

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

控制玉米株高基因PHR1的基因克隆

杨晨曦1(), 周文期1,2,*(), 周香艳1,*(), 刘忠祥2, 周玉乾2, 刘芥杉1, 杨彦忠2, 何海军2, 王晓娟2, 连晓荣2, 李永生2   

  1. 1甘肃农业大学生命科学技术学院, 甘肃兰州, 730070
    2甘肃省农业科学院作物研究所, 甘肃兰州730070
  • 收稿日期:2023-02-24 接受日期:2023-06-29 出版日期:2024-01-12 网络出版日期:2023-07-25
  • 通讯作者: *周文期, E-mail: zhouwenqi850202@163.com; 周香艳, E-mail: zhouxy@gsau.edu.cn
  • 作者简介:E-mail: yangchenxi@qq.com
  • 基金资助:
    国家自然科学基金项目(32160490);国家自然科学基金项目(31960443);甘肃省重大专项(21ZD11NA005);甘肃省重大专项(21ZD10NF003);甘肃省农业科学院生物育种专项(2022GAAS04);甘肃农业大学青年导师基金项目(GSAU-QDFC-2021-14);中国工程院战略研究与咨询项目: 特色粮油作物优异基因精准鉴定及新种质创制(2021-DFZD-21-3)

Mapping and cloning of plant height gene PHR1 in maize

YANG Chen-Xi1(), ZHOU Wen-Qi1,2,*(), ZHOU Xiang-Yan1,*(), LIU Zhong-Xiang2, ZHOU Yu-Qian2, LIU Jie-Shan1, YANG Yan-Zhong2, HE Hai-Jun2, WANG Xiao-Juan2, LIAN Xiao-Rong2, LI Yong-Sheng2   

  1. 1College of Life Science and Technology, Gansu Agricultural University, Gansu 730070, Lanzhou, China
    2Crop Research Institute, Gansu Academy of Agriculture Sciences, Gansu 730070, Lanzhou, China
  • Received:2023-02-24 Accepted:2023-06-29 Published:2024-01-12 Published online:2023-07-25
  • Contact: *E-mail: zhouwenqi850202@163.com; E-mail: zhouxy@gsau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32160490);National Natural Science Foundation of China(31960443);Major Project of Gansu Province(21ZD11NA005);Major Project of Gansu Province(21ZD10NF003);Biological Breeding Project of Gansu Academy of Agricultural Sciences(2022GAAS04);Youth Mentor Fund Project of Gansu Agricultural University(GSAU-QDFC-2021-14);Strategic Research and Consulting Project of Chinese Academy of Engineering(2021-DFZD-21-3)

摘要:

株高属于玉米理想株型育种的一个重要指标, 不但影响玉米机械化收获, 更与玉米的倒伏性和生物产量密切相关。本研究以低剂量快中子(4.19 Gy)辐照诱变玉米自交系KWS39获得的矮秆低穗位突变体为研究对象, 该突变体命名为plant height reducing mutant-1 (phr-1), 开展了表型性状的田间调查分析, 并利用phr-1×B73获得的F2分离群体, 借助极端性状混池测序分析法(BSA-seq)及目标区段重组交换鉴定的方法, 基于B73参考基因组对目标区段内的基因进行挖掘和功能注释, 定位候选基因。研究结果表明, 在1号染色体Bin1.06 区间可能存在变异位点, 进而利用大的分离群体结合目标区段多态性标记开发, 将目标区段精细定位分子标记到Umc1122和Umc1583a两个标记之间约600 kb区间, 该区段内存在一个控制株高的已知基因Brachytic2 (BR2), BR2编码一个调控玉米茎秆中生长素极性运输的糖蛋白。候选基因测序结果表明, phr-1BR2基因在第4个外显子处插入了165 bp的序列, 导致第547位氨基酸变为终止子, 蛋白翻译提前终止。phr-1的基因突变位点和变异方式与已报道的br2-1单个碱基发生变异位点完全不同, 通过等位杂交实验证明了phr-1突变体就是br2-1的一个新等位突变体, 候选基因就是BR2基因。本研究为玉米BR2基因在玉米株高遗传改良中提供了新的种质资源。

关键词: 玉米, 株高, 穗位高, BSA混池测序, 基因定位, 功能分析

Abstract:

Plant height is an important index for the ideal maize breeding, which not only affects the mechanical harvest of maize, but also closely relates to the lodging resistance and the biological yield of maize. In this study, a plant height reducing mutant-1 (phr-1) was obtained by using low-dose fast neutron (4.19 Gy) irradiation to mutate the maize inbred line KWS39 at the low ear position. Phenotypic traits were investigated and analyzed in the field, and candidate genes were identified by mining and functional annotation of genes in the target region based on the B73 reference genome using the extreme trait pool sequencing analysis (BSA-seq) and the method of target region recombination exchange identification with F2 segregation population of phr-1×B73. These results indicated that there might be a variation site in Bin1.06 interval on chromosome 1, and the target region was precisely located between two markers, Umc1122 and Umc1583a, with a 600 kb interval by using the large segregation population and polymorphic markers. Brachytic2 (BR2), encoding a sugar protein regulating the polar transport of auxin in maize stems, is a known gene controlling plant height in this region. The sequencing of candidate genes revealed that phr-1 was a new allelic mutation of br2-1, with a 165 bp insertion in the fourth exon of the BR2 gene resulting in the amino acid at position 547 changing to a stop codon and premature protein translation termination. The mutation site and variation mode of phr-1 were completely different from those of br2-1 single base mutation site. The allelic hybridization experiment confirmed that the PHR1 candidate gene is a new allelic mutation of the BR2 gene. This study provides new germplasm resources for maize BR2 gene in plant height genetic improvement.

Key words: maize, plant height, ear height, the bulked segregant analysis, map-based localization, function analysis

表1

本研究所用到的引物"

引物名称
Primer name
正向序列
Forward sequence (5′-3′)
反向序列
Reverse sequence (5′-3′)
GAPDH CCATCATGCCACACAGAAAAC AGGAACACGGAAGGACATACCAG
BR2-Q1F/Q1R TGAGCAACTCCAGCTCTTAACCA GCGAACTGGACATCCTCAGATTA
BR2-Z1F/Z1R ATTCACGCAGAGCAGAAGAGC GCATAAGGTTGGACAGGGAAAG
BR2-H1F/H1R AGGTTGGGGAGCGCGGCCTGCAG ACCCATCCATCCATCCATTCCGTCCT
RT-Br2-F1/R1 ACGAGCATCAGGGAGAACC GCTCCCCAACCTGCGTGTCG

图1

野生型KWS39和突变体phr-1植株表型 A, B: KWS39和phr-1株型比较, phr-1比KWS39株型矮小; 标尺为10 cm。C: PH和EH统计, t检测; D: KWS39和phr-1节间比较; E: KWS39和phr-1节间数相同, 共11节, 节间从根到尖用1, 2, 3, …, 9, 10, 11表示, 但phr-1每一节之间的长度比对照减小, 标尺为10 cm。"

图2

野生型KWS39和突变体phr-1植株表型 A: KWS39和phr-1萌芽5 d, 株高及根长无明显差异; B: 从左往右分别是倒三叶、倒二叶和剑叶; C: KWS39和phr-1根系发育正常, phr-1根系更为发达; D: phr-1和KWS39套袋自交的果穗性状; E: KWS39和phr-1籽粒、百粒重都无显著变化。标尺均为10 cm。"

表2

突变体phr-1和野生型KWS39农艺性状分析"

类型
Type
性状
Trait
野生型KWS39
Wild type KWS39
突变体phr-1
Mutant phr-1
P-value N
株型Plant architecture 株高Plant height (cm) 182.8±11.0 93.3±2.3** 3.88E-09 15
穗位高Ear height (cm) 66.4±17.3 23.2±1.7** 0.000106 15
雄穗Tassel 雄穗分支数 Tassel branch number 5.1±1.4 4.7±1.6 0.582953 15
雄穗长Tassel length (cm) 31.65±2.3 27.68±1.9* 0.031581 15
雌穗Ear 穗长Ear length (cm) 13.81±1.3 13.08±0.5 0.447437 15
穗粗Ear diameter 3.97±0.1 3.7±0.2 0.094702 15
穗行数 Kernel row number 14.4±0.8 13.4±0.9 0.052177 15
行粒数 Grains row number 24.1±4.1 22.6±4.6 0.057321 15
秃尖长Bald tip length (cm) 1.5±0.6 1.31±0.4 0.078416 15
叶型Blade profile 倒3叶长Inverted 3 leaves long (cm) 47.25±3.8 44.3±3.6* 0.045242 15
倒3叶宽Inverted 3 leaves wide (cm) 6.61±0.7 6.36±0.6 0.486148 15

表3

F2分离群体的卡方测验"

群体
Population
观察值Observations 期望值Expectations 卡方检验
Chi-square
野生型Wild type 突变体Mutant 野生型Wild type 突变体Mutant
phr-1×B73 F2 762 238 760 240 0.88

图3

KWS39、phr-1、杂交F1和F2矮秆植株表型 标尺为10 cm。"

图4

phr-1候选基因的连锁定位图 A: 黑色点和灰色点为ΔSNP-index; B: 蓝色线为ΔSNP-index划窗后的拟合线; C: 橙黄色线为95%置信线; D: 红色线为99%置信线。"

表4

初步定位标记与表型的交换频率"

标记名称
Molecular marker
交换频率
Crossing-over value
umc2235 0.38
umc1035 0.29
umc2560 0.17
umc2569 0.15
umc1122 0.08
umc1583a 0.11
umc1278 0.21
umc2387 0.36

图5

BR2转录本在KWS39和phr-1突变体中的序列分析"

图6

等位鉴定突变体F1代表型一致 A: B73与突变体br2-1、phr-1和(bra2-1× phr-1) F1的植株表型; B: B73与野生型KWS39、突变体phr-1和(bra2-1×phr-1) F1植株表型。标尺为10 cm。"

图7

BR2基因在4个玉米自交系中的相对表达 数据经过t检测, **表示差异极显著(P < 0.01)。"

表5

BR2在不同物种中的基因编号及功能注释"

物种
Species
同源基因
Orthologous gene
功能预测
Putative function
玉米Zea mays GRMZM2G315375 PGP1
拟南芥Arabidopsis thaliana AT1G10680 P-glycoprotein 10
水稻Oryza sativa LOC_Os02g46680 Multidrug resistance protein, putative, expressed
白杨树Populus trichocarpa POPTR_0001s02200 PGP2; ATPase, coupled to transmembrane movement of substances
高粱Sorghum bicolor Sb04g023730 P-glycoprotein 1
葡萄Vitis vinifera GSVIVG0009946001 Multidrug resistance protein 1, 2

图8

ZmBR2同源蛋白氨基酸序列比对及系统进化分析 A: ZmBR2同源蛋白氨基酸序列比对; B: ZmBR2同源树; C: ZmBR2系统发育树。"

[1] Duvick D N. Genetic progress in yield of the United States maize (Zea mays L.). Maydica, 2005, 50: 193-202.
[2] 周文期, 连晓荣, 刘忠祥, 周玉乾, 赵小强. 玉米株高和穗位高的调控机理研究. 分子植物育种, 2021, 19: 7965-7976.
Zhou W Q, Lian X R, Liu Z X, Zhou Y Q, Zhao X Q. Research progress on the mechanism of controlling maize plant height and ear height. Mol Plant Breed, 2021, 19: 7965-7976. (in Chinese with English abstract)
[3] Mansfield B D, Mumm R H. Survey of plant density tolerance in U. S. maize germplasm. Crop Sci, 2014, 54: 157-173.
doi: 10.2135/cropsci2013.04.0252
[4] 何少勇. 玉米矮秆突变体的等位性鉴定及对外源激素的敏感性研究. 四川农业大学硕士学位论文, 四川温江, 2017.
He S Y. Allelic Identification of Maize Dwarf Mutants and Sensitivity to Exogenous Hormones. MS Thesis of Sichuan Agricultural University, Wenjiang, Sichuan, China, 2017. (in Chinese with English abstract)
[5] Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003, 302: 81-84.
doi: 10.1126/science.1086072 pmid: 14526073
[6] Best N B, Hartwig T, Budka J, Fujioka S, Johal G, Schulz B, Dilkes B P. Nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis protein Dwarf1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol, 2016, 171: 2633-2647.
doi: 10.1104/pp.16.00399
[7] Li Z X, Zhang X R, Zhao Y J, Li Y J, Zhang G F, Peng Z H, Zhang J R. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J, 2018, 16: 86-99.
doi: 10.1111/pbi.12751 pmid: 28499064
[8] Xing A Q, Gao Y F, Ye L F, Zhang W P, Cai L C, Ching A D, Victor L, Blaine J, Liu L, Yang X H, Kang D M, Yan J B, Li J S. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot, 2015, 66: 3791-3802.
doi: 10.1093/jxb/erv182
[9] 刘忠祥, 徐大鹏, 连晓荣, 周文期, 寇思荣, 姚泽恩. 快中子辐照玉米自交系的细胞学效应及后代变异. 辐射研究与辐射工艺学报, 2017, 35(6): 33-40.
Liu Z X, Xu D P, Lian X R, Zhou W Q, Kou S R, Yao Z E. Cytological effects and offspring variation of maize inbred lines irradiated by fast neutron. J Radiat Res Radiat Process, 2017, 35(6): 33-40. (in Chinese with English abstract)
[10] Lu X D, Liu J, Ren W, Yang Q, Chai Z G, Chen R M, Wang L, Zhao J, Lang Z H, Wang H Y, Fan Y L, Zhao J R, Zhang C Y. Gene-indexed mutations in maize. Mol Plant, 2018, 11: 496-504.
doi: S1674-2052(17)30368-4 pmid: 29223623
[11] 周文期, 刘忠祥, 王晓娟, 何海军, 周玉乾, 杨彦忠, 连晓荣, 李永生. 利用BSA-Seq方法快速定位作物农艺性状QTL/基因概述. 甘肃农业科技, 2022, 53(4): 1-10.
Zhou W Q, Liu Z X, Wang X J, He H J, Zhou Y Q, Yang Y Z, Lian X R, Li Y S. Rapid mapping of QTL/gene for agronomic traits in crops using BSA-Seq method. Gansu Agric Sci Tech, 2022, 53(4): 1-10. (in Chinese with English abstract)
[12] Chmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc, 2008, 3: 467-476.
[13] 王关林, 方宏筠. 植物基因工程(第2版). 北京: 科学出版社, 2002. pp 742-744.
Wang G L, Fang H J. Plant Genetic Engineering, 2nd edn. Beijing: Science Press, 2002. pp 742-744. (in Chinese)
[14] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013, 74: 174-183.
doi: 10.1111/tpj.2013.74.issue-1
[15] Wenger W J, Schwartz K, Sherlock G. Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet, 2010, 6: e1000942.
doi: 10.1371/journal.pgen.1000942
[16] Han X S, Qin Y, Yu F, Ren, Zhang Z X, Qiu F Z. A megabase- scale deletion is associated with phenotypic variation of multiple traits in maize. Genetics, 2018, 211: 305-316.
doi: 10.1534/genetics.118.301567
[17] Cai M J, Li S Z, Sun F, Sun Q, Zhao H L, Ren X M, Zhao Y X, Tan B C, Zhang Z X, Qiu F Z. Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad 2 intron 1 and seed development in maize. Plant J, 2017, 91: 132-144.
doi: 10.1111/tpj.2017.91.issue-1
[18] Yan Q T, Lu H, Mao W X, Li J Y. Map-based cloning for plants gene isolation. Mol Plant Breed, 2005, 3: 585-590.
[19] 牛静, 陈赛华, 赵婕妤, 曾召琼, 蔡茂红, 周亮, 刘喜, 江玲, 万建民. 水稻株型突变体rad-1rad-2的鉴定与功能基因克隆. 作物学报, 2015, 41: 1621-1631.
doi: 10.3724/SP.J.1006.2015.01621
Niu J, Chen S H, Zhao J Y, Zeng Z Q, Cai M H, Zhou L, Liu X, Jiang L, Wan J M. Identification and map-based cloning of rad-1 and rad-2, two rice architecture determinant mutants. Acta Agron Sin, 2015, 41: 1621-1631. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01621
[20] 周文期.调控水稻叶表皮发育的LPL2DSP1基因克隆与功能分析. 兰州大学博士学位论文, 甘肃兰州, 2015.
Zhou W Q. The Cloning andFunctional Analysis of LPL2 and DSP1, Two Genes, that Regulate the Epidermal Cell Development in Rice. PhD Dissertation of Lanzhou University, Lanzhou, Gansu, China, 2015. (in Chinese with English abstract)
[21] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究. 作物学报, 2022, 48: 1401-1415.
doi: 10.3724/SP.J.1006.2022.12032
Zhou W Q, Qiang X X, Wang S, Jiang J W, Wei W R. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice. Acta Agron Sin, 2022, 48: 1401-1415. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12032
[22] 吕洪坤, 郑军. 图位克隆技术在玉米基因分离中的应用. 分子植物育种, 2013, 11: 460-468.
Lyu H K, Zheng J. The application of map-based cloning in maize gene isolation. Mol Plant Breed, 2013, 11: 460-468. (in Chinese with English abstract)
[23] 张素梅, 刘凤军, 刘保申, 王立静, 董树亭. 新的玉米显性矮秆基因的发现及初步分析. 玉米科学, 2007, 15(3): 15-18.
Zhang S M, Liu F J, Liu B S, Wang L J, Dong S T. Discovery of a new dominant dwarf gene in maize and its preliminary study. J Maize Sci, 2007, 15(3): 15-18. (in Chinese with English abstract)
[24] 徐幸. 种植密度对不同株高玉米品种茎秆抗倒伏性能及产量的影响. 吉林农业大学硕士学位论文, 吉林长春, 2019.
Xu X. Effects of Planting Density on Stem Lodging Resistance and Yield of Different Maize Cultivars with Different Height. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2019. (in Chinese with English abstract)
[25] 周文期, 张贺通, 何海军, 龚佃明, 杨彦忠, 刘忠祥, 李永生, 王晓娟, 连晓荣, 周玉乾, 邱法展. 调控玉米株高和穗位高候选基因ZmDLE1的定位. 中国农业科学, 2023, 56: 821-837.
doi: 10.3864/j.issn.0578-1752.2023.05.002
Zhou W Q, Zhang H T, He H J, Gong D M, Yang Y Z, Liu Z X, Li Y S, Wang X J, Lian X R, Zhou Y Q, Qiu F Z. Candidate gene localization of ZmDLE1 gene regulating plant height and ear height in maize. Sci Agric Sin, 2023, 56: 821-837. (in Chinese with English abstract)
[26] 邢安琪.玉米株高主效QTL-qph1ys基因及其修饰因子ys-modifier的克隆、功能验证及机理研究. 中国农业大学博士学位论文, 北京, 2014.
Xing A Q. Positional Cloning andDissection of a Major Plant Height QTL-qph1 and the ys Mutant Gene and Its Modifier in Maize. PhD Dissertation of China Agricultural University, Beijing, China, 2014. (in Chinese with English abstract)
[27] Emerson R A, Beadle G W, Fraser A C. A Summary of Linkage Studies in Maize. Ithaca N Y: Cornell University, 1935.
[28] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析. 作物学报, 2023, 49: 647-661.
doi: 10.3724/SP.J.1006.2023.23023
Ma Y J, Bao J X, Gao Y X, Li Y N, Qin W X, Wang Y B, Long Y, Li J P, Dong Z Y, Wan X Y. Genome-wide association analysis of plant height and ear height related traits in maize. Acta Agron Sin, 2023, 49: 647-661. (in Chinese with English abstract)
[29] 周文期, 连晓荣, 周玉乾, 王兴荣, 杨彦忠, 刘忠祥, 王晓娟, 何海军, 寇思荣. EMS诱变玉米自交系种质创新应用. 玉米科学, 2020, 28(6): 31-38.
Zhou W Q, Lian X R, Zhou Y Q, Wang X R, Yang Y Z, Liu Z X, Wang X J, He H J, Kou S R. Innovative application of EMS mutagenesis germplasm of maize inbred lines. J Maize Sci, 2020, 28(6): 31-38. (in Chinese)
[30] 连晓荣, 王晓娟, 周玉乾, 何海军, 杨彦忠, 刘忠祥, 李永生, 杨晨曦, 周文期. EMS诱变玉米自交系郑58后代变异分析及应用评价. 玉米科学(2023-07-04). https://kns.cnki.net/kcms2/detail/22.1201.S.20230704.0951.002.html.
Lian X R, Wang X J, Zhou Y Q, He H J, Yang Y Z, Liu Z X, Li Y S, Yang C X, Zhou W Q. Variation analysis and application evaluation of progeny of maize inbred line Zheng 58 by EMS chemical mutation. J Maize Sci, (2023-07-04). https://kns.cnki.net/kcms2/detail/22.1201.S.20230704.0951.002.html. (in Chinese with English abstract)
[31] Pilu R, Cassani E, Villa D, Curriale S, Panzeri D, Badone F C, Landoni M. Isolation and characterization of a new mutant allele of brachytic2 maize gene. Mol Breed, 2007, 20: 83-91.
doi: 10.1007/s11032-006-9073-7
[32] Balzan S, Carraro N, Salleres B, Cortivo C D, Tuinstra M R, Johal G, Varotto S. Genetic and phenotypic characterization of a novel brachytic2 allele of maize. Plant Growth Regul, 2018, 86: 81-92.
doi: 10.1007/s10725-018-0412-6
[33] 魏莱.玉米稀有等位株高基因subr2的定位与功能分析. 中国农业大学博士学位论文, 北京, 2018.
Wei L. Mapping andFunctional Analysis of a Rare Allele of Maize Plant Height Gene subr2. PhD Dissertation of China Agricultural University, Beijing, China, 2018. (in Chinese with English abstract)
[1] 刁现民, 王立伟, 智慧, 张俊, 李顺国, 程汝宏. 谷子中矮秆资源创制、遗传解析和育种利用[J]. 作物学报, 2024, 50(2): 265-279.
[2] 毛燕, 郑名敏, 牟成香, 谢吴兵, 唐琦. 渗透胁迫下玉米自然反义转录本cis-NATZmNAC48启动子的功能分析[J]. 作物学报, 2024, 50(2): 354-362.
[3] 马娟, 曹言勇 . 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[4] 杨静蕾, 吴冰杰, 王安洲, 肖英杰. 基于多维组学数据的玉米农艺和品质性状预测研究[J]. 作物学报, 2024, 50(2): 373-382.
[5] 岳润清, 李文兰, 孟昭东. 转基因抗虫耐除草剂玉米自交系LG11的获得及抗性分析[J]. 作物学报, 2024, 50(1): 89-99.
[6] 宋旭东, 朱广龙, 张舒钰, 章慧敏, 周广飞, 张振良, 冒宇翔, 陆虎华, 陈国清, 石明亮, 薛林, 周桂生, 郝德荣. 长江中下游地区糯玉米花期耐热性鉴定及评价指标筛选[J]. 作物学报, 2024, 50(1): 172-186.
[7] 杨立达, 任俊波, 彭新月, 杨雪丽, 罗凯, 陈平, 袁晓婷, 蒲甜, 雍太文, 杨文钰. 施氮与种间距离下大豆/玉米带状套作作物生长特性及其对产量形成的影响[J]. 作物学报, 2024, 50(1): 251-264.
[8] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[9] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[10] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[11] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[12] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[13] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[14] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[15] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .