欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2801-2817.doi: 10.3724/SP.J.1006.2024.32052

• 耕作栽培·生理生化 • 上一篇    下一篇

基于能量效率与碳效率的长江中游不同水旱轮作系统可持续性分析

杨博文1(), 梁修仁2, 秦明广1, 曹英健1, 熊航3, 展茗1,*()   

  1. 1华中农业大学植物科学技术学院 / 农业农村部长江中游作物生理生态与耕作重点实验室, 湖北武汉 430070
    2广西生态工程职业技术学院, 广西柳州 545004
    3华中农业大学经济管理学院 / 华中农业大学宏观农业研究院, 湖北武汉 430070
  • 收稿日期:2023-12-03 接受日期:2024-05-21 出版日期:2024-11-12 网络出版日期:2024-07-10
  • 通讯作者: *展茗, E-mail: zhanming@mail.hzau.edu.cn
  • 作者简介:E-mail: bw.yang1@outlook.com
  • 基金资助:
    国家自然科学基金项目(31871579);国家自然科学基金项目(31571622)

Sustainability analysis of different upland-paddy rotation systems in the middle reaches of the Yangtze River based on energy efficiency and carbon efficiency

YANG Bo-Wen1(), LIANG Xiu-Ren2, QIN Ming-Guang1, CAO Ying-Jian1, XIONG Hang3, ZHAN Ming1,*()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Physiology, Ecology and Tillage in the Middle Reach of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Guangxi Eco-engineering Vocational and Technical College, Liuzhou 545004, Guangxi, China
    3College of Economics and Management, Huazhong Agricultural University / Macro- agricultural Research Institute, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-12-03 Accepted:2024-05-21 Published:2024-11-12 Published online:2024-07-10
  • Contact: *E-mail: zhanming@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31871579);National Natural Science Foundation of China(31571622)

摘要:

长江中游地区是我国典型水旱轮作区, 合理评价不同水旱轮作模式的生态经济效益对推动该区稻田可持续生产具有重要意义。本研究选取玉米-晚稻(MR)、油菜-中稻(RR)和小麦-中稻(WR) 3种水旱轮作模式, 对比其在秸秆还田(S+)与秸秆不还田(S-)处理下的作物产量、能量效率和碳效率等方面的差异。结果表明:(1) MR模式作物产量较RR和WR模式显著高22.25%和14.81%。秸秆还田显著提高MR、RR和WR模式作物产量7.12%、6.54%和6.43%。(2) MR模式光能利用率和产投比均显著高于RR与WR模式, 耗能强度显著低于RR和WR模式。秸秆还田显著提高MR、WR模式光能利用率和RR、WR模式耗能强度, 显著降低MR、RR和WR模式产投比。(3) MR模式碳生产效率和碳生态效率显著高于RR和WR模式。秸秆还田显著提高了MR、RR和WR模式碳生产效率和碳生态效率。(4) MR模式碳足迹显著低于RR和WR模式。秸秆还田显著降低了MR、RR和WR模式碳足迹。综上, 与油菜-中稻和小麦-中稻模式相比, 玉米-晚稻模式具有较高的作物产量、能量效率、碳效率和较低的碳足迹; 秸秆还田利于提高作物产量, 同时提高了各模式能量效率和碳效率, 降低了碳足迹。可见, 玉米-晚稻水旱轮作配合秸秆还田具有较好的生态经济效益, 可作为长江中游水旱轮作区一种可持续生产技术。

关键词: 水旱轮作, 秸秆还田, 能量效率, 碳效率, 碳足迹

Abstract:

Upland-paddy rotations play a vital role in the middle Yangtze River region of China. It is crucial to rationally evaluate the environmental and economic benefits of different crop rotation patterns for sustainable crop production. This study investigated three upland-paddy rotations: maize-rice (MR), rapeseed-rice (RR), and wheat-rice (WR), to assess crop yields, energy efficiency, and carbon efficiency under two treatments: straw return (S+) and straw clearance (S-). The results revealed that the MR rotation had a significant increase in yield, with 22.25% and 14.81% higher yields compared to RR and WR, respectively. Incorporating straw return led to a significant improvement in crop yield for MR, RR, and WR, with increases of 7.12%, 6.54%, and 6.43%, respectively. Furthermore, the MR pattern exhibited significantly higher radiation energy utilization efficiency (RUE) and output/input ratio (O/I) compared to RR and WR, with significantly lower energy consumption intensity (EI). Straw return improved RUE for MR and WR, increased EI for RR and WR, and decreased O/I across all patterns. Additionally, carbon production efficiency and carbon ecological efficiency were significantly higher for MR compared to RR and WR. Straw return significantly improved efficiencies in all patterns. Moreover, the carbon footprint (CF) of MR was significantly lower than that of RR and WR, and straw return also reduced CF significantly in all patterns. Overall, the study results demonstrate that the MR rotation has higher crop yield, energy efficiency, carbon efficiency, and lower CF. Additionally, straw return can increase crop yield, improve energy efficiency and carbon efficiency, and reduce CF in all patterns. In conclusion, the maize-rice rotation with straw return can be considered a sustainable and beneficial technique for rice production in the middle Yangtze River region.

Key words: upland-paddy rotation, straw return, energy efficiency, carbon efficiency, carbon footprint

图1

试验期间月平均气温和降雨量"

附表1

不同水旱轮作系统农资投入情况"

轮作模式
Rotation
pattern
秸秆管理
Straw management
作物季
Crop season
投入Input
N
(kg hm-2)
P2O5
(kg hm-2)
K2O
(kg hm-2)
种子
Seeds
(kg hm-2)
除草剂
Herbicides
(kg hm-2)
杀虫剂
Pesticides
(kg hm-2)
杀菌剂Fungicide
(kg hm-2)
灌溉耗电
Irrigation electricity
(MJ hm-2)
柴油
Diesel
(kg hm-2)
人工
Labor
(d 人-1 hm-2)
MR S- 旱作物季
Upland crops season
300.0 112.5 142.5 37.5 1.5 1.5 1.3 0 104.2 52.5
水稻季
rice season
180.0 105.0 90.0 37.5 0 1.0 0.7 1612.8 87.5 112.5
S+ 旱作物季
Upland crops season
300.0 75.0 67.5 37.5 1.5 1.5 1.3 0 175.5 45.0
水稻季
rice season
180.0 67.5 52.5 37.5 0 1.0 0.7 1612.8 158.8 105.0
RR S- 旱作物季
Upland crops season
210.0 72.0 72.0 12.0 1.2 0.9 0.6 0 87.5 60.0
水稻季
rice season
210.0 97.5 93.0 30.0 0.9 1.0 0.7 2016.0 87.5 127.5
S+ 旱作物季
Upland crops season
210.0 54.0 31.5 12.0 1.2 0.9 0.6 0.0 158.8 52.5
水稻季
rice season
210.0 86.3 52.5 30.0 0.9 1.0 0.7 2016.0 158.8 120.0
WR S- 旱作物季
Upland crops season
210.0 72.0 72.0 210.0 0 1.0 0.8 0 87.5 60.0
水稻季
rice season
210.0 97.5 93.0 30.0 0.9 1.0 0.7 2016.0 87.5 127.5
S+ 旱作物季
Upland crops season
210.0 54.0 31.5 210.0 0 1.0 0.8 0.0 158.8 53.5
水稻季
rice season
210.0 86.3 52.5 30.0 0.9 1.0 0.7 2016.0 158.8 127.5

表1

不同水旱轮作系统投入、产出要素能量系数"

项目
Item
能量系数
Energy factor
数据来源
Data source
投入项 Inputs
1. 肥料 Fertilizers
氮肥 Nitrogen fertilizer (N) 66.14 MJ kg-1 [17]
磷肥 Phosphatic fertilizer (P2O5) 12.44 MJ kg-1 [17]
钾肥 potash fertilizer (K2O) 11.15 MJ kg-1 [17]
2. 农药 Pesticides
除草剂 Herbicides 238.00 MJ kg-1 [18]
杀虫剂 Pesticides 101.20 MJ kg-1 [19]
杀菌剂 Fungicide 216.00 MJ kg-1 [20]
3. 柴油 Diesel 56.31 MJ L-1 [21]
4. 灌溉耗电 Irrigation electricity 12.00 MJ kWh-1 [21]
5. 种子 Seed
玉米/小麦/水稻 Maize/wheat/rice 14.70 MJ kg-1 [22]
油菜 Rapeseed 27.17 MJ kg-1 [23]
6. 人工 Labor 1.96 MJ h-1 [19]
产出项 Outputs
1. 籽粒 Grain
玉米/小麦/水稻 Maize/wheat/rice 14.70 MJ kg-1 [22]
油菜 Rapeseed 27.17 MJ kg-1 [23]
2. 秸秆 Straw
玉米/小麦/水稻Maize/wheat/rice 12.50 MJ kg-1 [22]
油菜 Rapeseed 18.60 MJ kg-1 [23]

表2

不同水旱轮作系统投入要素排放系数"

项目
Item
排放系数
Emission factor
数据来源
Data source
1. 肥料 Fertilizers
氮肥 Nitrogen fertilizer (N) 1.53 kg CO2-eq kg-1 [27]
磷肥 Phosphatic fertilizer (P2O5) 1.63 kg CO2-eq kg-1 [27]
钾肥 potash fertilizer (K2O) 0.66 kg CO2-eq kg-1 [27]
2. 农药Pesticides [27]
除草剂 Herbicides 10.20 kg CO2-eq kg-1 [27]
杀虫剂 Pesticides 16.60 kg CO2-eq kg-1 [27]
杀菌剂 Fungicide 10.60 kg CO2-eq kg-1 [27]
3. 柴油Diesel 0.89 kg CO2-eq kg-1 [27]
4. 灌溉耗电Irrigation electricity 1.23 kg CO2-eq KWh-1 [27]
5. 种子Seed 0.58 kg CO2-eq kg-1 [27]
6. 人工Labor 3.37 kg CO2-eq d-1 [28]

表3

不同水旱轮作系统作物产量与作物固定能值"

轮作模式
Rotation
pattern
秸秆管理
Straw
management
产量Grain yield (t hm-2) 作物固定能值Values of crop fixed energy (GJ hm-2)
旱作物
Upland crops
水稻
Rice
周年
Annual
旱作物
Upland crops
水稻
Rice
周年
Annual
2019
MR S- 8.86±0.44 b 6.95±0.38 f 15.81±0.82 cd 233.26±17.81 a 144.30±11.71 e 377.57±18.44 bc
S+ 8.79±0.12 b 8.08±0.55 e 16.87±0.59 ab 225.46±13.11 a 165.93±0.70 d 391.39±13.60 ab
RR S- 2.74±0 f 9.54±0.44 bc 12.28±0.44 j 115.63±19.80 d 195.15±9.77 b 310.78±18.60 fg
S+ 2.69±0.24 f 10.52±0.47 a 13.22±0.24 i 121.21±23.77 d 202.17±7.40 ab 323.39±23.14 ef
WR S- 4.81±0.26 cd 8.84±0.18 d 13.65±0.20 hi 116.22±4.88 d 175.82±5.06 cd 292.05±0.20 g
S+ 4.78±0.32 cd 9.84±0.32 b 14.62±0.64 efg 116.61±1.78 d 199.86±1.42 ab 316.47±2.81 f
2020
MR S- 8.65±0.37 b 7.59±0.08 e 16.24±0.31 bc 193.61±4.32 b 167.67±1.65 d 361.29±4.70 cd
S+ 9.50±0.10 a 7.95±0.06 e 17.45±0.16 a 219.37±2.33 a 180.08±1.84 c 399.45±3.61 a
RR S- 4.48±0.22 de 9.52±0.36 bc 14.00±0.56 gh 148.86±8.67 c 195.57±4.17 b 344.43±12.77 de
S+ 4.25±0.44 e 10.52±0.41 a 14.77±0.72 ef 145.25±13.01 c 208.36±3.80 a 353.61±10.54 d
WR S- 5.16±0.36 c 9.20±0.32 cd 14.36±0.58 fg 118.64±7.78 d 175.98±5.38 cd 294.61±13.16 g
S+ 4.71±0.15 cde 10.47±0.14 a 15.17±0.17 de 111.48±4.55 d 194.58±5.84 b 306.06±1.93 fg
平均Mean
MR S- 8.76±0.40 B 7.27±0.23 E 16.02±0.56 B 213.44±11.06 A 155.99±6.68 D 369.43±11.57 B
S+ 9.14±0.11 A 8.02±0.30 D 17.16±0.38 A 222.42±7.72 A 173.00±1.27 C 395.42±8.60 A
RR S- 3.61±0.11 D 9.53±0.40 B 13.14±0.31 E 132.25±14.24 B 195.36±6.97 B 327.61±15.68 C
S+ 3.47±0.34 D 10.52±0.44 A 14.00±0.31 D 133.23±18.39 B 205.27±5.60 A 338.50±16.84 C
WR S- 4.99±0.31 C 9.02±0.25 C 14.00±0.20 D 117.43±6.33 C 175.90±5.22 C 293.33±6.68 E
S+ 4.74±0.24 C 10.15±0.23 A 14.90±0.40 C 114.05±3.16 C 197.22±3.63 B 311.26±2.37 D
方差分析ANOVA
年份Year (Y) 53.51** 5.30ns 54.10** 0.13ns 16.37** 3.53ns
轮作模式
Rotation pattern (R)
1242.10**
188.68**
204.24**
236.93**
168.59**
121.14**
秸秆处理
Straw management (S)
0ns
80.59**
58.48**
0.29ns
100.15**
18.57**
Y×R 27.69** 1.87ns 7.99** 13.22** 15.67** 7.99**
Y×S 0.35ns 0.58ns 0.05ns 0.47ns 0.85ns 0.10ns
R×S 4.42* 1.13ns 0.48ns 0.78ns 4.28* 1.06ns
Y×R×S 5.02* 2.14ns 0.17ns 2.90ns 1.96ns 1.74ns

表4

不同水旱轮作系统能量投入"

轮作模式
Rotation
pattern
秸秆管理
Straw
management
太阳辐射能
Solar energy
(GJ hm-2)
辅助能投入Auxiliary energy input (GJ hm-2)
N P2O5 K2O 种子
Seeds
除草剂
Herbicides
杀虫剂
Pesticides
杀菌剂
Fungicide
灌溉耗电
Irrigation electricity
柴油
Diesel
人工
Labor
总计
Total
MR S- 49,110 31.75 2.71 2.59 1.10 0.36 0.25 0.43 1.6 10.79 7.76 59.34
S+ 49,110 31.75 1.77 1.34 1.10 0.36 0.25 0.43 1.6 18.82 7.06 64.48
RR S- 49,110 27.78 2.11 1.84 1.14 0.50 0.19 0.28 2.0 9.85 8.82 54.51
S+ 49,110 27.78 1.75 0.94 1.14 0.50 0.19 0.28 2.0 17.88 8.11 60.57
WR S- 49,110 27.78 2.11 1.84 3.53 0.21 0.20 0.32 2.0 9.85 8.82 56.66
S+ 49,110 27.78 1.75 0.94 3.53 0.21 0.20 0.32 2.0 17.88 8.51 63.12

表5

不同水旱轮作系统能量产出和能量效率"

轮作模式
Rotation
pattern
秸秆管理
Straw
management
籽粒产出能值Energy output by grain (GJ hm-2) 光能利用率
Radiation use efficiency (%)
耗能强度
Energy intensity
(GJ t-1 grain)
产投比
Grain energy output/input
(GJ GJ-1)
旱作物
Upland crops
水稻
Rice
周年
Annual
MR S- 110.69±5.08 a 91.89±1.98 f 202.59±3.01 b 0.77±0.02 b 3.71±0.13 d 3.41±0.05 a
S+ 115.59±0.13 a 101.35±3.41 e 216.95±3.50 a 0.81±0.01 a 3.76±0.06 d 3.36±0.05 a
RR S- 45.62±1.37 c 120.52±2.74 c 166.14±2.76 e 0.67±0.03 c 4.15±0.08 bc 3.05±0.05 bc
S+ 43.93±3.82 c 133.01±0.46 a 176.94±1.16 d 0.69±0.03 c 4.33±0.03 a 2.92±0.02 d
WR S- 63.03±3.24 b 114.00±3.18 d 177.03±2.39 d 0.60±0.01 e 4.05±0.05 c 3.12±0.04 b
S+ 59.97±1.35 b 128.38±2.39 b 188.34±1.04 c 0.63±0 d 4.24±0.07 ab 2.98±0.02 c
方差分析ANOVA
R 864.12** 567.93** 349.74** 98.03** 72.25** 160.74**
S 0ns 242.86** 100.31** 10.80** 14.82** 28.67**
R×S 3.08ns 3.39ns 0.84ns 0.30ns 1.48ns 2.07ns

表6

不同水旱轮作系统温室气体累积排放量"

轮作模式
Rotation
pattern
秸秆管理
Straw
management
N2O (kg hm-2) CH4 (kg hm-2) CO2 (t hm-2)
休闲期
Fallow season
旱作物季
Upland crop season
水稻季
Rice season
周年
Annual
休闲期
Fallow
season
旱作物季
Upland
crop season
水稻季
Rice
season
周年
Annual
休闲期
Fallow
season
旱作物季
Upland crop season
水稻季
Rice season
周年
Annual
MR S− 4.23±0.11 a 16.76±0.63 b 3.76±0.01 c 24.75±0.56 a 11.06±0.33 a 11.86±0.60 d 52.95±2.70 e 75.87±2.74 e 5.93±0.13 a 17.92±0.23 f 5.61±0.16 e 29.46±0.10 e
S+ 2.95±0.20 b 15.67±0.30 b 1.99±0.14 d 20.6±0.57 b 9.61±1.04 b 14.31±0.52 c 292.91±4.11 a 316.83±3.70 a 5.92±0.17 a 21.59±0.80 e 8.60±0.06 d 36.11±0.07 d
RR S− 19.59±2.50 a 5.86±0.39 a 25.45±2.44 a 12.88±0.89 cd 155.54±16.58 d 168.42±17.37 d 26.57±0.87 c 14.624±0.19 c 41.20±0.96 c
S+ 10.63±0.58 d 5.46±0.10 ab 16.09±0.50 c 18.19±1.27 a 241.98±23.26 b 260.17±22.19 b 30.24±0.42 b 17.15±0.24 a 47.38±0.22 b
WR S− 13.45±0.47 c 5.57±0.27 ab 19.02±0.42 b 16.1±0.49 b 194.68±4.91 c 210.78±5.36 c 24.76±0.61 d 15.79±0.33 b 40.54±0.48 c
S+ 10.63±0.25 d 5.27±0.22 b 15.9±0.19 c 19.59±1.57 a 249.56±16.97 b 269.15±15.41 b 32.49±0.79 a 16.93±0.25 a 49.42±0.99 a
方差分析ANOVA
R 22.81** 281.07** 35.25** 35.77** 18.92** 15.93** 351.50** 3327.66** 560.89**
S 67.50** 60.14** 116.59** 66.46** 378.54** 422.48** 259.83** 452.16** 469.70**
R×S 20.91** 20.15** 14.19** 3.31ns 76.58** 78.33** 18.93** 28.04** 6.19*

表7

不同水旱轮作系统碳投入"

轮作模式
Rotation
pattern
秸秆管理
Straw
management
C投入 Carbon input (kg CO2-eq hm-2)
N P2O5 K2O 种子Seeds 除草剂Herbicides 杀虫剂Pesticides 杀菌剂Fungicide 灌溉耗电
Irrigation electricity
柴油
Diesel
人工
Labor
总计
Total
MR S- 734.40 354.53 153.45 43.50 15.30 41.50 21.20 165.31 170.61 556.05 2255.85
S+ 734.40 232.28 79.20 43.50 15.30 41.50 21.20 165.31 297.53 505.50 2135.71
RR S- 642.60 276.29 108.90 24.36 21.42 31.54 13.78 206.64 155.75 631.88 2113.15
S+ 642.60 228.69 55.44 24.36 21.42 31.54 13.78 206.64 282.66 581.33 2088.46
WR S- 642.60 276.29 108.90 139.20 9.18 33.20 15.90 206.64 155.75 631.88 2219.53
S+ 642.60 228.69 55.44 139.20 9.18 33.20 15.90 206.64 282.66 609.97 2223.48

表8

不同水旱轮作系统碳固定、碳排放、碳足迹及碳效率"

轮作
模式
Rotation pattern
秸秆管理
Straw
management
碳固定
Carbon fixation (t CO2 hm-2)
碳排放
Carbon emission (t CO2-eq hm-2)
碳效率
Carbon efficiency (kg kg-1)
碳足迹
Carbon footprint
(kg CO2 eq kg-1grain)
籽粒碳
Grain C
作物碳
Crop C
直接排放Direct emissions 间接排放
Indirect emissions
总计
Total
碳生产效率
Carbon produce efficiency
碳生态效率
Carbon ecological efficiency
N2O CH4 [ΔCE(CO2)]
MR S− 23.04±0.43 b 55.79±0.96 b 7.37±0.17 a 2.58±0.09 e 5.11±0.31 c 2.26 17.32±0.25 c 1.33±0.04 b 3.22±0.10 b 1.08±0.05 e
S+ 24.77±0.23 a 61.65±0.62 a 6.14±0.18 b 10.77±0.15 a -11.02±0.99 e 2.14 8.03±0.66 d 3.1±0.25 a 7.71±0.64 a 0.47±0.03 f
RR S− 18.06±0.59 e 53.59±2.00 bc 7.59±0.73 a 5.73±0.59 d 17.83±0.19 a 2.11 33.26±0.64 a 0.54±0.01 d 1.61±0.06 d 2.53±0.10 a
S+ 19.25±0.96 d 55.35±1.91 b 4.79±0.15 c 8.85±0.75 b 2.57±1.33 d 2.09 18.3±1.90 c 1.06±0.15 c 3.05±0.41 b 1.31±0.14 d
WR S− 20.36±0.54 c 52.37±2.13 c 5.67±0.12 b 7.17±0.18 c 17.19±1.19 a 2.22 32.24±1.31 a 0.63±0.04 d 1.63±0.13 d 2.3±0.09 b
S+ 21.18±0.54 c 53.88±0.80 bc 4.74±0.06 c 9.15±0.52 b 7.59±0.77 b 2.22 23.7±1.22 b 0.89±0.03 c 2.28±0.10 c 1.59±0 c
方差分析ANOVA
R 120.31** 21.74** 35.25** 150.93** 506.41** 319.22** 270.91** 215.00** 386.41**
S 19.97** 17.66** 116.57** 422.47** 1029.36** 417.95** 214.57** 208.44** 322.90**
R×S 0.89ns 3.79ns 14.19** 78.33** 23.12** 14.36** 64.21** 59.40** 90.46**
[1] 李淑娅, 田少阳, 袁国印, 葛均筑, 徐莹, 王梦影, 曹凑贵, 翟中兵, 凌霄霞, 展茗, 赵明. 长江中游不同玉稻种植模式产量及资源利用效率的比较研究. 作物学报, 2015, 41: 1537-1547.
doi: 10.3724/SP.J.1006.2015.01537
Li S Y, Tian S Y, Yuan G Y, Ge J Z, Xu Y, Wang M Y, Cao C G, Zhai Z B, Ling X X, Zhan M, Zhao M. Comparison of yield and resource utilization efficiency among different maize and rice cropping systems in middle reaches of Yangtze River. Acta Agron Sin, 2015, 41: 1537-1547 (in Chinese with English abstract).
[2] 王良, 刘元元, 钱欣, 张慧, 代红翠, 刘开昌, 高英波, 方志军, 刘树堂, 李宗新. 单季麦秸还田促进小麦-玉米周年碳效率和经济效益协同提高. 中国农业科学, 2022, 55: 350-364.
doi: 10.3864/j.issn.0578-1752.2022.02.010
Wang L, Liu Y Y, Qian X, Zhang H, Dai H C, Liu K C, Gao Y B, Fang Z J, Liu S T, Li Z X. The single season wheat straw returning to promote the synergistic improvement of carbon efficiency and economic benefit in wheat-maize double cropping system. Sci Agric Sin, 2022, 55: 350-364 (in Chinese with English abstract).
[3] 陆宏芳, 蓝盛芳, 陈飞鹏, 彭少麟. 农业生态系统能量分析. 应用生态学报, 2004, 15: 159-162.
Lu H F, Lan S F, Chen F P, Peng S L. Advances in energy analysis of agro-ecosystems. Chin J Appl Ecol, 2004, 15: 159-162 (in Chinese with English abstract).
[4] 刘巽浩, 徐文修, 李增嘉, 褚庆全, 杨晓琳, 陈阜. 农田生态系统碳足迹法:误区、改进与应用: 兼析中国集约农作碳效率(续). 中国农业资源与区划, 2014, 35(1): 1-7.
Liu X H, Xu W X, Li Z J, Chu Q Q, Yang X L, Chen F. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analysing the carbon efficiency of china's intelligent farming (continued). Chin J Agric Resour Region Plann, 2014, 35(1): 1-7 (in Chinese with English abstract).
[5] 史磊刚, 范士超, 孔凡磊, 陈阜. 华北平原主要作物生产的碳效率研究初报. 作物学报, 2011, 37: 1485-1490.
doi: 10.3724/SP.J.1006.2011.01485
Shi L G, Fan S C, Kong F L, Chen F. Preliminary study on the carbon efficiency of main crops production in North China Plain. Acta Agron Sin, 2011, 37: 1485-1490 (in Chinese with English abstract).
[6] Yadav G S, Das A, Lal R, Babu S, Meena R S, Saha P, Singh R, Datta M. Energy budget and carbon footprint in a no-till and mulch based rice-mustard cropping system. J Clean Prod, 2018, 191: 144-157.
[7] 高旺盛, 陈源泉, 王小龙, 黄坚雄. 中国种植业碳中和技术路径探讨与对策建议. 农业现代化研究, 2022, 43: 941-947.
Gao W S, Chen Y Q, Wang X L, Huang J X. Discussion of the technical path and the countermeasures on the carbon neutralization of crop planting sector in China. Res Agric Modern, 2022, 43: 941-947 (in Chinese with English abstract).
[8] 王小彬, 王燕, 代快, 武雪萍, 赵全胜, 张丁辰, 冯宗会, 蔡典雄. 旱地农田不同耕作系统的能量/碳平衡. 生态学报, 2011, 31: 4638-4652.
Wang X B, Wang Y, Dai K, Wu X P, Zhao Q S, Zhang D C, Feng Z H, Cai D X. Coupled energy and carbon balance analysis under dryland tillage systems. Acta Ecol Sin, 2011, 31: 4638-4652 (in Chinese with English abstract).
[9] Li C, Li S. Energy budget and carbon footprint in a wheat and maize system under ridge furrow strategy in dry semi humid areas. Sci Rep, 2021, 11: 9367.
doi: 10.1038/s41598-021-88717-3 pmid: 33931679
[10] 冯倩倩, 韩惠芳, 张亚运, 许菁, 曹亚倩, 王少博, 宁堂原, 李增嘉. 耕作方式对麦-玉轮作农田固碳、保水性能及产量的影响. 植物营养与肥料学报, 2018, 24: 869-879.
Feng Q Q, Han H F, Zhang Y Y, Xu J, Cao Y Q, Wang S B, Ning T Y, Li Z J. Effects of tillage methods on soil carbon sequestration and water holding capacity and yield in wheat-maize rotation. J Plant Nutr Fert, 2018, 24: 869-879 (in Chinese with English abstract).
[11] 赵雅雯, 王金洲, 王士超, 武红亮, 黄绍敏, 卢昌艾. 潮土区小麦、玉米残体对土壤有机碳的贡献——基于改进的RothC模型. 中国农业科学, 2016, 49: 4160-4168.
doi: 10.3864/j.issn.0578-1752.2016.21.010
Zhao Y W, Wang J Z, Wang S C, Wu H L, Huang S M, Lu C A. Contributions of wheat and corn residues to soil organic carbon under fluvo-aquic soil area: based on the modified RothC Model. Sci Agric Sin, 2016, 49: 4160-4168 (in Chinese with English abstract).
[12] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径. 作物学报, 2022, 48: 930-941.
doi: 10.3724/SP.J.1006.2022.12073
Yan S J, Deng A X, Shang Z Y, Tang Z W, Chen C Q, Zhang J, Zhang W J. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production. Acta Agron Sin, 2022, 48: 930-941 (in Chinese with English abstract).
[13] Chen Z, Xu C, Ji L, Feng J, Li F, Zhou X, Fang F. Effects of multi-cropping system on temporal and spatial distribution of carbon and nitrogen footprint of major crops in China. Glob Ecol Conserv, 2020, 22: e00895.
[14] Jiang Z, Lin J, Liu Y, Mo C, Yang J. Double paddy rice conversion to maize-paddy rice reduces carbon footprint and enhances net carbon sink. J Clean Prod, 2020, 258: 120643-120643.
[15] Zhou Y, Liu K, Harrison M T, Fahad S, Gong S, Zhu B, Liu Z. Shifting Rice cropping systems mitigates ecological footprints and enhances grain yield in central China. Front Plant Sci, 2022, 13: 895402.
[16] Sun X, Che Y, Xiao Y. Increased N fertilizer input enhances CH4 and N2O emissions from soil amended with low amount of milk vetch residues. Paddy Water Environ, 2019, 17: 597-604.
doi: 10.1007/s10333-018-00689-9
[17] Esengun K, Gündüz O, Erdal G. Input-output energy analysis in dry apricot production of Turkey. Energ Convers Manag, 2007, 48: 592-598.
[18] Helsel Z R. Energy and alternatives for fertilizer and pesticide use. Energy World Agric, 1992, 6: 177-201.
[19] Yaldiz O, Ozturk H H, Zeren Y, Bascetincelik A. Energy use in field crops of Turkey. International Congress of Agricultural Machinery and Energy; 12-14 October 1993, Kusadası-Turkey in Turkish.
[20] Pathak B S, Bining A S. Energy use pattern and potential for energy saving in rice-wheat cultivation. Energy Agric, 1985, 4: 271-278.
[21] Singh H, Mishra D, Nahar N M. Energy use pattern in production agriculture of a typical village in Arid Zone India: Part I. Energ Convers Manag, 2002, 43: 2275-2286.
[22] Ozkan B, Kurklu A, Akcaoz H. An input-output energy analysis in greenhouse vegetable production: a case study for Antalya region of Turkey. Biomass Bioenerg, 2004, 26: 89-95.
[23] Jankowski K J, Budzyński W S, Kijewski Ł. An analysis of energy efficiency in the production of oilseed crops of the family brassicaceae in poland. Energy, 2015, 81: 674-681.
[24] Kimura M, Murase J, Lu Y. Carbon cycling in rice field ecosystems in the context of input, decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil Biol Biochem, 2004, 36: 1399-1416.
[25] 刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波, 次旦. 直播冬油菜干物质积累及氮磷钾养分的吸收利用. 中国农业科学, 2011, 44: 4823-4832.
doi: 10.3864/j.issn.0578-1752.2011.23.008
Liu X W, Lu J W, Li X K, Bu R Y, Liu B, Ci D. Dry matter accumulation and N, P, K absorption and utilization in direct seeding winter oilseed. Sci Agric Sin, 2011, 44: 4823-4832 (in Chinese with English abstract).
[26] Gregory P. Roots, rhizosphere and soil: the route to a better understanding of soil science. Eur J Soil Sci, 2006, 57: 2-12.
[27] CLCD. https://ghgprotocol.org/Third-Party-Databases/CLCD.
[28] 杨士弘. 城市绿化树木碳氧平衡效应研究. 城市环境与城市生态, 1996, 9(1): 37-39.
Yang S H. Carbon and oxygen balance effects of urban greening trees. Urban Environ Urban Ecol, 1996, 9(1): 37-39 (in Chinese with English abstract).
[29] Weiser C, Fuß R, Kage H, Flessa H. Do farmers in germany exploit the potential yield and nitrogen benefits from preceding oilseed rape in winter wheat cultivation. Arch Agron Soil Sci, 2018, 64: 25-37.
[30] 张顺涛, 鲁剑巍, 丛日环, 任涛, 李小坤, 廖世鹏, 张跃强, 郭世伟, 周明华, 黄益国, 程辉. 油菜轮作对后茬作物产量的影响. 中国农业科学, 2020, 53: 2852-2858.
doi: 10.3864/j.issn.0578-1752.2020.14.009
Zhang S T, Lu J W, Cong R H, Ren T, Li X K, Liao S P, Zhang Y Q, Guo S W, Zhou M H, Huang Y G, Cheng H. Effect of rapeseed rotation on the yield of next-stubble crops. Sci Agric Sin, 2020, 53: 2852-2858 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.14.009
[31] 岳骞, 吴思远, 张岳芳, 盛婧, 郭智, 陈丹艳, 汪超, 徐向瑞, 王鑫, 宗焦. 不同水旱轮作模式全生命周期温室效应及经济效益评价. 农业环境科学学报, 2022, 41: 1825-1835.
Yue Q, Wu S Y, Zhang Y F, Sheng J, Guo Z, Chen D Y, Wang C, Xu X R, Wang X, Zong J. Life cycle assessment on greenhouse effects and economic benefits for different paddy rice-upland rotation systems. J Agro-Environ Sci, 2022, 41: 1825-1835 (in Chinese with English abstract).
[32] 王子芳, 高明, 秦建成, 慈恩. 稻田长期水旱轮作对土壤肥力的影响研究. 西南农业大学学报(自然科学版), 2003, 25: 514-517.
Wang Z F, Gao M, Qin J C, Ci E. Effect of long-term “paddy- land” rotation on soil fertility in paddy fields. J Southwest Agric Univ (Nat Sci), 2003, 25: 514-517 (in Chinese with English abstract).
[33] Seong T Y, Young J K, In H J, Tae K H, Je B Y, Min H Y, Young S C, Hang W K. Growth and yield of pearl millet, sorghum, millet and rice in Yunnan. Korean Soc Crop Sci, 2015.
[34] Timsina J, Jat M L, Majumdar K. Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. Plant Soil, 2010, 335: 65-82.
[35] Timsina J, Kumar Singh V, Majumdar K. Potassium management in rice-maize systems in South Asia. J Plant Nutr Soil Sci, 2013, 176: 317-330.
[36] 李淑娅. 长江中游不同玉稻种植模式产量形成及资源利用效率比较研究. 华中农业大学硕士学位论文, 湖北武汉, 2015.
Li S Y. Comparative Studies on Yield Formation and Resource Use Efficiency of Different Maize and Rice Cropping Systems in Middle Reaches of Yangtze River. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2015 (in Chinese with English abstract).
[37] Qin M, Wang Y, Zhan M, Sun M, Cao C, Liu T. Preceding crops changed greenhouse gases emission and carbon neutrality under maize-rice and double rice cropping systems. Arch Agron Soil Sci, 2023, 69: 1801-1816.
[38] Qi G, Kang Y, Yin M, Ma Y, Bai Y, Wang J. Yield responses of wheat to crop residue returning in China: a meta-analysis. Crop Sci, 2019, 59: 2185-2200.
[39] 张丹, 付斌, 胡万里, 翟丽梅, 刘宏斌, 陈安强, 盖霞普, 张亦涛, 刘剑, 王洪媛. 秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量. 农业工程学报, 2017, 33(9): 133-140.
Zhang D, Fu B, Hu W L, Zhai L M, Liu H B, Chen A Q, Gai X P, Zhang Y T, Liu J, Wang H Y. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning. Trans CSAE, 2017, 33(9): 133-140 (in Chinese with English abstract).
[40] Li Z, Shen Y, Zhang W, Zhang H, Liu L, Wang Z, Gu J, Yang J. Effects of long-term straw returning on rice yield and soil properties and bacterial community in a rice-wheat rotation system. Field Crops Res, 2023, 291: 108800.
[41] Zhang M, Song D, Pu X, Dang P, Qin X, Siddique K H. Effect of different straw returning measures on resource use efficiency and spring maize yield under a plastic film mulch system. Eur J Agron, 2022, 134: 126461.
[42] 刘晖, 吴红艳, 冯建, 王智学, 胡琴琴, 于淼. 秸秆还田量对半干旱区褐土团聚体稳定性及有机碳组分的影响. 江苏农业科学, 2024, 52(1): 219-225.
Liu H, Wu H Y, Feng J, Wang Z X, Hu Q Q, Yu M. Effects of straw return on the stability of brown soil aggregates and organic carbon fraction in semi-arid areas. Jiangsu Agric Sci, 2024, 52(1): 219-225 (in Chinese with English abstract).
[43] 程洪岐, 张金绵, 阎新珍, 张金琢, 李文中, 谢彪. 影响小麦全苗的因素分析及预防措施. 作物杂志, 2006, (6): 40-41.
Cheng H Q, Zhang J M, Yan X Z, Zhang J Z, Li W W, Xie B. Analysis of factors affecting wheat seedling integrity and preventive measures. Crops, 2006, (6): 40-41 (in Chinese with English abstract).
[44] 潘越, 李思宇, 高捷, 沈炘垭, 刘立军. 秸秆及其还田方式对不同轮作模式下稻田土壤性质的影响. 作物杂志, 2024, (2): 1-8.
Pan Y, Li S Y, Gao J, Shen X Y, Liu L J. Effects of straw and its returning methods on soil properties in paddy fields under different rotation patterns. Crops, 2024, (2): 1-8 (in Chinese with English abstract).
[45] 赵桂慎, 王一超, 唐晓伟, 李彩恋, 吴文良. 基于能值生态足迹法的集约化农田生态系统可持续性评价. 农业工程学报, 2014, 30(18): 159-167.
Zhao G S, Wang Y C, Tang X W, Li C L, Wu W L. Evaluation of sustainability for intensive farmland ecosystem based on energy ecological footprint. Trans CSAE, 2014, 30(18): 159-167 (in Chinese with English abstract).
[46] 徐宁, 黄国勤. 稻田复种轮作系统能流物流特征研究. 中国生态农业学报, 2014, 22: 1491-1497.
Xu N, Huang G Q. Characteristics of energy: nutrient flow of multiple cropping rotation systems in paddy field. Chin J Eco- Agric, 2014, 22: 1491-1497 (in Chinese with English abstract).
[47] 蒋碧, 吴发启, 吴喜慧, 李明, 佟小刚. 关中平原农田生态系统不同秸秆还田模式的能流分析. 中国生态农业学报, 2012, 20: 1388-1393.
Jiang B, Wu F Q, Wu X H, Li M, Tong X G. Energy flow analysis of straw-return agricultural modes in the Central Shaanxi Plain. Chin J Eco-Agric, 2012, 20: 1388-1393 (in Chinese with English abstract).
[48] 涂昊泽, 林杉, 王军, 胡荣桂, 肖恒斌, 邬磊. 秸秆添加对长期施肥旱地红壤N2O和CO2排放的影响. 环境科学, 2024, 45: 3716-3724.
Tu H Z, Lin S, Wang J, Hu R G, Xiao H B, Wu L. Effects of straw addition on N2O and CO2 emissions from long-term fertilised dryland red soil. J Environ Sci, 2024, 45: 3716-3724 (in Chinese with English abstract).
[49] 蒙世协, 刘春岩, 郑循华, 梁旺国, 胡荣桂. 小麦秸秆还田量对晋南地区裸地土壤: 大气间甲烷、二氧化碳、氧化亚氮和一氧化氮交换的影响. 气候与环境研究, 2012, 17: 504-514.
Meng S X, Liu C Y, Zheng X H, Liang W G, Hu R G. Effects of the applied amount of wheat straw on methane, carbon dioxide, nitrous oxide, and nitric oxide fluxes of a bare soil in South Shanxi. Clim Environ Res, 2012, 17: 504-514 (in Chinese with English abstract).
[50] 伍玉鹏, 刘田, 彭其安, Shaaban M, 胡荣桂. 氮肥配施下不同C/N作物残渣还田对红壤温室气体排放的影响. 农业环境科学学报, 2014, 33: 2053-2062.
Wu Y P, Liu T, Peng Q A, Muhammad S, Hu R G. Greenhouse gas emissions in red soil as influenced by different C/N residues under nitrogen applications. J Agro-Environ Sci, 2014, 33: 2053-2062 (in Chinese with English abstract).
[51] 朱利群, 王春杰, 杨曼君, 李静, 陈利根. 施肥对长江中下游稻田温室气体排放的影响: 基于Meta分析. 资源科学, 2017, 39(1): 105-115.
doi: 10.18402/resci.2017.01.11
Zhu L Q, Wang C J, Yang M J, Li J, Chen L G. Effects of fertilization on greenhouse gas emissions in paddy fields in the Middle and Lower Reaches of Yangtze River: based on meta-analysis. Resour Sci, 2017, 39(1): 105-115 (in Chinese with English abstract).
[52] 李双双, 陈晨, 段鹏鹏, 许欣, 熊正琴. 生物质炭对酸性菜地土壤N2O排放及相关功能基因丰度的影响. 植物营养与肥料学报, 2018, 24: 414-423.
Li S S, Chen C, Duan P P, Xu X, Xiong Z Q. Effects of biochar application on N2O emissions and abundance of nitrogen related functional genes in an acidic vegetable soil. J Plant Nutr Fert, 2018, 24: 414-423 (in Chinese with English abstract).
[53] 郭家宏, 范熠, 张西美. 温度对不同生态系统土壤甲烷氧化过程和甲烷氧化细菌的影响. 中国农业气象, 2022, 43: 427-439.
Guo J H, Fan Y, Zhang X M. Effect of temperature on soil methane oxidation and methanotrophs in different ecosystems. Chin J Agrometeorol, 2022, 43: 427-439 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-6362.2022.06.001
[54] 刘少文, 殷敏, 褚光, 徐春梅, 王丹英, 章秀福, 陈松. 长江中下游稻区不同水旱轮作模式和氮肥水平对稻田CH4排放的影响. 中国农业科学, 2019, 52: 2484-2499.
doi: 10.3864/j.issn.0578-1752.2019.14.008
Liu S W, Yin M, Chu G, Xu C M, Wang D Y, Zhang X F, Chen S. Effects of various paddy-upland crop rotations and nitrogen fertilizer levels on CH4 emission in the Middle and Lower Reaches of the Yangtze River. Sci Agric Sin, 2019, 52: 2484-2499 (in Chinese with English abstract).
[55] 谢立勇, 许婧, 郭李萍, 徐玉秀, 孙雪, 赵洪亮, 郭飞, 赵迅. 水肥管理对稻田CH4排放及其全球增温潜势影响的评估. 中国生态农业学报, 2017, 25: 958-967.
Xie L Y, Xu J, Guo L P, Xu Y X, Sun X, Zhao H L, Guo F, Zhao X. Impact of water/fertilizer management on methane emission in paddy fields and on global warming potential. Chin J Eco-Agric, 2017, 25: 958-967 (in Chinese with English abstract).
[56] 李昕, 孙文娟, 黄耀, 于凌飞. 中国小麦和玉米农田N2O减排措施及潜力. 气候变化研究进展, 2017, 13(3): 273-283.
Li X, Sun W J, Huang Y, Yu L F. Options and potentials to mitigate N2O emissions from wheat and maize fields in China. Clim Change Res, 2017, 13(3): 273-283 (in Chinese with English abstract).
[57] 包明. 不同栽培模式旱地麦田土壤N2O和CO2排放特征及影响因素研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2018.
Bao M. Characteristics and Influencing Factors of CO2 and N2O Emissions From Dryland Wheat Fields with Different Cultivation Patterns. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2018 (in Chinese with English abstract).
[58] 张广斌, 马二登, 张晓艳, 马静, 徐华, 蔡祖聪. 冬季秸秆还田和土地管理对水稻生长期CH4排放的影响. 农业环境科学学报, 2009, 28: 2501-2505.
Zhang G B, Ma E D, Zhang X Y, Ma J, Xu H, Cai Z C. Effects of rice straw incorporation and land management in winter on methane emission during rice growing season. J Agro-Environ Sci, 2009, 28: 2501-2505 (in Chinese with English abstract).
[59] 何巧玲, 杨刚, 邹兰, 张荣萍, 马鹏, 白银萍, 黄晶. 油菜秸秆不同还田方式下水稻碳足迹分析. 西南农业学报, 2022, 35: 1673-1679.
He Q L, Yang G, Zou L, Zhang R P, Ma P, Bai Y P, Huang J. Carbon footprints of rice under different managements of rapeseed straw. Southwest China J Agric Sci, 2022, 35: 1673-1679 (in Chinese with English abstract).
[60] 姜振辉, 杨旭, 刘益珍, 林景东, 吴杨潇影, 杨京平. 春玉米晚稻与早稻晚稻种植模式碳足迹比较. 生态学报, 2019, 39: 8091-8099.
Jiang Z H, Yang X, Liu Y Z, Lin J D, Wu Y X Y, Yang J P. Comparison of carbon footprint between spring maize late rice and early rice late rice cropping system. Acta Ecol Sin, 2019, 39: 8091-8099 (in Chinese with English abstract).
[1] 朱荣昱, 赵蒙杰, 姚云凤, 李艳红, 李向东, 刘兆新. 秸秆还田方式与播种深度对夏直播花生土壤物理性状与出苗特性的影响[J]. 作物学报, 2024, 50(8): 2106-2121.
[2] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[3] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[4] 车品高, 陈国徽, 曹国军, 高冰可, 陈艳芳, 熊文, 应治宏, 周庆友. 稻油轮作下秸秆还田对土壤养分和作物产量的影响[J]. 作物学报, 2024, 50(12): 3118-3128.
[5] 李盼, 陈桂平, 苟志文, 殷文, 樊志龙, 胡发龙, 范虹, 柴强. 绿洲灌区春小麦光能利用与水分生产效益对秸秆还田方式的响应[J]. 作物学报, 2023, 49(5): 1316-1326.
[6] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 秸秆还田配施氮肥对土壤性质及玉米水氮利用效率的影响[J]. 作物学报, 2023, 49(10): 2820-2832.
[7] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[8] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[9] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[10] 王玉珑, 于爱忠, 吕汉强, 王琦明, 苏向向, 柴强. 绿洲灌区小麦秸秆还田与耕作措施对玉米产量的影响[J]. 作物学报, 2022, 48(10): 2671-2679.
[11] 刘磊, 廖萍, 邵华, 刘劲松, 杨星莲, 王静, 王海媛, 张俊, 曾勇军, 黄山. 施石灰和秸秆还田对双季稻田土壤钾素表观平衡的互作效应[J]. 作物学报, 2022, 48(1): 226-237.
[12] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[13] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[14] 李昊昱,孟兆良,庞党伟,陈金,侯永坤,崔海兴,金敏,王振林,李勇. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响[J]. 作物学报, 2019, 45(6): 893-903.
[15] 陈玉章,柴守玺,程宏波,柴雨葳,杨长刚,谭凯敏,常磊. 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响[J]. 作物学报, 2019, 45(2): 256-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!