欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 403-413.doi: 10.3724/SP.J.1006.2024.31016

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦TabHLH112-2B基因克隆及每穗小穗数相关功能标记开发

范子培1,2(), 李龙2, 史雨刚1, 孙黛珍1,*(), 李超男2,*(), 景蕊莲2   

  1. 1山西农业大学农学院, 山西太谷 030801
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2023-02-27 接受日期:2023-05-24 出版日期:2024-02-12 网络出版日期:2023-06-20
  • 通讯作者: *孙黛珍, E-mail: sdz64@126.com;李超男, E-mail: lichaonan@caas.cn
  • 作者简介:E-mail: fan20202090@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFD1200201);财政部和农业农村部国家现代农业产业技术体系建设专项(小麦, CARS-03-5)

Cloning of TabHLH112-2B gene and development of its functional marker associated with the number of spikelet per spike in wheat

FAN Zi-Pei1,2(), LI Long2, SHI Yu-Gang1, SUN Dai-Zhen1,*(), LI Chao-Nan2,*(), JING Rui-Lian2   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2023-02-27 Accepted:2023-05-24 Published:2024-02-12 Published online:2023-06-20
  • Contact: *E-mail: sdz64@126.com;lichaonan@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1200201);China Agriculture Research System of MOF and MARA(Wheat, CARS-03-5)

摘要:

bHLH (basic Helix-Loop-Helix)转录因子在植物生长发育过程中发挥着重要作用。本研究克隆了小麦TabHLH112-2B, 该基因由7个外显子和6个内含子构成, 编码444个氨基酸, 在315~364位氨基酸处具有一个典型的HLH保守结构域。组织表达模式分析表明TabHLH112-2B在小麦幼苗期、拔节期、抽穗期和开花期的各个组织中均有表达, 其中在叶和根中表达量较高。顺式作用元件分析发现TabHLH112-2B启动子区含有植物激素应答、胁迫响应、与分生组织发育相关的多种顺式作用元件, qRT-PCR结果显示其表达响应ABA、IAA、MeJA等植物激素和干旱、高盐、低温、高温等胁迫处理。基因组序列多态性分析检测到启动子区域的2个SNP, 分为2种单倍型。根据SNP-682开发分子标记并进行关联分析, 发现该标记与干旱、高温等多种环境下的每穗小穗数显著相关, Hap-2B-2为每穗小穗数多的优异单倍型。研究结果为培育高产广适小麦新品种的分子标记辅助育种提供了优异基因资源和技术支撑。

关键词: 小麦, TabHLH112-2B, 分子标记, 关联分析, 每穗小穗数, 优异单倍型

Abstract:

The bHLH (basic Helix-Loop-Helix) transcription factor plays an important role in plant growth and development. In this study, wheat gene TabHLH112-2B was cloned, which consists of seven exons and six introns, encoding 444 amino acids, and has a typical HLH conserved domain at 315-364 amino acids. The tissue expression pattern analysis showed that TabHLH112-2B was expressed in all tissues at seedling stage, jointing stage, heading stage, and flowering stages. Among them, the relative expression levels in leaves and roots were higher. The cis-acting element analysis showed that the promoter region of TabHLH112-2B contained a variety of cis-acting elements related to plant hormone responses, stress responses, and meristem development. The qRT-PCR exhibited that the relative expression level of TabHLH112-2B was responsive to plant hormones (such as ABA, IAA, MeJA) and abiotic stresses (such as drought, salt, low and high temperatures). Two SNPs were detected in its promoter region by genomic sequence polymorphism, which were classified into two haplotypes. A molecular marker was developed based on SNP-682, and association analysis showed that the marker was significantly correlated with the number of spikelet per spike in various environments such as drought and high temperature. Hap-2B-2 was a favorable haplotype with more spikelets per spike. These results of this study provide the valuable genetic resources and technical support for molecular marker-assisted breeding of wheat varieties with high yield and wide adaptability.

Key words: wheat, TabHLH112-2B, molecular marker, association analysis, the number of spikelet per spike, favorable haplotype

表1

生物信息学分析所用软件的网址列表"

软件
Software
用途
Function
网址
Website
SMART 结构域分析
Domain analysis
http://smart.embl.de/
ProtParam 蛋白理化性质分析
Physical and chemical properties
https://web.expasy.org/protparam/
ExPASy 蛋白亲疏水性分析
Hydrophilicity analysis
https://web.expasy.org/protscale/SWISS-MODEL
SignalP-5.0 蛋白信号肽预测
Signal peptide prediction
https://services.healthtech.dtu.dk/service.php?SignalP-5.0
NetPhos-3.1 磷酸化位点分析
Phosphorylation site analysis
https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
SOPMA 蛋白二级结构预测
Protein secondary structure
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
phyre2 蛋白三级结构预测
Protein tertiary structure
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
PlantCARE 顺式作用元件分析
Cis-element analysis
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/

表2

本实验所用引物"

引物名称
Primer name
上游引物序列
Forward sequence (5'-3')
下游引物序列
Reverse sequence (5'-3')
TabHLH112-2B ACACTACCCCTCATCTTAGCTCC CTATGACATAATTCAGCCCTCTCA
TabHLH112-pro-2B GAGGCGACTATAGTACACGCAAA CGAAGGGTAAACTGATCCAGC
TabHLH112-2B-qRT CGGCTGAGCAGACTAGCGT AGACGAGCTGTTGGAGTGCC
TaTUB CGTGCTGTCTTTGTAGATCTCG GACCAGTGCAGTTGTCTGAAAG
TabHLH112-2B-BamH I GACAATCGAGTTAAAGAAATTAGGA TCTGTATGAATCTCTGACCGCA

图1

TabHLH112-2B基因序列和蛋白结构预测分析 A: 基因结构; B: 蛋白结构域; C: 蛋白的二级结构; D: 蛋白的三级结构。"

图2

TabHLH112-2B蛋白性质和磷酸化位点预测 A: 蛋白的氨基酸组成。A: 丙氨酸; R: 精氨酸; N: 天冬酰胺; D: 天冬氨酸; C: 半胱氨酸; Q: 谷氨酰胺; E: 谷氨酸; G: 甘氨酸; H: 组氨酸; I: 异亮氨酸; L: 亮氨酸; K: 赖氨酸; M: 蛋氨酸; F: 苯丙氨酸; P: 脯氨酸; S: 丝氨酸; T: 苏氨酸; W: 色氨酸; Y: 酪氨酸; V: 缬氨酸。B: 蛋白的亲/疏水性分析。C: 蛋白的磷酸化位点预测。D: 磷酸化预测值高于0.99的氨基酸位点。"

图3

小麦TabHLH112-2B在不同发育时期的组织表达谱 TabHLH112-2B在A: 幼苗期; B: 拔节期; C: 抽穗期和D: 开花期不同组织中的表达模式。L: 叶; R: 根; RB: 根基; S: 穗; YL: 心叶; P: 穗下节; PN: 倒二节; AN: 倒三节; FL: 旗叶; 误差线代表±标准差。不同的小写字母表示在P < 0.05水平上差异显著。"

图4

小麦幼苗根中TabHLH112-2B在不同激素处理下的表达谱 A: TabHLH112-2B启动子区顺式作用元件预测; B: 50 μmol L-1 ABA处理; C: 0.1 mmol L-1 IAA处理; D: 0.1 μmol L-1 MeJA处理2周龄幼苗根中TabHLH112-2B表达水平。误差线代表±标准差。*: P < 0.05; **: P < 0.01; ***: P < 0.001。"

图5

不同胁迫处理下小麦幼苗中TabHLH112-2B的表达谱 A: 16.1% PEG; B: 250 mmol L-1 NaCl; C: 低温胁迫; D: 高温胁迫处理下TabHLH112-2B的表达水平。误差线代表±标准差。*: P < 0.05; **: P < 0.01; ***: P < 0.001。"

图6

TabHLH112-2B的序列多态性及其dCAPS分子标记 A: TabHLH112-2B启动子区SNP位点与分子标记示意图, 红框表示酶切位点, 红色字母表示变异位点, 红点表示错配碱基。B: 2种单倍型的琼脂糖凝胶电泳图。M: 100 bp DNA ladder; C: Hap-2B-1; T: Hap-2B-2。"

表3

TabHLH112-2B单倍型与16种环境下每穗小穗数的关联分析结果"

环境
Environment
P
P-value
环境
Environment
P
P-value
E1 0.011228526 E9 0.000000386
E2 0.113354414 E10 0.000000934
E3 0.048992919 E11 0.008263578
E4 0.031388574 E12 0.098658098
E5 0.002171438 E13 0.016524218
E6 0.000019440 E14 0.000638932
E7 0.000003438 E15 0.000032654
E8 0.000227778 E16 0.000022470

图7

TabHLH112-2B单倍型与每穗小穗数的关联分析结果 E1’E16缩写同表3。误差线代表±标准差。*: P < 0.05; **: P < 0.01; ***: P < 0.001。"

图8

TabHLH112-2B优异单倍型在我国小麦育种历史中的应用 TabHLH112-2B两种单倍型在我国十大麦区地方品种(A)和现代育成品种(B)中的分布频率。I: 北方冬麦区; II: 黄淮冬麦区; III: 长江中下游麦区; IV: 西南冬麦区; V: 华南冬麦区; VI: 东北春麦区; VII: 北部春麦区; VIII: 西北春麦区; IX: 青藏春冬麦区; X: 新疆冬春麦区。C: 不同年代品种在2005-2006 (2005), 2010-2011 (2010)两个生长季的每穗小穗数。D: 不同年代品种中2种单倍型的频率。"

[1] Dowla U M, Edwards I, O’Hara G, Islam S, Ma W. Developing wheat for improved yield and adaptation under a climate: optimization of a few key genes. Engineering, 2018, 4: 183-202.
[2] 卢红芳. 高温、干旱及其复合胁迫对小麦籽粒谷蛋白大聚合体、淀粉粒度分布和品质性状的影响. 河南农业大学博士学位论文, 河南郑州, 2013.
Lu H F. Effects of High Temperature, Drought and Composite Stress on Large Aggregate, Starch Size Distribution and Quality Traits of Wheat Grain. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2013 (in Chinese with English abstract).
[3] Li Y P, Li L, Zhao M, Guo L, Guo X, Zhao D, Batool A, Dong B D, Xu H X, Cui S J, Zhang A M, Fu X D, Li J M, Jing R L, Liu X G. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J, 2021, 19: 1141-1154.
doi: 10.1111/pbi.v19.6
[4] Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2019, 132: 3155-3167.
doi: 10.1007/s00122-019-03415-z pmid: 31435704
[5] Ding P Y, Mo Z Q, Tang H P, Mu Y, Deng M, Jiang Q T, Liu Y X, Chen G D, Chen G Y, Wang J R. A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds. J Integr Agric, 2022, 21: 1551-1562.
doi: 10.1016/S2095-3119(20)63602-4
[6] Kuzay S, Lin H Q, Li C X, Chen S S, Woods D P, Zhang J L, Lan T Y, Korff M V, Dubcovsky J. WAPO-A1 is the causal gene of the 7AL QTL for spikelet number per spike in wheat. PLoS Genet, 2022, 18: 1009747.
[7] Wittern L M, Barrero J M, Bovill W D, Verbyla K L, Hughes T, Swain S M, Steed G, Webb A A R, Gardner K, Greenland A, Jacobs J, Frohberg C, Schmidt R C, Cavanagh C, Rohde A, Davey M W, Hannah M A. Overexpression of the WAPO-A1 gene increases the number of spikelets per spike in bread wheat. Sci Rep, 2022, 12: 14229.
doi: 10.1038/s41598-022-18614-w pmid: 35987959
[8] Jin J P, Zhang H, Kong L, Gao G, Luo J C. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res, 2014, 42: D1182-1187.
doi: 10.1093/nar/gkt1016
[9] Liu Y J, Ji X Y, Nie X G, Qu M, Zheng L, Tan Z L, Zhao H M, Huo L, Liu S N, Zhang B, Wang Y C. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol, 2015, 207: 692-709.
doi: 10.1111/nph.2015.207.issue-3
[10] Castilhos G, Lazzarotto F, Spagnolo-Fonini L, Bodanese- Zanettini M H, Margis-Pinheiro M. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Sci, 2014, 223: 1-7.
doi: 10.1016/j.plantsci.2014.02.010 pmid: 24767109
[11] Gu X Y, Gao S X, Li J, Song P Y, Zhang Q, Guo J F, Wang X Y, Han X Y, Wang X J, Zhu Y, Zhu Z G. The bHLH transcription factor regulated gene OsWIH2 is a positive regulator of drought tolerance in rice. Plant Physiol Biochem, 2021, 169: 269-279.
doi: 10.1016/j.plaphy.2021.11.031
[12] Zhang L, Xiang Z P, Li J F, Wang S Y, Chen Y, Liu Y, Mao D D, Luan S, Chen L B. bHLH57 confers chilling tolerance and grain yield improvement in rice. Plant Cell Environ, 2022, doi: 10.1111/pce.14513.
[13] Liu H, Yang Y, Liu D D, Wang X Y, Zhang L S. Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat. BMC Plant Biol, 2020, 20: 259.
doi: 10.1186/s12870-020-02474-5
[14] Guo X J, Fu Y X, Lee Y J, Chern M S, Li M L, Cheng M P, Dong H X, Yuan Z W, Gui L X, Yin J X, Qing H, Zhang C B, Pu Z E, Liu Y J, Li W T, Li W, Qi P F, Chen G Y, Jiang Q T, Ma J, Chen X W, Wei Y M, Zheng Y L, Wu Y R, Liu B, Wang J R. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnol J, 2022, 20: 1311-1326.
doi: 10.1111/pbi.v20.7
[15] Li L, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ, 2019, 42: 2540-2553.
doi: 10.1111/pce.v42.9
[16] Li L, Peng Z, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann Bot, 2019, 124: 993-1006.
doi: 10.1093/aob/mcz041
[17] Hao C Y, Wang L F, Ge H M, Dong Y C, Zhang X Y. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One, 2011, 6: e17279.
doi: 10.1371/journal.pone.0017279
[18] Hao Y Q, Zong X M, Ren P, Qian Y Q, Fu A G. Basic Helix-Loop-Helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. Int J Mol Sci, 2021, 22: 7152.
doi: 10.3390/ijms22137152
[19] Yang T R, Yao S F, Hao L, Zhao Y Y, Lu W J, Xiao K. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Rep, 2016, 35: 2309-2323.
doi: 10.1007/s00299-016-2036-5
[20] Wang R, Yu M M, Xia J Q, Xing J P, Fan X P, Xu Q H, Cang J, Zhang D. Overexpression of TaMYC2 confers freeze tolerance by ICE-CBF-COR module in Arabidopsis thaliana. Front Plant Sci, 2022, 13: 1042889.
doi: 10.3389/fpls.2022.1042889
[21] Zhao F N, Lei J, Wang R Y, Zhang Q, Qi Y, Zhang K, Guo Q, Wang H L. Environmental determination of spring wheat yield in a climatic transition zone under global warming. Int J Biometeorol, 2022, 66: 481-491.
doi: 10.1007/s00484-021-02196-9
[22] 袁蕊, 李萍, 胡晓雪, 宗毓铮, 孙敏, 董琦, 郝兴宇. 干旱胁迫对小麦生理特性及产量的影响. 山西农业科学, 2016, 44: 1446-1449.
Yuan R, Li P, Hu X X, Zong Y Z, Sun M, Dong Q, Hao X Y. Effects of drought stress on physiological characteristics and yield of wheat. J Shanxi Agri Sci, 2016, 44: 1446-1449 (in Chinese with English abstract).
[23] 杨绚, 汤绪, 陈葆德, 田展, 钟洪麟. 气候变暖背景下高温胁迫对中国小麦产量的影响. 地理科学进展, 2013, 32: 1771-1779.
doi: 10.11820/dlkxjz.2013.12.006
Yang X, Tang X, Chen B D, Tian Z, Zhong H L. Effects of high temperature stress on wheat yield in China under the background of climate warming. Prog Geog, 2013, 32: 1771-1779 (in Chinese with English abstract).
[24] Itam M O, Mega R, Gorafi Y S A, Yamasaki Y, Tahir I S A, Akashi K, Tsujimoto H. Genomic analysis for heat and combined heat-drought resilience in bread wheat under field conditions. Theor Appl Genet, 2022, 135: 337-350.
doi: 10.1007/s00122-021-03969-x
[25] Hammond-Kosack M C U, King R, Kanyuka K, Hammond-Kosack K E. Exploring the diversity of promoter and 5'UTR sequences in ancestral, historic and modern wheat. Plant Biotechnol J, 2021, 19: 2469-2487.
doi: 10.1111/pbi.13672 pmid: 34289221
[26] Xia C, Zhang L C, Zou C, Gu Y Q, Duan J L, Zhao G Y, Wu J J, Liu Y, Fang X H, Gao L F, Jiao Y N, Sun J Q, Pan Y H, Liu X, Jia J Z, Kong X Y. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun, 2017, 8: 15407.
doi: 10.1038/ncomms15407
[27] Li C N, Wang J Y, Li L, Li J L, Zhuang M J, Li B, Li Q R, Huang J F, Du Y, Wang J P, Fan Z P, Mao X G, Jing R L. TaMOR is essential for root initiation and improvement of root system architecture in wheat. Plant Biotechnol J, 2022, 20: 862-875.
doi: 10.1111/pbi.v20.5
[28] Xue Y H, Wang J Y, Mao X G, Li C N, Li L, Yang X, Hao C Y, Chang X P, Li R Z, Jing R L. Association analysis revealed that TaPYL4genes are linked to plant growth related traits in multiple environment. Front Plant Sci, 2021, 12: 641087.
doi: 10.3389/fpls.2021.641087
[29] Hu J, Jin Q, Ma Y P. AfLFY, a LEAFY homolog in Argyranthemum frutescens, controls flowering time and leaf development. Sci Rep, 2020, 10: 1616.
doi: 10.1038/s41598-020-58570-x
[30] Sablowski R. Flowering and determinacy in Arabidopsis. J Exp Bot, 2007, 58: 899-907.
doi: 10.1093/jxb/erm002 pmid: 17293602
[31] Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature, 1995, 377: 495-500.
doi: 10.1038/377495a0
[1] 郝倩琳, 杨廷志, 吕新茹, 秦慧敏, 王亚林, 贾晨飞, 夏先春, 马武军, 徐登安. 小麦胚芽鞘长度QTL定位和GWAS分析[J]. 作物学报, 2024, 50(3): 590-602.
[2] 琚吉浩, 马超, 王添宁, 吴毅, 董钟, 方美娥, 陈钰姝, 张均, 付国占. 小麦TaPOD家族的全基因组鉴定及表达分析[J]. 作物学报, 2024, 50(3): 779-792.
[3] 王琼, 朱宇翔, 周密密, 张威, 张红梅, 陈新, 陈华涛, 崔晓艳. 大豆叶型性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2024, 50(3): 623-632.
[4] 赵荣荣, 丛楠, 赵闯. 基于Landsat 8影像提取豫中地区冬小麦和夏玉米分布信息的最佳时相选择[J]. 作物学报, 2024, 50(3): 721-733.
[5] 张宝华, 刘佳静, 田晓, 田旭钊, 董阔, 武郁洁, 肖凯, 李小娟. 小麦TaSPX1基因的克隆、表达及耐低氮逆境的功能研究[J]. 作物学报, 2024, 50(3): 576-589.
[6] 柯会锋, 苏红梅, 孙正文, 谷淇深, 杨君, 王国宁, 徐东永, 王洪这, 吴立强, 张艳, 张桂寅, 马峙英, 王省芬. 棉花现代品种资源产量与纤维品质性状鉴定及分子标记评价[J]. 作物学报, 2024, 50(2): 280-293.
[7] 田春艳, 边芯, 郎荣斌, 俞华先, 桃联安, 安汝东, 董立华, 张钰, 经艳芬. 甘蔗3个育种性状与SSR标记的关联分析及优异等位变异发掘[J]. 作物学报, 2024, 50(2): 310-324.
[8] 陈天, 李昱樱, 荣二花, 吴玉香. 棉属人工异源四倍体后代性状鉴定及花器转录组学分析[J]. 作物学报, 2024, 50(2): 325-339.
[9] 马娟, 曹言勇. 玉米杂交群体产量性状及其特殊配合力全基因组关联分析[J]. 作物学报, 2024, 50(2): 363-372.
[10] 张康, 聂志刚, 王钧, 李广. 温度升高下APSIM模型春小麦籽粒生长参数敏感性分析及优化[J]. 作物学报, 2024, 50(2): 464-477.
[11] 谭丹, 陈家婷, 郜钰, 张晓军, 李欣, 闫贵云, 李锐, 陈芳, 常利芳, 张树伟, 郭慧娟, 畅志坚, 乔麟轶. 小麦穗型相关生长素通路基因发掘及TaARF23-A与小穗数关联分析[J]. 作物学报, 2024, 50(2): 506-513.
[12] 李艳, 方宇辉, 王永霞, 彭超军, 华夏, 齐学礼, 胡琳, 许为钢. 不同磷胁迫处理转OsPHR2小麦的转录组学分析[J]. 作物学报, 2024, 50(2): 340-353.
[13] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[14] 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31.
[15] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .