欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (2): 451-463.doi: 10.3724/SP.J.1006.2024.32014

• 耕作栽培·生理生化 • 上一篇    下一篇

米粉稻早季与晚季种植品质差异研究

肖正午1(), 胡丽琴1, 黎星1, 解嘉鑫1, 廖成静1, 康玉灵1, 胡玉萍1, 张珂骞1, 方升亮2, 曹放波1, 陈佳娜1, 黄敏1,*()   

  1. 1作物生理与分子生物学教育部重点实验室 / 湖南农业大学, 湖南长沙 410128
    2衡阳市农业科学院, 湖南衡阳 421101
  • 收稿日期:2023-04-23 接受日期:2023-09-13 出版日期:2024-02-12 网络出版日期:2023-10-09
  • 通讯作者: *黄敏, E-mail: mhuang@hunau.edu.cn
  • 作者简介:E-mail: xiaozhengwx@163.com
  • 基金资助:
    湖南省自然科学基金区域(衡阳市)联合基金项目(2021JJ50076);国家重点研发计划项目(2016YFD0300509)

Quality differences between noodle rice grown in early and late seasons

XIAO Zheng-Wu1(), HU Li-Qin1, LI Xing1, XIE Jia-Xin1, LIAO Cheng-Jing1, KANG Yu-Ling1, Hu Yu-Ping1, ZHANG Ke-Qian1, FANG Sheng-Liang2, CAO Fang-Bo1, CHEN Jia-Na1, HUANG Min1,*()   

  1. 1Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology / Hunan Agricultural University, Changsha 410128, Hunan, China
    2Hengyang Academy of Agricultural Sciences, Hengyang 421101, Hunan, China
  • Received:2023-04-23 Accepted:2023-09-13 Published:2024-02-12 Published online:2023-10-09
  • Contact: *E-mail: mhuang@hunau.edu.cn
  • Supported by:
    Joint Fund of the Natural Science Foundation of Hunan Province and the Government of Hengyang City(2021JJ50076);National Key Research and Development Program of China(2016YFD0300509)

摘要:

为探明不同种植季节气候条件对米粉稻米粉蒸煮品质的影响, 于2020—2022年在湖南浏阳开展大田试验, 以5个米粉稻品种(广陆矮4号、中嘉早17、湘早籼24号、中早39、株两优729)为材料, 比较米粉稻早季与晚季种植米粉蒸煮品质和稻米品质的差异。结果表明, 米粉稻品种在晚季种植时, 灌浆期平均温度和平均辐射量比在早季种植分别降低18.7%和12.7%。米粉稻在晚季种植时, 米粉损失率比在早季种植降低7.4%; 米粉断条率和吸水率早晚季间差异不显著。与早季种植相比, 米粉稻在晚季种植时稻米RVA谱特征值中峰值黏度、热浆黏度、崩解值、最终黏度、回复值和糊化温度分别下降25.8%、22.9%、34.3%、19.7%、14.2%和2.0%, 而消减值和峰值时间分别上升11.8%和2.3%。相关性分析表明, 灌浆期平均温度与稻米峰值黏度、热浆黏度、崩解值、最终黏度、回复值和糊化温度呈显著正相关, 与消减值呈显著负相关; 灌浆期平均辐射量与峰值黏度、热浆黏度、最终黏度呈显著正相关, 与消减值呈显著负相关; 米粉蒸煮损失率与最终黏度、糊化温度和峰值时间呈显著正相关。由此可见, 米粉稻在晚季种植有助于米粉蒸煮品质提高。米粉稻RVA谱特征值中最终黏度和糊化温度是影响米粉损失率的关键指标。

关键词: 米粉稻, 直链淀粉含量, RVA, 米粉蒸煮品质, 温度, 辐射

Abstract:

In order to identify the influence of climatic conditions of different rice-growing seasons on cooking quality of the rice noodles, a field experiment was conducted in Liuyang, Hunan Province from 2020 to 2022. Five noodle rice cultivars (Guanglu’ai 4, Zhongjiazao 17, Xiangzaoxian 24, Zhongzao 39, and Zhuliangyou 729), were grown in the early and late seasons to compare the cooking quality of rice noodles and the grain quality of noodle rice. The results showed that the mean temperature and solar radiation at grain-filling stage were 18.7% and 12.7% lower in the late season than in the early season, respectively. The cooking loss rate of rice noodles was reduced by 7.4% in the late season compared to the early season. There were not significant differences in cooked break rate and water absorption rate between early and late seasons. The peak viscosity, through viscosity, breakdown viscosity, final viscosity, consistency viscosity, and pasting temperature were lower by 25.8%, 22.9%, 34.3%, 19.7%, 14.2%, and 2.0%, whereas the setback viscosity and peaking time were higher by 11.8% and 2.3% in the late season compared to the early season, respectively. Correlation analysis showed that the mean temperature at grain-filling stage was positively correlated with peak viscosity, through viscosity, breakdown viscosity, final viscosity, consistency viscosity, and pasting temperature, and negatively correlated with setback viscosity. The mean radiation at grain-filling stage was positively correlated with peak viscosity, through viscosity, final viscosity, and negatively correlated with setback viscosity. The cooking loss rate of rice noodles was positively correlated with the final viscosity, pasting temperature, and peaking time. Therefore, the cooking quality of rice noodles can be improved by growing noodle rice in the late season. The final viscosity and pasting temperature in the paste properties of noodle rice were the critical factors affecting the cooking loss rate of rice noodles.

Key words: noodle rice, amylose content, RVA, rice noodles cooking quality, temperature, radiation

图1

2020-2022年米粉稻早季和晚季种植灌浆期日平均温度(a, c, e)和日平均辐射量(b, d, f) 虚线表示早晚季灌浆期平均温度和平均辐射量。"

表1

季节、品种和年份对米粉稻稻米品质与米粉蒸煮品质的方差分析(F值)"

变异源
Source of variation
季节
Season (S)
品种
Cultivar (C)
年份
Year (Y)
季节×品种
S×C
季节×年份
S×Y
品种×年份
C×Y
季节×品种×年份
S×C×Y
总淀粉含量Total starch content 0.00 NS 20.20** 2.11 NS 0.82 NS 20.10** 3.38** 1.88 NS
直链淀粉含量Amylose content 20.87** 15.41** 18.33** 0.84 NS 11.39** 2.14* 0.95 NS
支链淀粉含量Amylopectin content 10.93** 1.13 NS 11.83** 1.97 NS 1.33 NS 2.83* 2.01 NS
蛋白质含量Protein content 67.93** 36.99** 111.63** 1.00 NS 33.04** 1.23 NS 1.44 NS
峰值黏度Peak viscosity 1513.42** 10.02** 125.99** 3.94** 25.01** 5.53** 1.32 NS
热浆黏度Through viscosity 737.68** 23.01** 126.69** 3.07* 9.12** 1.63 NS 2.84**
崩解值Breakdown viscosity 216.38** 18.23** 1.60 NS 6.03** 5.76** 2.15* 1.16 NS
最终黏度Final viscosity 1149.51** 17.45** 60.25** 1.99 NS 23.87** 5.18** 1.58 NS
消减值Setback viscosity 27.18** 38.22** 35.83** 12.44** 10.33** 1.50 NS 0.31 NS
回复值Consistency viscosity 173.64** 25.95** 33.12** 2.37 NS 14.56** 2.94** 1.21 NS
峰值时间Peaking time 68.83** 63.63** 8.29** 5.44** 10.32** 1.50 NS 1.62 NS
糊化温度Pasting temperature 370.20** 104.32** 64.35** 4.59** 119.06** 10.98** 19.74**
断条率Cooked break rate 0.13 NS 0.72 NS 1.83 NS 1.17 NS 4.27* 0.99 NS 0.38 NS
损失率Cooking loss rate 11.48** 70.58** 3.96* 5.15** 4.48* 3.28** 3.88**
吸水率Water absorption rate 0.06 NS 30.70** 18.86** 4.85** 3.70* 1.27 NS 1.22 NS

表2

2020-2022年米粉稻早季与晚季种植稻米淀粉和蛋白质含量"

年份
Year
季节
Season
品种
Cultivar
总淀粉
Total starch
直链淀粉
Amylose
支链淀粉
Amylopectin
蛋白质
Protein
2020 早季
Early
season
广陆矮4号Guanglu’ai 4 75.19 a 25.98 a 49.21 a 7.21 bc
中嘉早17 Zhongjiazao 17 75.75 a 26.73 a 49.02 a 6.71 c
湘早籼24号 Xiangzaoxian 24 73.07 b 24.57 b 48.50 ab 8.25 a
中早39 Zhongzao 39 73.63 b 26.08 a 47.55 b 7.61 ab
株两优729 Zhuliangyou 729 76.13 a 26.91 a 49.22 a 7.33 bc
平均 Mean 74.76 B 26.05 A 48.71 B 7.42 B
晚季
Late
season
广陆矮4号Guanglu’ai 4 76.79 ab 26.05 abc 50.74 a 8.89 b
中嘉早17 Zhongjiazao 17 76.34 ab 26.91 ab 49.43 a 8.73 b
湘早籼24号 Xiangzaoxian 24 75.00 b 24.77 c 50.23 a 10.60 a
中早39 Zhongzao 39 75.06 b 25.78 bc 49.28 a 8.95 b
株两优729 Zhuliangyou 729 77.64 a 27.26 a 50.38 a 8.31 b
平均 Mean 76.17 A 26.15 A 50.02 A 9.10 A
2021 早季
Early
season
广陆矮4号Guanglu’ai 4 76.40 a 27.92 ab 48.48 ab 6.64 b
中嘉早17 Zhongjiazao 17 75.99 a 28.42 a 47.57 b 7.02 ab
湘早籼24号 Xiangzaoxian 24 74.14 b 26.22 c 47.92 ab 7.89 a
中早39 Zhongzao 39 75.53 a 27.19 b 48.34 ab 6.85 b
株两优729 Zhuliangyou 729 76.10 a 27.55 ab 48.55 a 6.84 b
平均 Mean 75.63 A 27.46 A 48.17 A 7.05 A
晚季
Late
season
广陆矮4号Guanglu’ai 4 76.17 ab 27.28 b 48.89 b 6.90 bc
中嘉早17 Zhongjiazao 17 76.93 a 28.76 a 48.17 b 6.57 bc
湘早籼24号 Xiangzaoxian 24 73.35 c 26.29 bc 47.06 b 7.82 a
中早39 Zhongzao 39 77.21 a 25.69 c 51.52 a 6.46 c
株两优729 Zhuliangyou 729 75.33 b 26.38 bc 48.95 b 7.04 b
平均 Mean 75.80 A 26.88 B 48.92 A 6.96 A
2022 早季
Early
season
广陆矮4号Guanglu’ai 4 76.09 b 29.70 a 46.39 a 6.09 b
中嘉早17 Zhongjiazao 17 77.91 a 28.60 a 49.31 a 6.13 b
湘早籼24号 Xiangzaoxian 24 74.64 b 27.35 a 47.29 a 7.53 a
中早39 Zhongzao 39 75.93 b 27.67 a 48.26 a 6.14 b
株两优729 Zhuliangyou 729 75.56 b 28.02 a 47.54 a 6.32 b
平均 Mean 76.03 A 28.27 A 47.76 A 6.44 B
晚季
Late
season
广陆矮4号Guanglu’ai 4 75.93 a 26.50 a 49.43 a 6.65 bc
中嘉早17 Zhongjiazao 17 74.96 ab 26.92 a 48.04 a 6.35 c
湘早籼24号 Xiangzaoxian 24 73.06 b 25.29 a 47.77 a 8.34 a
中早39 Zhongzao 39 73.94 ab 26.18 a 47.76 a 6.86 b
株两优729 Zhuliangyou 729 74.29 ab 26.81 a 47.48 a 7.02 b
平均 Mean 74.44 B 26.34 B 48.10 A 7.05 A

表3

2020-2022年米粉稻早季与晚季种植稻米RVA谱特征值"

年份
Year
季节
Season
品种
Cultivar
黏度Viscosity (cP) 峰值时间
Peaking time
(min)
糊化温度
Pasting
temperature (℃)
峰值黏度
Peak
热浆黏度
Through
崩解值
Breakdown
最终黏度
Final
消减值
Setback
回复值
Consistency
2020 早季
Early
season
广陆矮4号Guanglu’ai 4 3306 a 2389 b 917 ab 4094 bc 788 b 1705 b 5.87 b 80.11 c
中嘉早17 Zhongjiazao 17 3277 a 2332 b 945 ab 4029 c 752 b 1697 b 5.82 b 80.10 c
湘早籼24号 Xiangzaoxian 24 3299 a 2555 ab 744 b 4460 a 1161 a 1905 a 6.18 a 81.43 a
中早39 Zhongzao 39 3536 a 2498 ab 1038 a 4380 ab 844 b 1882 a 6.07 a 81.31 a
株两优729 Zhuliangyou 729 3513 a 2695 a 818 ab 4248 abc 735 b 1553 c 6.22 a 80.88 b
平均 Mean 3386 A 2494 A 892 A 4242 A 856 A 1748 A 6.03 B 80.76 A
晚季
Late season
广陆矮4号Guanglu’ai 4 2433 b 1741 c 692 ab 3305 c 872 b 1564 ab 6.09 c 79.70 cd
中嘉早17 Zhongjiazao 17 2415 b 1747 c 668 ab 3310 c 895 ab 1563 ab 6.11 c 79.44 d
湘早籼24号 Xiangzaoxian 24 2713 a 2085 b 628 b 3652 ab 939 ab 1567 ab 6.38 a 83.38 a
中早39 Zhongzao 39 2877 a 2248 a 629 b 3844 a 967 a 1596 a 6.38 a 81.13 b
株两优729 Zhuliangyou 729 2787 a 2080 b 707 a 3533 bc 746 c 1453 b 6.27 b 80.75 bc
平均 Mean 2645 B 1980 B 665 B 3529 B 884 A 1549 B 6.24 A 80.88 A
2021 早季
Early
season
广陆矮4号Guanglu’ai 4 4151 a 2970 a 1181 a 4733 b 582 b 1763 a 5.89 c 80.94 c
中嘉早17 Zhongjiazao 17 4109 a 2980 a 1129 a 4766 ab 657 b 1786 a 5.95 bc 79.99 d
湘早籼24号 Xiangzaoxian 24 3792 b 3031 a 761 b 4836 ab 1044 a 1805 a 6.26 a 84.59 a
中早39 Zhongzao 39 4259 a 3176 a 1083 a 4939 a 680 b 1763 a 6.07 b 83.68 b
株两优729 Zhuliangyou 729 4079 a 3165 a 914 ab 4728 b 649 b 1563 b 6.29 a 80.49 cd
平均 Mean 4078 A 3065 A 1013 A 4800 A 722 A 1735 A 6.09 B 81.94 A
晚季
Late season
广陆矮4号Guanglu’ai 4 2854 c 2103 b 751 a 3554 c 700 b 1451 a 6.09 c 79.45 b
中嘉早17 Zhongjiazao 17 2774 c 2166 b 608 abc 3551 c 777 b 1385 a 6.20 bc 79.05 b
湘早籼24号 Xiangzaoxian 24 2879 bc 2402 a 477 c 3792 ab 913 a 1390 a 6.42 a 80.23 a
中早39 Zhongzao 39 3060 a 2408 a 652 ab 3805 a 745 b 1397 a 6.27 abc 80.48 a
株两优729 Zhuliangyou 729 2972 ab 2442 a 530 bc 3640 bc 668 b 1198 b 6.38 ab 80.75 a
平均 Mean 2908 B 2304 B 604 B 3668 B 760 A 1364 B 6.27 A 79.99 B
2022 早季
Early
season
广陆矮4号Guanglu’ai 4 4057 a 2834 bc 1223 a 4578 a 521 b 1744 a 5.91 c 80.77 c
中嘉早17 Zhongjiazao 17 3699 b 2653 c 1046 a 4237 b 538 b 1584 ab 6.04 c 80.47 c
湘早籼24号 Xiangzaoxian 24 3858 b 3142 a 716 b 4755 a 897 a 1613 ab 6.45 a 81.55 b
中早39 Zhongzao 39 3797 b 2811 bc 986 a 4342 b 545 b 1531 b 6.27 b 82.33 a
株两优729 Zhuliangyou 729 3700 b 3033 ab 667 b 4262 b 562 b 1229 c 6.36 ab 81.82 ab
平均 Mean 3822 A 2894 A 928 A 4435 A 613 B 1541 A 6.21 A 81.39 A
晚季
Late season
广陆矮4号Guanglu’ai 4 2857 ab 2190 b 667 a 3686 a 829 a 1496 a 6.11 b 77.62 d
中嘉早17 Zhongjiazao 17 2777 b 2174 b 603 a 3632 ab 855 a 1458 a 6.13 b 77.85 cd
湘早籼24号 Xiangzaoxian 24 2813 ab 2230 b 583 a 3676 ab 863 a 1446 a 6.24 ab 78.33 bc
中早39 Zhongzao 39 2923 a 2349 a 574 a 3683 a 760 a 1334 ab 6.38 a 79.67 a
株两优729 Zhuliangyou 729 2766 b 2224 b 542 a 3480 b 714 a 1256 b 6.33 a 78.63 b
平均 Mean 2827 B 2233 B 594 B 3631 B 804 A 1398 B 6.24 A 78.42 B

表4

2020-2022年米粉稻早季与晚季种植米粉蒸煮品质"

年份
Year
季节Season 品种
Cultivar
断条率
Cooked break rate
损失率
Cooking loss rate
吸水率
Water absorption rate
2020 早季
Early
season
广陆矮4号Guanglu’ai 4 0.00 b 5.02 c 65.97 ab
中嘉早17 Zhongjiazao 17 2.22 a 4.89 c 71.70 a
湘早籼24号 Xiangzaoxian 24 0.00 b 7.82 a 66.80 ab
中早39 Zhongzao 39 0.00 b 5.92 b 46.70 c
株两优729 Zhuliangyou 729 2.22 a 6.04 b 54.27 bc
平均 Mean 0.89 A 5.94 A 61.09 A
晚季
Late
season
广陆矮4号Guanglu’ai 4 1.11 a 4.06 c 71.80 a
中嘉早17 Zhongjiazao 17 1.11 a 4.14 c 66.57 a
湘早籼24号 Xiangzaoxian 24 2.22 a 6.71 b 61.20 ab
中早39 Zhongzao 39 2.22 a 8.43 a 54.63 b
株两优729 Zhuliangyou 729 3.33 a 5.35 bc 66.70 a
平均 Mean 2.00 A 5.74 A 64.18 A
2021 早季
Early
season
广陆矮4号Guanglu’ai 4 3.33 a 6.08 b 60.27 b
中嘉早17 Zhongjiazao 17 2.22 a 3.95 c 68.47 a
湘早籼24号 Xiangzaoxian 24 2.22 a 6.79 b 50.43 c
中早39 Zhongzao 39 0.00 a 7.68 a 47.63 c
株两优729 Zhuliangyou 729 3.33 a 6.00 b 51.73 c
平均 Mean 2.22 A 6.10 A 55.71 A
晚季
Late
season
广陆矮4号Guanglu’ai 4 0.00 a 4.38 c 60.60 a
中嘉早17 Zhongjiazao 17 0.00 a 3.98 c 60.77 a
湘早籼24号 Xiangzaoxian 24 0.00 a 5.88 b 52.50 b
中早39 Zhongzao 39 1.11 a 7.23 a 46.63 c
株两优729 Zhuliangyou 729 1.11 a 4.14 c 57.53 a
平均 Mean 0.44 A 5.12 B 55.61 A
2022 早季
Early
season
广陆矮4号Guanglu’ai 4 0.00 a 4.67 c 68.75 b
中嘉早17 Zhongjiazao 17 1.11 a 3.71 d 74.24 a
湘早籼24号 Xiangzaoxian 24 0.00 a 6.55 ab 60.88 c
中早39 Zhongzao 39 1.11 a 6.63 a 54.56 d
株两优729 Zhuliangyou 729 0.00 a 5.74 b 61.35 c
平均 Mean 0.44 A 5.46 A 63.96 A
晚季
Late
season
广陆矮4号Guanglu’ai 4 0.00 b 4.73 bc 62.20 ab
中嘉早17 Zhongjiazao 17 1.11 ab 4.01 c 63.31 a
湘早籼24号 Xiangzaoxian 24 0.00 b 5.66 ab 59.43 ab
中早39 Zhongzao 39 2.22 a 6.31 a 56.93 b
株两优729 Zhuliangyou 729 0.00 b 5.94 a 59.05 ab
平均 Mean 0.67 A 5.33 A 60.18 B

图2

米粉稻米粉蒸煮品质与稻米淀粉和蛋白质含量及RVA谱特征值的相关性热图 相关系数使用表2、表3和表4中的数据得出(n=30)。*和**分别表示相关性在0.05和0.01概率水平差异显著。"

图3

米粉稻稻米淀粉和蛋白质含量及RVA谱特征值与灌浆期平均温度和平均辐射量的相关性热图 相关系数使用表2, 表3和图1的数据得出(n=30)。*和**分别表示相关性在0.05和0.01概率水平差异显著。"

[1] Fu B X. Asian noodles: history, classification, raw materials, and processing. Food Res Int, 2008, 41: 888-902.
doi: 10.1016/j.foodres.2007.11.007
[2] Sanchez B, Rasmussen A, Porter J R. Temperatures and the growth and development of maize and rice: a review. Glob Change Biol, 2014, 20: 408-417.
doi: 10.1111/gcb.2014.20.issue-2
[3] Huang M, Cao J L, Liu Y, Zhang M Y, Hu L Q, Xiao Z W, Chen J N, Cao F B. Low-temperature stress during the flowering period alters the source-sink relationship and grain quality in field- grown late-season rice. J Agron Crop Sci, 2021, 207: 833-839.
doi: 10.1111/jac.v207.5
[4] 周显青, 彭超, 张玉荣, 郭利利, 熊宁. 早籼稻的品质分析与其压榨型鲜湿米粉加工适应性. 食品科学, 2018, 39(19): 36-43.
doi: 10.7506/spkx1002-6630-201819007
Zhou X Q, Peng C, Zhang Y R, Guo L L, Xiong N. Quality analysis of early indica rice cultivars and their suitability for processing of pressed fresh noodles. Food Sci, 2018, 39(19): 36-43 (in Chinese with English abstract).
[5] 高晓旭, 佟立涛, 钟葵, 刘丽娅, 周闲容, 周素梅, 王立. 鲜米粉加工专用原料的选择. 中国粮油学报, 2015, 30(2): 1-5.
Gao X X, Tong L T, Zhong K, Liu L Y, Zhou X R, Zhou S M, Wang L. Raw material selection for fresh rice noodles. J Chin Cereals Oils Assoc, 2015, 30(2): 1-5 (in Chinese with English abstract).
[6] 雷婉莹, 吴卫国, 廖卢艳, 倪婷, 张喻. 鲜湿米粉品质评价及原料选择. 食品科学, 2020, 41(1): 74-79.
doi: 10.7506/spkx1002-6630-20181202-015
Lei W Y, Wu W G, Liao L Y, Ni T, Zhang Y. Quality evaluation of and raw material selection for wet rice noodles. Food Sci, 2020, 41(1): 74-79 (in Chinese with English abstract).
doi: 10.1111/jfds.1976.41.issue-1
[7] Low Y K, Effarizah M E, Cheng L H. Factors influencing rice noodles qualities. Food Rev Int, 2020, 36: 781-794.
doi: 10.1080/87559129.2019.1683747
[8] 丁文平, 丁霄霖. 大米品种对其淀粉凝胶特性的影响. 中国粮油学报, 2003, 18(3): 17-20.
Ding W P, Ding X L. Effects of rice varieties on its starch gels properties. J Chin Cereals Oils Assoc, 2003, 18(3): 17-20 (in Chinese with English abstract).
[9] 王永辉, 张业辉, 张名位, 魏振承, 唐小俊, 张瑞芬, 邓媛元, 张雁. 不同水稻品种大米直链淀粉含量对加工米粉丝品质的影响. 中国农业科学, 2013, 46: 109-120.
doi: 10.3864/j.issn.0578-1752.2013.01.013
Wang Y H, Zhang Y H, Zhang M W, Wei Z C, Tang X J, Zhang R F, Deng Y Y, Zhang Y. Effect of amylose content of different rice varieties on the qualities of rice vermicelli. Sci Agric Sin, 2013, 46: 109-120 (in Chinese with English abstract).
[10] Xuan Y, Yi Y, Liang H, Wei S Q, Chen N P, Jiang L G, Ali I, Ullah S, Wu X C, Cao T Y, Zhao Q, Li T Y. Amylose content and RVA profile characteristics of noodle rice under different conditions. Agron J, 2020, 112: 117-129.
doi: 10.1002/agj2.v112.1
[11] Huang M, Jiang L G, Zou Y B, Zhang W X. On-farm assessment of effect of low temperature at seedling stage on early-season rice quality. Field Crops Res, 2013, 141: 63-68.
doi: 10.1016/j.fcr.2012.10.019
[12] Ai X F, Xiong R Y, Tan X M, Wang H X, Zeng Y J, Huang S, Shang Q Y, Pan X H, Shi Q H, Zhang J, Zeng Y H. Low temperature and light combined stress after heading on starch fine structure and physicochemical properties of late-season indica rice with different grain quality in southern China. Food Res Int, 2023, 164: 112320.
doi: 10.1016/j.foodres.2022.112320
[13] Zhou N B, Zhang J, Fang S L, Wei H Y, Zhang H C. Effects of temperature and solar radiation on yield of good eating-quality rice in the lower reaches of the Huai River Basin, China. J Integr Agric, 2021, 20: 1762-1774.
doi: 10.1016/S2095-3119(20)63561-4
[14] 冯向前, 殷敏, 王孟佳, 马横宇, 褚光, 刘元辉, 徐春梅, 章秀福, 张运波, 王丹英, 陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响. 中国农业科学, 2023, 56: 46-63.
doi: 10.3864/j.issn.0578-1752.2023.01.004
Feng X Q, Yin M, Wang M J, Ma H Y, Chu G, Liu Y H, Xu C M, Zhang X F, Zhang Y B, Wang D Y, Chen S. Effects of meteorological factors on quality of late japonica rice during late season grain filling stage under ‘early indica and late japonica’ cultivation pattern in southern China. Sci Agric Sin, 2023, 56: 46-63 (in Chinese with English abstract).
[15] 徐栋, 朱盈, 周磊, 韩超, 郑雷鸣, 张洪程, 魏海燕, 王珏, 廖桉桦, 蔡仕博. 不同类型籼粳杂交稻产量和品质性状差异及其与灌浆结实期气候因素间的相关性. 作物学报, 2018, 44: 1548-1559.
doi: 10.3724/SP.J.1006.2018.01548
Xu D, Zhu Y, Zhou L, Han C, Zheng L M, Zhang H C, Wei H Y, Wang Y, Liao A H, Cai S B. Differences in yield and grain quality among various types of indica/japonica hybrid rice and correlation between quality and climatic factors during grain filling period. Acta Agron Sin, 2018, 44: 1548-1559 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01548
[16] Rehmani M I A, Wei G B, Hussain N, Ding C Q, Li G H, Liu Z H, Wang S H, Ding Y. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta. Field Crops Res, 2014, 156: 231-241.
doi: 10.1016/j.fcr.2013.09.019
[17] 金正勋, 杨静, 钱春荣, 刘海英, 金学泳, 秋太权. 灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响. 中国水稻科学, 2005, 19: 377-380.
Jin Z X, Yang J, Qian C R, Liu H Y, Jin X Y, Qiu T Q. Effects of temperature during grain filling period on activities of key enzymes for starch synthesis and rice grain quality. Chin J Rice Sci, 2005, 19: 377-380 (in Chinese with English abstract).
[18] Dou Z, Tang S, Li G H, Liu Z H, Ding C Q, Chen L, Wang S H, Ding Y F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Sci, 2017, 57: 2183-2192.
doi: 10.2135/cropsci2016.05.0350
[19] Fan X L, Sun X S, Yang R, Chen S, Li R M, Bian X Y, Xia L X, Zhang C Q. Comparative analyses of grain quality in response to high temperature during the grain-filling stage between Wxa and Wxb under indica and japonica backgrounds. Agronomy, 2023, 13: 17.
doi: 10.3390/agronomy13010017
[20] Cheng F M, Zhong L J, Zhao N C, Liu Y, Zhang G P. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul, 2005, 46: 87-95.
doi: 10.1007/s10725-005-7361-6
[21] 程方民, 丁元树, 朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系. 生态学报, 2000, 20: 646-652.
Cheng F M, Ding Y S, Zhu B Y. The formation of amylose content in rice grain and its relation with field temperature. Acta Ecol Sin, 2000, 20: 646-652 (in Chinese with English abstract).
[22] Liu Q H, Wu X, Ma J Q, Li T, Zhou X B, Guo T. Effects of high air temperature on rice grain quality and yield under field condition. Agron J, 2013, 105: 446-454.
doi: 10.2134/agronj2012.0164
[23] 袁继超, 丁志勇, 蔡光泽, 杨世民, 朱庆森, 杨建昌. 攀西地区稻米淀粉RVA谱的影响因子及其垂直变化特点. 作物学报, 2005, 31: 1611-1619.
Yuan J C, Ding Z Y, Cai G Z, Yang S M, Zhu Q S, Yang J C. The factors influencing RVA profile of rice starch and their changes with altitudes in Panxi region. Acta Agron Sin, 2005, 31: 1611-1619 (in Chinese with English abstract).
[24] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响. 作物学报, 2022, 48: 1730-1745.
doi: 10.3724/SP.J.1006.2022.12039
Tao Y, Yao Y, Wang K T, Xing Z P, Zhai H T, Feng Y, Liu Q Y, Hu Y J, Guo B W, Wei H Y, Zhang H C. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice. Acta Agron Sin, 2022, 48: 1730-1745 (in Chinese with English abstract).
[25] 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响. 作物学报, 2021, 47: 701-713.
doi: 10.3724/SP.J.1006.2021.02037
Yang F, Zhong X Y, Li Q P, Li S X, Li W, Zhou T, Li B, Yuan Y J, Deng F, Chen Y, Ren W J. Effects of delayed sowing and planting date on starch RVA profiles of different indica hybrid rice in the sub-suitable region of ratoon rice. Acta Agron Sin, 2021, 47: 701-713 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02037
[26] Wei H Y, Zhu Y, Qiu S, Han C, Hu L, Xu D, Zhou N B, Xing Z P, Hu Y J, Cui P Y, Dai Q G, Zhang H C. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J Integr Agric, 2018, 17: 2405-2417.
doi: 10.1016/S2095-3119(18)62025-8
[27] 邓飞, 王丽, 叶德成, 任万军, 杨文钰. 生态条件及栽培方式对稻米RVA谱特性及蛋白质含量的影响. 作物学报, 2012, 38: 717-724.
Deng F, Wang L, Ye D C, Ren W J, Yang W Y. Effects of ecological conditions and cultivation methods on rice starch RVA profile characteristics and protein content. Acta Agron Sin, 2012, 38: 717-724 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00717
[28] Tong L T, Gao X X, Lin L Z, Liu Y J, Zhong K, Liu L Y, Zhou X R, Wang L, Zhou S M. Effects of semidry flour milling on the quality attributes of rice flour and rice noodles in China. J Cereal Sci, 2015, 62: 45-49.
doi: 10.1016/j.jcs.2014.12.007
[29] 吴伟斌, 李佳雨, 张震邦, 凌彩金, 林贤柯, 常星亮. 基于高光谱图像的茶树LAI与氮含量反演. 农业工程学报, 2018, 34(3): 195-201.
Wu W B, Li J Y, Zhang Z B, Ling C J, Lin X K, Chang X L. Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image. Trans CSAE, 2018, 34(3): 195-201 (in Chinese with English abstract).
[30] Tsukaguchi T, Taniguchi Y, Ito R. The effects of nitrogen uptake before and after heading on grain protein content and the occurrence of basal- and back-white grains in rice (Oryza sativa L.). Plant Prod Sci, 2016, 19: 508-517.
doi: 10.1080/1343943X.2016.1223527
[31] Bhattacharya M, Zee S Y, Corke H. Physicochemical properties related to quality of rice noodles. Cereal Chem, 1999, 76: 861-867.
doi: 10.1094/CCHEM.1999.76.6.861
[32] Huang M, Xiao Z W, Chen J N, Cao F B. Yield and quality of brown rice noodles processed from early-season rice grains. Sci Rep, 2021, 11: 18668.
doi: 10.1038/s41598-021-98352-7 pmid: 34548582
[33] Zhou N B, Wei H Y, Zhang H C. Response of milling and appearance quality of rice with good eating quality to temperature and solar radiation in lower reaches of Huai River. Agronomy, 2021, 11: 77.
doi: 10.3390/agronomy11010077
[34] Huang M, Cao J L, Zhang R C, Chen J N, Cao F B, Liu L S, Fang S L, Zhang M. Delayed sowing does not improve palatability-related traits in high-quality rice. Food Chem Adv, 2022, 1: 100096.
doi: 10.1016/j.focha.2022.100096
[35] Deng F, Zhang C, He L H, Liao S, Li Q P, Li B, Zhu S L, Gao Y T, Tao Y F, Zhou W, Lei X L, Wang L, Hu J F, Chen Y, Ren W J. Delayed sowing date improves the quality of mechanically transplanted rice by optimizing temperature conditions during growth season. Field Crops Res, 2022, 281: 108493.
doi: 10.1016/j.fcr.2022.108493
[36] 丛舒敏, 余恩唯, 夏陈钰, 薛建涛, 李娈, 李荣凯, 胡雅杰. 结实期温度和光照对不同类型粳稻品种产量和品质的影响. 扬州大学学报(农业与生命科学版), 2022, 43(5): 18-26.
Cong S M, Yu E W, Xia C Y, Xue J T, Li L, Li R K, Hu Y J. Effects of temperature and light on yield and quality of different types of japonica rice varieties at seed-setting stage. J Yangzhou Univ (Agric Life Sci Edn), 2022, 43(5): 18-26 (in Chinese with English abstract).
[37] 任万军, 杨文钰, 徐精文, 樊高琼, 马周华. 弱光对水稻籽粒生长及品质的影响. 作物学报, 2003, 29: 785-790.
Ren W J, Yang W Y, Xu J W, Fan G Q, Ma Z H. Effect of low light on grains growth and quality in rice. Acta Agron Sin, 2003, 29: 785-790 (in Chinese with English abstract).
[38] Chen H, Chen D, He L H, Wang T, Lu H, Yang F, Deng F, Chen Y, Tao Y F, Li M, Li G Y, Ren W J. Correlation of taste values with chemical compositions and Rapid Visco Analyser profiles of 36 indica rice (Oryza sativa L.) varieties. Food Chem, 2021, 349: 129176.
doi: 10.1016/j.foodchem.2021.129176
[39] 张国发, 王绍华, 尤娟, 王强盛, 丁艳峰, 吉志军. 结实期不同时段高温对稻米品质的影响. 作物学报, 2006, 32: 283-287.
Zhang G F, Wang S H, You J, Wang Q S, Ding Y F, Ji Z J. Effect of higher temperature in different filling stages on rice qualities. Acta Agron Sin, 2006, 32: 283-287 (in Chinese with English abstract).
[40] 邹应斌, 戴魁根. 湖南发展双季稻生产的优势. 作物研究, 2008, 22(4): 209-213.
Zou Y B, Dai K G. The advantages for promoting double-season rice production in Hunan province. Crop Res, 2008, 22(4): 209-213 (in Chinese with English abstract).
[41] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin Vitae, 2014, 44: 845-850 (in Chinese with English abstract).
doi: 10.1360/052014-98
[42] 邹应斌, 黄敏. 转型期作物生产发展的机遇与挑战. 作物学报, 2018, 44: 791-795.
doi: 10.3724/SP.J.1006.2018.00791
Zou Y B, Huang M. Opportunities and challenges for crop production in China during the transition period. Acta Agron Sin, 2018, 44: 791-795 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00791
[43] 陈佳娜, 曹放波, 谢小兵, 单双吕, 高伟, 李志斌, 黄敏, 邹应斌. 机插条件下低氮密植栽培对“早晚兼用”双季稻产量和氮素吸收利用的影响. 作物学报, 2016, 42: 1176-1187.
doi: 10.3724/SP.J.1006.2016.01176
Chen J N, Cao F B, Xie X B, Shan S L, Gao W, Li Z B, Huang M, Zou Y B. Effect of low nitrogen rate combined with high plant density on yield and nitrogen use efficiency of machine- transplanted early-late season double cropping rice. Acta Agron Sin, 2016, 42: 1176-1187 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01176
[1] 吴宗声, 徐彩龙, 李瑞东, 徐一帆, 孙石, 韩天富, 宋雯雯, 吴存祥. 麦秸覆盖还田对大豆耕层物理性状及产量形成的影响[J]. 作物学报, 2023, 49(4): 1052-1064.
[2] 丁敏, 段政勇, 王宇卓, 薛亚鹏, 王海岗, 陈凌, 王瑞云, 乔治军. 糜子GBSSI基因功能标记的开发与验证[J]. 作物学报, 2023, 49(3): 703-718.
[3] 赵富贵, 张龙, 李丹, 韩固, 王楠, 侯贤清. 不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响[J]. 作物学报, 2023, 49(10): 2806-2819.
[4] 王鹏飞, 于爱忠, 王玉珑, 苏向向, 柴健, 李悦, 吕汉强, 尚永盼, 杨学慧. 麦后复种绿肥翻压还田结合减氮对土壤水热特性及玉米产量的影响[J]. 作物学报, 2023, 49(10): 2793-2805.
[5] 王云奇, 高福莉, 李傲, 郭同济, 戚留冉, 曾寰宇, 赵建云, 王笑鸽, 高国英, 杨佳鹏, 白金泽, 马亚欢, 梁月馨, 张睿. 小麦花后穗部温度变化规律及其与产量的关系[J]. 作物学报, 2022, 48(9): 2400-2408.
[6] 王凯澄, 赵炯超, 韩桐, 石晓宇, 高真真, 薄晓智, 陈阜, 褚庆全. 基于温度带分区的中国粮食生产格局与热量资源利用效率研究[J]. 作物学报, 2022, 48(7): 1709-1720.
[7] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[8] 袁玉洁, 张丝琪, 王明玥, 罗霄, 曾钰涵, 宋璐炘, 卢慧, 陈虹, 陶有凤, 邓飞, 任万军. 蒸煮米水比对不同直链淀粉含量杂交籼稻米粒微观结构和食味特性的影响[J]. 作物学报, 2022, 48(12): 3225-3233.
[9] 胡雅杰, 余恩唯, 丛舒敏, 李娈, 薛建涛, 夏陈钰, 郭保卫, 邢志鹏. 结实期动态温度对软米粳稻产量和品质的影响[J]. 作物学报, 2022, 48(12): 3155-3165.
[10] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[11] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[12] 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响[J]. 作物学报, 2021, 47(4): 701-713.
[13] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
[14] 侯慧芝, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁. 全膜微垄沟播对寒旱区春小麦苗期土壤水热环境及光合作用的影响[J]. 作物学报, 2020, 46(9): 1398-1407.
[15] 韩展誉,管弦悦,赵倩,吴春艳,黄福灯,潘刚,程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响[J]. 作物学报, 2020, 46(7): 1087-1098.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .