欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (4): 1102-1109.doi: 10.3724/SP.J.1006.2025.42041

• 研究简报 • 上一篇    下一篇

糙米粉蒸煮食味品质与糙米淀粉组分含量和糊化特性的关系

肖正午(), 张珂骞, 曹放波, 陈佳娜, 郑华斌, 王慰亲, 黄敏()   

  1. 作物生理与分子生物学教育部重点实验室 / 水稻国家工程研究中心 / 湖南农业大学, 湖南长沙 410128
  • 收稿日期:2024-08-27 接受日期:2024-12-12 出版日期:2025-04-12 网络出版日期:2024-12-16
  • 通讯作者: 黄敏, E-mail: mhuang@hunau.edu.cn
  • 作者简介:E-mail: xiaozhengwx@163.com
  • 基金资助:
    国家重点研发计划项目(2023YFD2301401);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-01-33)

Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains

XIAO Zheng-Wu(), ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min()   

  1. Key Laboratory of Crop Physiology and Molecular Biology / National Engineering Research Center of Rice / Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2024-08-27 Accepted:2024-12-12 Published:2025-04-12 Published online:2024-12-16
  • Contact: E-mail: mhuang@hunau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFD2301401);China Agriculture Research System of MOF and MARA(CARS-01-33)

摘要:

为明确影响糙米粉蒸煮食味品质的关键指标。本研究以广陆矮4号、中嘉早17、湘早籼24号、中早39和株两优729等5个米粉稻品种为材料, 于2021年和2022年在湖南浏阳进行大田试验, 分析了不同品种的糙米粉蒸煮食味品质、糙米淀粉组分含量和糊化特性。 结果表明,广陆矮4号和中嘉早17较湘早籼24号、中早39和株两优729的糙米粉断条率和损失率低, 咀嚼性和弹性高。相关分析结果显示, 糙米粉损失率与直链淀粉含量呈显著负相关关系, 与峰值时间和糊化温度呈显著正相关关系; 糙米粉咀嚼性与热浆黏度呈显著负相关关系; 糙米粉弹性与直支比呈显著正相关关系, 与峰值时间呈显著负相关关系。由此可见, 糙米直链淀粉含量、直支比、热浆黏度、峰值时间和糊化温度是决定糙米粉蒸煮食味品质的关键指标。

关键词: 米粉稻, 糙米粉, 米粉品质, 淀粉组分含量, 糊化特性

Abstract:

The key factors influencing the cooking and eating quality of brown rice noodles were investigated in this study. Field experiments were conducted in Liuyang, Hunan province, in 2021 and 2022, using five noodle rice cultivars: Guanglu’ai 4, Zhongjiazao 17, Xiangzaoxian 24, Zhongzao 39, and Zhuliangyou 729. The cooking and eating qualities of brown rice noodles, starch component contents, and pasting properties of brown rice grains were analyzed. The results showed that brown rice noodles processed from Guanglu’ai 4 and Zhongjiazao 17 exhibited lower cooked break rates and cooking loss rates, along with higher chewiness and springiness, compared to those made from Xiangzaoxian 24, Zhongzao 39, and Zhuliangyou 729. Correlation analysis revealed that the cooking loss rate of brown rice noodles was negatively correlated with amylose content but positively correlated with time to peak viscosity and pasting temperature. Chewiness was negatively correlated with trough viscosity, while springiness was positively correlated with the amylose-to-amylopectin ratio and negatively correlated with time to peak viscosity. These findings indicate that amylose content, amylose-to-amylopectin ratio, trough viscosity, time to peak viscosity, and pasting temperature of brown rice grains are critical factors influencing the cooking and eating quality of brown rice noodles.

Key words: noodle rice, brown rice noodles, rice noodle quality, starch component content, pasting property

表1

不同米粉稻品种糙米粉蒸煮品质"

品种
Cultivar
2021 2022
断条率
Cooked break rate
损失率
Cooking loss rate
断条率
Cooked break rate
损失率
Cooking loss rate
广陆矮4号 Guanglu’ai 4 1.11 ± 1.11 a 13.40 ± 1.09 bc 4.44 ± 1.11 b 7.92 ± 0.60 c
中嘉早17 Zhongjiazao 17 6.67 ± 6.67 a 10.50 ± 2.83 c 0 ± 0 b 9.52 ± 0.92 bc
湘早籼24号 Xiangzaoxian 24 4.44 ± 4.44 a 16.31 ± 1.73 ab 5.56 ± 1.11 b 13.31 ± 1.23 ab
中早39 Zhongzao 39 3.33 ± 3.33 a 14.51 ± 0.34 abc 12.22 ± 2.94 a 16.34 ± 0.84 a
株两优729 Zhuliangyou 729 5.56 ± 4.01 a 18.10 ± 1.82 a 3.33 ± 1.92 b 13.88 ± 1.65 a

表2

不同米粉稻品种糙米粉食味品质"

年份
Year
品种
Cultivar
硬度
Hardness
(g)
咀嚼性
Chewiness
(g)
弹性
Springiness
(%)
内聚性
Cohesiveness
(%)
回复性
Resilience
(%)
2021 广陆矮4号 Guanglu’ai 4 1307 ± 147 ab 894 ± 117 ab 87.3 ± 0.5 a 78.0 ± 0.8 a 54.4 ± 0.6 b
中嘉早17 Zhongjiazao 17 1082 ± 140 b 734 ± 115 b 87.9 ± 0.9 a 76.5 ± 1.0 a 57.1 ± 0.4 a
湘早籼24号 Xiangzaoxian 24 1558 ± 344 a 1047 ± 238 a 86.8 ± 0.3 ab 77.5 ± 0.1 a 55.6 ± 0.2 ab
中早39 Zhongzao 39 1226 ± 127 ab 770 ± 73 b 84.7 ± 1.4 b 74.4 ± 3.0 a 55.1 ± 0.9 b
株两优729 Zhuliangyou 729 1198 ± 112 b 785 ± 84 ab 85.7 ± 0.3 ab 76.5 ± 0.8 a 54.4 ± 0.5 b
2022 广陆矮4号 Guanglu’ai 4 1334 ± 180 a 944 ± 142 a 89.5 ± 0.7 a 78.4 ± 0.8 a 54.0 ± 1.0 b
中嘉早17 Zhongjiazao 17 1263 ± 68 ab 880 ± 71 ab 88.8 ± 0.7 a 78.0 ± 1.7 a 57.3 ± 1.4 a
湘早籼24号 Xiangzaoxian 24 1121 ± 47 bc 730 ± 23 bc 87.7 ± 0.7 a 74.1 ± 0.3 b 53.0 ± 0.6 b
中早39 Zhongzao 39 902 ± 50 d 602 ± 41 c 87.4 ± 0.6 a 75.6 ± 0.9 ab 53.3 ± 0.1 b
株两优729 Zhuliangyou 729 950 ± 97 cd 647 ± 84 c 88.9 ± 0.8 a 75.8 ± 1.4 ab 54.5 ± 0.1 b

表3

不同米粉稻品种糙米淀粉组分含量"

年份 Year 品种
Cultivar
总淀粉
Total starch (%)
直链淀粉
Amylose (%)
支链淀粉
Amylopectin (%)
直支比
Amylose-to-amylopectin ratio
2021 广陆矮4号 Guanglu’ai 4 69.2 ± 0.3 a 25.3 ± 0.6 b 43.9 ± 0.7 a 0.58 ± 0.02 b
中嘉早17 Zhongjiazao 17 69.2 ± 0.3 a 26.6 ± 0.1 a 42.5 ± 0.3 b 0.63 ± 0.01 a
湘早籼24号 Xiangzaoxian 24 65.9 ± 0.2 b 25.1 ± 0.2 b 40.9 ± 0.3 c 0.61 ± 0.01 ab
中早39 Zhongzao 39 69.0 ± 0.4 a 26.0 ± 0.2 ab 43.0 ± 0.5 ab 0.60 ± 0.01 ab
株两优729 Zhuliangyou 729 69.2 ± 0.4 a 25.7 ± 0.3 ab 43.5 ± 0.2 ab 0.59 ± 0.01 ab
2022 广陆矮4号 Guanglu’ai 4 67.2 ± 0.3 ab 27.1 ± 1.1 a 40.1 ± 1.2 ab 0.68 ± 0.05 ab
中嘉早17 Zhongjiazao 17 67.8 ± 1.1 a 27.8 ± 0.7 a 40.0 ± 0.5 ab 0.70 ± 0.01 a
湘早籼24号 Xiangzaoxian 24 65.3 ± 0.8 b 27.2 ± 0.8 a 38.1 ± 0.6 b 0.72 ± 0.03 a
中早39 Zhongzao 39 65.9 ± 0.6 ab 24.3 ± 0.3 b 41.5 ± 0.8 a 0.59 ± 0.02 b
株两优729 Zhuliangyou 729 66.5 ± 0.1 ab 26.6 ± 0.9 ab 40.0 ± 0.8 ab 0.67 ± 0.04 ab

表4

不同米粉稻品种糙米糊化特性"

年份
Year
品种
Cultivar
黏度 Viscosity (cP)
峰值黏度
Peak
热浆黏度
Through
最终黏度
Final
崩解值
Breakdown
2021 广陆矮4号 Guanglu’ai 4 2560 ± 37.0 bc 1909 ± 14.3 c 3357 ± 61.5 d 658 ± 25.2 a
中嘉早17 Zhongjiazao 17 2704 ± 33.1 b 2003 ± 27.3 b 3532 ± 30.3 b 701 ± 7.0 a
湘早籼24号 Xiangzaoxian 24 2469 ± 60.6 c 1941 ± 53.3 bc 3515 ± 42.0 bc 528 ± 21.2 b
中早39 Zhongzao 39 2869 ± 37.5 a 2192 ± 18.6 a 3759 ± 5.5 a 677 ± 44.7 a
株两优729 Zhuliangyou 729 2601 ± 41.9 bc 1996 ± 14.8 bc 3374 ± 51.6 cd 605 ± 35.5 ab
2022 广陆矮4号 Guanglu’ai 4 2870 ± 77.8 a 2043 ± 29.5 a 3679 ± 29.0 bc 827 ± 96.2 a
中嘉早17 Zhongjiazao 17 2891 ± 83.8 a 2061 ± 15.9 a 3794 ± 119.8 ab 830 ± 98.0 a
湘早籼24号 Xiangzaoxian 24 2789 ± 91.7 a 2130 ± 80.6 a 3737 ± 71.0 abc 659 ± 119.8 a
中早39 Zhongzao 39 2979 ± 24.2 a 2161 ± 35.2 a 3915 ± 50.7 a 818 ± 11.9 a
株两优729 Zhuliangyou 729 2848 ± 48.1 a 2109 ± 20.1 a 3572 ± 4.2 c 739 ± 28.0 a
年份
Year
品种
Cultivar
黏度 Viscosity (cP) 峰值时间
Time to peak viscosity (min)
糊化温度
Pasting temperature (℃)
消减值
Setback
回复值
Consistency
2021 广陆矮4号 Guanglu’ai 4 797 ± 36.7 bc 1454 ± 56.0 ab 6.04 ± 0.059 bc 82.1 ± 0.29 bc
中嘉早17 Zhongjiazao 17 828 ± 19.9 bc 1529 ± 21.7 a 5.98 ± 0.023 c 81.5 ± 0.02 c
湘早籼24号 Xiangzaoxian 24 1046 ± 36.0 a 1574 ± 45.8 a 6.22 ± 0.023 a 83.4 ± 0.23 a
中早39 Zhongzao 39 890 ± 32.6 b 1567 ± 18.0 a 6.27 ± 0.067 a 82.9 ± 0.22 ab
株两优729 Zhuliangyou 729 773 ± 11.6 c 1378 ± 46.8 b 6.20 ± 0.040 ab 83.1 ± 0.43 a
2022 广陆矮4号 Guanglu’ai 4 809 ± 50.0 a 1636 ± 47.1 bc 5.98 ± 0.090 a 81.5 ± 0.02 b
中嘉早17 Zhongjiazao 17 903 ± 184.2 a 1733 ± 96.3 ab 5.98 ± 0.118 a 81.8 ± 0.71 ab
湘早籼24号 Xiangzaoxian 24 948 ± 132.3 a 1607 ± 39.4 c 6.27 ± 0.170 a 83.2 ± 0.76 a
中早39 Zhongzao 39 936 ± 28.9 a 1753 ± 25.7 a 6.20 ± 0.040 a 83.0 ± 0.12 a
株两优729 Zhuliangyou 729 724 ± 49.4 a 1463 ± 21.8 d 6.15 ± 0.023 a 82.6 ± 0.27 ab

图1

糙米粉蒸煮食味品质与糙米淀粉组分含量和糊化特性的相关性 相关系数用表1~4的数据得出(n = 10)。*和**分别表示相关性达0.05和0.01极显著水平。Total starch content: 总淀粉含量; Amylose content: 直链淀粉含量; Amylopectin content: 支链淀粉含量; Amylose-to-amylopectin ratio: 直支比; Peak viscosity: 峰值黏度; Through viscosity: 热浆黏度; Final viscosity: 最终黏度; Breakdown viscosity: 崩解值; Setback viscosity: 消减值; Consistency viscosity: 回复值; Time to peak viscosity: 峰值时间; Pasting temperature: 糊化温度; Cooked break rate: 断条率; Cooking loss rate: 损失率; Hardness: 硬度; Chewiness: 咀嚼性; Springiness: 弹性; Cohesiveness: 内聚性; Resilience: 回复性; Correlation coefficient: 相关系数。"

[1] Geng D H, Zhou S M, Wang L L, Zhou X R, Liu L, Lin Z X, Qin W Y, Liu L Y, Tong L T. Effects of slight milling combined with cellulase enzymatic treatment on the textural and nutritional properties of brown rice noodles. LWT, 2020, 128: 109520.
[2] 李亚男, 胡培松, 王莉, 陈正行. 早籼稻的品质特性及其加工适应性研究进展. 食品与机械, 2015, 31(6): 238-241.
Li Y N, Hu P S, Wang L, Chen Z X. Research progress on quality characteristics and processing adaptability of early indica rice. Food Mach, 2015, 31(6): 238-241 (in Chinese with English abstract).
[3] 朱大伟, 曾波, 邵雅芳, 章林平, 陈铭学, 于永红. 近10年我国籼稻品种品质特征分析. 粮油食品科技, 2023, 31(6): 10-19.
Zhu D W, Zeng B, Shao Y F, Zhang L P, Chen M X, Yu Y H. Analysis of rice quality characteristics of indica rice varieties of China in recent 10 years. Sci Technol Cereals Oils Foods, 2023, 31(6): 10-19 (in Chinese with English abstract).
[4] Low Y K, Effarizah M E, Cheng L H. Factors influencing rice noodles qualities. Food Rev Int, 2020, 36: 781-794.
doi: 10.1080/87559129.2019.1683747
[5] Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B. Closing yield gaps for rice self-sufficiency in China. Nat Commun, 2019, 10: 1725.
doi: 10.1038/s41467-019-09447-9 pmid: 30979872
[6] Aune D, Keum N, Giovannucci E, Fadnes L T, Boffetta P, Greenwood D C, Tonstad S, Vatten L J, Riboli E, Norat T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ, 2016, 353: i2716.
[7] Xia Q, Green B D, Zhu Z Z, Li Y F, Gharibzahedi S M T, Roohinejad S, Barba F J. Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice (Oryza sativa L.): opportunities for enhancing food quality and health attributes. Crit Rev Food Sci Nutr, 2019, 59: 3349-3370.
[8] 谭斌, 刘明, 吴娜娜, 汪丽萍, 田晓红. 发展糙米全谷物食品改善国民健康状况. 食品与机械, 2012, 28(5): 2-5.
Tan B, Liu M, Wu N N, Wang L P, Tian X H. Development of brown rice whole grain food to improve people’s health. Food Mach, 2012, 28(5): 2-5 (in Chinese with English abstract).
[9] 刘璐, 周素梅, 王爱霞, 耿栋辉, 王丽丽, 刘丽娅, 周闲容, 佟立涛. 杂豆对糙米米粉食用及营养品质的影响. 中国食品学报, 2021, 21(9): 169-176.
Liu L, Zhou S M, Wang A X, Geng D H, Wang L L, Liu L Y, Zhou X R, Tong L T. Effects of beans on eating and nutritional quality of brown rice noodles. J Chin Inst Food Sci Technol, 2021, 21(9): 169-176 (in Chinese with English abstract).
[10] 杨玎玲, 范冬雪, 吴继红, 胡小松, 沈群. 发芽、发酵对米粉品质的影响. 中国食品学报, 2017, 17(12): 293-299.
Yang D L, Fan D X, Wu J H, Hu X S, Shen Q. The effects of germination and fermentation on rice flour. J Chin Inst Food Sci Technol, 2017, 17(12): 293-299 (in Chinese with English abstract).
[11] 周游, 张运辰, 冯红, 孙周亮, 吕庆云, 丁文平, 庄坤, 陈磊. 食盐改善挤压糙米米线食用品质研究. 食品科技, 2022, 47(5): 196-201.
Zhou Y, Zhang Y C, Feng H, Sun Z L, Lyu Q Y, Ding W P, Zhuang K, Chen L. Study on improving quality of extruded brown rice noodles by adding salt. Food Sci Technol, 2022, 47(5): 196-201 (in Chinese with English abstract).
[12] Geng D H, Lin Z X, Liu L, Qin W Y, Wang A X, Wang F Z, Tong L T. Effects of ultrasound-assisted cellulase enzymatic treatment on the textural properties and in vitro starch digestibility of brown rice noodles. LWT, 2021, 146: 111543.
[13] Wang L, Duan W, Zhou S M, Qian H F, Zhang H, Qi X G. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chem, 2016, 204: 320-325.
doi: S0308-8146(16)30214-X pmid: 26988508
[14] Tong L T, Gao X X, Lin L Z, Liu Y J, Zhong K, Liu L Y, Zhou X R, Wang L, Zhou S M. Effects of semidry flour milling on the quality attributes of rice flour and rice noodles in China. J Cereal Sci, 2015, 62: 45-49.
[15] 肖正午, 黄敏. 鲜湿米粉品质及其影响因素. 中国稻米, 2022, 28(3): 34-41.
doi: 10.3969/j.issn.1006-8082.2022.03.006
Xiao Z W, Huang M. Fresh rice noodle quality and influencing factors. China Rice, 2022, 28(3): 34-41 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2022.03.006
[16] Sandhu K S, Kaur M, Mukesh. Studies on noodle quality of potato and rice starches and their blends in relation to their physicochemical, pasting and gel textural properties. LWT, 2010, 43: 1289-1293.
[17] 周显青, 彭超, 张玉荣, 郭利利, 熊宁. 压榨型鲜湿米粉条凝胶质构特性及食用品质影响因素. 食品科学, 2017, 38(21): 93-99.
doi: 10.7506/spkx1002-6630-201721015
Zhou X Q, Peng C, Zhang Y R, Guo L L, Xiong N. Factors influencing gel texture and eating quality of pressed type fresh rice noodles. Food Sci, 2017, 38(21): 93-99 (in Chinese with English abstract).
[18] 高晓旭, 佟立涛, 钟葵, 刘丽娅, 周闲容, 周素梅, 王立. 鲜米粉加工专用原料的选择. 中国粮油学报, 2015, 30(2): 1-5.
Gao X X, Tong L T, Zhong K, Liu L Y, Zhou X R, Zhou S M, Wang L. Raw material selection for fresh rice noodles. J Chin Cereals Oils Assoc, 2015, 30(2): 1-5 (in Chinese with English abstract).
[19] 王永辉, 张业辉, 张名位, 魏振承, 唐小俊, 张瑞芬, 邓媛元, 张雁. 不同水稻品种大米直链淀粉含量对加工米粉丝品质的影响. 中国农业科学, 2013, 46: 109-120.
doi: 10.3864/j.issn.0578-1752.2013.01.013
Wang Y H, Zhang Y H, Zhang M W, Wei Z C, Tang X J, Zhang R F, Deng Y Y, Zhang Y. Effect of amylose content of different rice varieties on the qualities of rice vermicelli. Sci Agric Sin, 2013, 46: 109-120 (in Chinese with English abstract).
[20] Bhattacharya M, Zee S Y, Corke H. Physicochemical properties related to quality of rice noodles. Cereal Chem, 1999, 76: 861-867.
[21] Yi C P, Zhu H, Bao J S, Quan K, Yang R H. The texture of fresh rice noodles as affected by the physicochemical properties and starch fine structure of aged paddy. LWT, 2020, 130: 109610.
[22] 周显青, 彭超, 张玉荣, 郭利利, 熊宁. 早籼稻的品质分析与其压榨型鲜湿米粉加工适应性. 食品科学, 2018, 39(19): 36-43.
doi: 10.7506/spkx1002-6630-201819007
Zhou X Q, Peng C, Zhang Y R, Guo L L, Xiong N. Quality analysis of early indica rice cultivars and their suitability for processing of pressed fresh noodles. Food Sci, 2018, 39(19): 36-43 (in Chinese with English abstract).
[23] 肖正午, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 方升亮, 曹放波, 等. 米粉稻早季与晚季种植品质差异研究. 作物学报, 2024, 50: 451-463.
doi: 10.3724/SP.J.1006.2024.32014
Xiao Z W, Hu L Q, Li X, Xie J X, Liao C J, Kang Y L, Hu Y P, Zhang K Q, Fang S L, Cao F B, et al. Quality differences between noodle rice grown in early and late seasons. Acta Agron Sin, 2024, 50: 451-463 (in Chinese with English abstract).
[24] 林芳栋, 蒋珍菊, 廖珊, 游娟, 李朝学. 质构仪及其在食品品质评价中的应用综述. 生命科学仪器, 2009, 7(5): 61-63.
Lin F D, Jiang Z J, Liao S, You J, Li C X. The summary of texture analyzer and its application in the evaluation for food quality. Life Sci Instrum, 2009, 7(5): 61-63 (in Chinese with English abstract).
[25] 丁文平, 王月慧, 丁霄霖. 米线质量仪器评价体系的建立. 食品工业科技, 2004, 25(1): 135-137.
Ding W P, Wang Y H, Ding X L. The establishment of quality evaluation system for rice noodle by instrumental test. Sci Technol Food Ind, 2004, 25(1): 135-137 (in Chinese).
[26] 高晓旭, 佟立涛, 钟葵, 刘丽娅, 周闲容, 王立, 周素梅. 鲜米粉品质评价指标的研究. 核农学报, 2014, 28: 1656-1663.
doi: 10.11869/j.issn.100-8551.2014.09.1656
Gao X X, Tong L T, Zhong K, Liu L Y, Zhou X R, Wang L, Zhou S M. Research on quality evaluation of fresh rice noodles. J Nucl Agric Sci, 2014, 28: 1656-1663 (in Chinese with English abstract).
[27] 陈款, 周游, 庄坤, 丁文平, 吕庆云, 高红波, 莫守生, 刘娥. 纤维素酶处理改善糙米米线食用品质的研究. 食品科技, 2023, 48(4): 168-175.
Chen K, Zhou Y, Zhuang K, Ding W P, Lyu Q Y, Gao H B, Mo S S, Liu E. Improving the edible quality of brown rice noodles by cellulase treatment. Food Sci Technol, 2023, 48(4): 168-175 (in Chinese with English abstract).
[28] Huang M, Xiao Z W, Chen J N, Cao F B. Yield and quality of brown rice noodles processed from early-season rice grains. Sci Rep, 2021, 11: 18668.
doi: 10.1038/s41598-021-98352-7 pmid: 34548582
[29] Kang T, Yoon M R, Lee J S, Choi K O. Branched chain length distribution of amylopectin in rice flour as a key attribute for determining the quality of extruded rice noodles. J Food Process Preserv, 2022, 46: e16473.
[30] Puhin K, Fukuoka M, Ratanasumawong S. Effect of starch and non-starch components on water migration, microstructure, starch retrogradation and texture of flat rice noodles made from different rice varieties. Int J Food Sci Technol, 2021, 56: 3344-3354.
[31] 刘晓飞, 贾春艳, 李祥, 吴鸣, 张光, 张娜. 淀粉改性对米线品质影响的研究进展. 食品工业科技, 网络首发[2024-09-14], https://link.cnki.net/urlid/11.1759.TS.20240913.1735.005.
Liu X F, Jia C Y, Li X, Wu M, Zhang G, Zhang N. Research progress on the effect of modified starch on the quality of rice noodles. Sci Technol Food Ind, Published online [2024-09-14], https://link.cnki.net/urlid/11.1759.TS.20240913.1735.005 (in Chinese with English abstract).
[32] 贾良, 丁雪云, 王平荣, 邓晓建. 稻米淀粉RVA谱特征及其与理化品质性状相关性的研究. 作物学报, 2008, 34: 790-794.
doi: 10.3724/SP.J.1006.2008.00790
Jia L, Ding X Y, Wang P R, Deng X J. Rice RVA profile characteristics and correlation with the physical/chemical quality. Acta Agron Sin, 2008, 34: 790-794 (in Chinese with English abstract).
[33] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38: 657-663.
Sui J M, Li X, Yan S, Yan C J, Zhang R, Tang S Z, Lu J F, Chen Z X, Gu M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Sci Agric Sin, 2005, 38: 657-663 (in Chinese with English abstract).
[34] 李刚, 邓其明, 李双成, 王世全, 李平. 稻米淀粉RVA谱特征与品质性状的相关性. 中国水稻科学, 2009, 23: 99-102.
Li G, Deng Q M, Li S C, Wang S Q, Li P. Correlation analysis between RVA profile characteristics and quality in rice. Chin J Rice Sci, 2009, 23: 99-102 (in Chinese with English abstract).
[35] 包劲松, 夏英武. 稻米淀粉RVA谱的基因型 × 环境互作效应分析. 中国农业科学, 2001, 34: 123-127.
Bao J S, Xia Y W. Genetic effects and genotype × environment interactions for the starch RVA profiles in indica rice. Sci Agric Sin, 2001, 34: 123-127 (in Chinese with English abstract).
[1] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[2] 陈娟, 杨婷婷, 闫素辉, 雍玉东, 张士雅, 李文阳. 拔节期渍水对软质小麦淀粉粒度分布与糊化特性的影响[J]. 作物学报, 2024, 50(7): 1877-1884.
[3] 肖正午, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 方升亮, 曹放波, 陈佳娜, 黄敏. 米粉稻早季与晚季种植品质差异研究[J]. 作物学报, 2024, 50(2): 451-463.
[4] 李莎莎,马耕,刘卫星,康娟,陈雨露,胡阳阳,张盼盼,王晨阳. 大田长期水氮处理对土壤氮素及小麦籽粒淀粉糊化特性的影响[J]. 作物学报, 2018, 44(7): 1067-1076.
[5] 于海霞,田纪春. 小麦淀粉糊化特性与DArT标记的关联分析[J]. 作物学报, 2012, 38(11): 1997-2006.
[6] 孙健, 岳瑞雪, 钮福祥, 徐飞, 朱红. 淀粉型甘薯品种直链淀粉含量、糊化特性和乙醇发酵特性的关系[J]. 作物学报, 2012, 38(03): 479-486.
[7] 陆大雷, 郭换粉, 董策, 陆卫平. 普通、甜、糯玉米果穗不同部位籽粒淀粉理化特性和颗粒分布差异[J]. 作物学报, 2011, 37(02): 331-338.
[8] 田益华,张传辉,蔡剑,周琴,姜东,戴廷波,荆奇,曹卫星. 小麦籽粒A-型和B-型淀粉粒的理化特性[J]. 作物学报, 2009, 35(9): 1755-1758.
[9] 陆大雷;王德成;赵久然;陆卫平. 生长秀节对糯玉米淀粉晶体结构和糊化特性的影响[J]. 作物学报, 2009, 35(3): 499-505.
[10] 张艳霞;丁艳锋;李刚华;王强盛;黄丕生;王绍华. 直链淀粉含量不同的稻米淀粉结构、糊化特性研究[J]. 作物学报, 2007, 33(07): 1201-1205.
[11] 穆培源;何中虎;徐兆华;王德森;张艳;夏先春. CIMMYT普通小麦品系Waxy蛋白类型及淀粉糊化特性研究[J]. 作物学报, 2006, 32(07): 1071-1075.
[12] 黄华宏;陆国权;舒庆尧. 高色素甘薯淀粉糊化特性的基因型差异[J]. 作物学报, 2005, 31(01): 92-96.
[13] 宁堂原;李增嘉;焦念元;赵春;申加祥;张光辉;王浩. 不同熟期玉米品种春夏套作对籽粒淀粉含量及糊化特性的影响[J]. 作物学报, 2005, 31(01): 77-82.
[14] 池晓菲;吴殿星;楼向阳;夏英武;舒庆尧. 五种禾谷类作物淀粉糊化特性的比较研究[J]. 作物学报, 2003, 29(02): 300-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!