欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3204-3214.doi: 10.3724/SP.J.1006.2023.24268

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

烟草细胞质雄性不育系K326 MADS-boxSUPERMAN基因的特征

崔芳芳1, 孟林峰1, 刘苗苗2, 张建强2, 王建革2,*(), 刘齐元1,*()   

  1. 1江西农业大学农学院 / 作物生理生态与遗传育种教育部重点实验室, 江西南昌 330045
    2江西农业大学林学院, 江西南昌 330045
  • 收稿日期:2022-12-03 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-05-31
  • 通讯作者: * 王建革, E-mail: wjgsd@126.com; 刘齐元, E-mail: qiyuanl@126.com
  • 基金资助:
    国家自然科学基金项目(3196150292)

Characteristics of MADS-box and SUPERMAN genes in tobacco cytoplasmic male sterile line K326

CUI Fang-Fang1, MENG Lin-Feng1, LIU Miao-Miao2, ZHANG Jian-Qiang2, WANG Jian-Ge2,*(), LIU Qi-Yuan1,*()   

  1. 1Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
    2College of Forestry, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
  • Received:2022-12-03 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-05-31
  • Contact: * E-mail: wjgsd@126.com; E-mail: qiyuanl@126.com
  • Supported by:
    National Natural Science Foundation of China(3196150292)

摘要:

细胞质雄性不育是杂种生产的重要工具, 也是研究细胞核与细胞质互作的良好系统, 但其机制仍不清楚。本研究以细胞质雄性不育系K326为材料, 研究了烟草细胞质不育系雄蕊异常与花发育基因表达的关系。细胞质雄性不育系K326源于普通烟草天然不育株, 用烤烟品种K326连续回交培育而成, 不仅具有心皮化雄蕊现象, 同时也有花瓣化雄蕊现象, 异常雄蕊基部融合为一体。本研究首先用生信手段对控制普通烟草花发育的MADS-box基因和边界基因SUPERMAN进行了全基因组鉴定, 分析了它们染色体定位和共线性, 预测了B类基因和SUPEMAN基因的顺式作用元件, 并研究了它们在不育系和保持系不同时期花蕾中的表达特征。结果表明, 烟草共鉴定出160个MADS-box基因和5个SUPERMAN基因。这些MADS-box基因中有7个B类基因(4个PI基因, 3个AP3基因), 79个MADS-box基因定位于22条染色体上, 3个SUPERMAN基因定位于3条染色体上。共线性分析表明, 串联和片段DNA重复、倍加作用是MADS-box基因家族扩张的驱动力。观察发现, 细胞质雄性不育系K326异常雄蕊在小蕾期就已出现, 暗示细胞质雄性不育K326中雄蕊异常是早期分生组织发育缺陷的结果。qPCR检测表明, 细胞质雄性不育系及保持系中可以检测到7个B类基因和1个SUPERMAN基因表达。PI基因表达水平NitMADS115在保持系各个时期均高于不育系; AP3基因NitMADS72NitMADS100表达水平在保持系各个时期均低于不育系; 其他基因呈现小蕾期和大蕾期下调, 中蕾期上调。SUPERMAN基因只在保持系小蕾和中蕾期可以检测到, 而不育系各个时期中均无法检测到; 顺式作用元件分析表明, NitMADS115具有生长素响应元件AuxRR。因此, 生长素可能在烟草细胞质逆行调控细胞核起重要作用。

关键词: 烟草, 细胞质雄性不育, MADS-box, SUPERMAN, 生长素

Abstract:

Cytoplasmic male sterility (CMS) is an important tool for hybrid production and a good system for studying the interaction between nucleus and cytoplasm, but its mechanism is still unclear. The relationship between stamen abnormality and the relative expression levels of flower development genes in tobacco CMS line K326 was studied. The CMS line K326 was derived from a natural variation in Nicotiana tabacum and was bred by continuous backcross of flue-cured tobacco variety K326. It has not only stamens with carpelloid, but also stamens with petaloid, and the base of abnormal stamens is fused into a whole. In this study, we identified MADS-box genes and SUPERMAN genes of whole genome, which controlled the flower development in N. tabacum and analyzed their chromosomal localization and collinearity. The cis-acting elements of B genes and SUPERMAN genes were predicted, and their expression characteristics in flower buds at different stages in both CMS line and its maintainer line were studied. The results showed that 160 MADS-box genes and 5 SUPERMAN genes were identified in the genome of tobacco, including 4 PI genes, 3 AP3 genes, and 7 B genes. There were 79 MADS-box genes scattered on 22 chromosomes, and 3 SUPERMAN genes distributed on 3 chromosomes. Collinearity analysis showed that tandem and fragment DNA duplication and multiplication were the driving forces of the expansion of MADS- box gene family in tobacco. The abnormal stamens of CMS line K326 appeared at small bud stage, suggesting that the abnormal stamens in CMS line K326 were the result of early meristem development defects. The qRT-PCR showed that 7 B genes and 1 SUPERMAN gene were expressed both in CMS line K326 and its maintainers. The relative expression level of PI gene NitMADS115 in the maintainer line was higher than that in CMS line at all stages. The relative expression levels of AP3 genes NitMADS72 and NitMADS100 in maintainer lines were lower than those in CMS lines. Other genes were down-regulated at small bud stage and large bud stage, and up-regulated at middle bud stage. The SUPERMAN gene could only be detected at small bud and middle bud stage of the maintainer line, but not at bud stages of CMS line. Analysis of cis-acting elements showed that NitMADS115 had an auxin response element AuxRR. The study indicates that auxin might play an important role in cytoplasmic retrograde regulation of nucleus in tobacco.

Key words: tobacco, cytoplasmic male sterility, MADS-box, SUPERMAN, auxin

表1

qPCR所用引物"

基因
Gene name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
NitMADS100 TTTGCCAATGGAGTACACA TTAACCCCATTACCAAATTGC
NitMADS72 CAGGCAAGTCACTTACTCCA CAAGCGTCCTCTGATACTGA
NitMADS23 AAATTGAACTCAAGCACCT TTACGGATACTAGTTAGTCCA
NitMADS105 ATGGACTCACTAGTATCCGTA TGGTGAAACACTTCCCCTA
NitMADS152 GCATATTAGCCTTACGCCTT TTCACTTTGCGTAGATTGACT
NitMADS22 TGCATGAATATTGTAGCCCTT GCTTAACCTGCATACTGTCA
NitMADS115 TGCATGAATATTGTAGCCCTT GCTTAACCTGCATACTGTCA
NitSUP1 TCGAATAACAACGACGACAAC GGCACATCTGAATTCCCTT
NitSUP2 AGCAGCCCATTTAAGTTACCG GCTTAAACTCACACGCCAA
NitSUP3 CCTAGTTTTGTTTCATCCCC CAAATCTCCATTTCTTAGCTGA
NitSUP4 CCATTAAATCACTTGAGCC CTAAGCAATCCAATTCCCAA
NitSUP5 GGCAGCTCATTTAAGTTTCCG CACGCCAATCATCTCCGAA
Actin CCGCTTTTGCTATTATGTCC GCACCTCACAAATATGCTG

图1

细胞质雄性不育系K326及保持系不同花蕾期雄蕊形态 A: 保持系小蕾期; B: 保持系中蕾期; C: 保持系大蕾期; D: 不育系小蕾期; E: 不育系中蕾期; F: 不育系大蕾期。"

附表1

烟草B类MADS-box基因和SUPERMAN基因"

基因
Gene name
转录本
Transcript
蛋白长度
Protein length (aa)
TAIR10_描述
TAIR10_description
NitMADS1 Nitab4.5_0000001g0140.1 391 FEM111, AGL80, AGAMOUS-like 80
NitMADS2 Nitab4.5_0000009g0060.1 444 FEM111, AGL80, AGAMOUS-like 80
NitMADS3 Nitab4.5_0000014g0510.1 231 SEP1, AGL2, K-box region and MADS-box family protein
NitMADS4 Nitab4.5_0000016g0430.1 217 STK, AGL11, K-box region and MADS-box family protein
NitMADS5 Nitab4.5_0000027g0070.1 209 SEP2, AGL4, K-box region and MADS-box family protein
NitMADS6 Nitab4.5_0000036g0460.1 160 AGL21
NitMADS7 Nitab4.5_0000047g0250.1 219 AGL62
NitMADS8 Nitab4.5_0000093g0040.1 177 AGL29
NitMADS9 Nitab4.5_0000131g0290.1 133 SVP, AGL22, K-box region and MADS-box family protein
NitMADS10 Nitab4.5_0000140g0130.1 210 AGL20, SOC1, ATSOC1, AGAMOUS-like 20
NitMADS11 Nitab4.5_0000146g0060.1 197 AGL62
NitMADS12 Nitab4.5_0000154g0260.1 186 SEP2, AGL4, K-box region and MADS-box family protein
NitMADS13 Nitab4.5_0000163g0010.1 239 MADS-box protein AGL71-like
NitMADS14 Nitab4.5_0000167g0220.1 270 AGL2
NitMADS15 Nitab4.5_0000214g0110.1 260 AGL8 homolog
NitMADS16 Nitab4.5_0000290g0080.1 62 AGL42
NitMADS17 Nitab4.5_0000323g0030.1 268 SEP3, AGL9, K-box region and MADS-box family protein
NitMADS18 Nitab4.5_0000354g0070.1 85 ANR1, AGL44, AGAMOUS-like 44
NitMADS19 Nitab4.5_0000365g0070.1 271 AGL2
NitMADS20 Nitab4.5_0000367g0080.1 169 AGL1
NitMADS21 Nitab4.5_0000396g0070.1 165 AGL29
NitMADS22 Nitab4.5_0000418g0050.1 212 PI
NitMADS23 Nitab4.5_0000508g0030.1 209 PI
NitMADS24 Nitab4.5_0000514g0010.1 240 AGL21
NitMADS25 Nitab4.5_0000518g0100.1 175 AGL8 homolog
NitMADS26 Nitab4.5_0000579g0010.1 249 SEP3, AGL9, K-box region and MADS-box family protein
NitMADS27 Nitab4.5_0000592g0010.1 434 vegetative cell wall protein gp1-like
NitMADS28 Nitab4.5_0000599g0020.1 89 AGL20, SOC1, ATSOC1 AGAMOUS-like 20
NitMADS29 Nitab4.5_0000622g0180.1 177 AGL29
NitMADS30 Nitab4.5_0000654g0110.1 193 AGL62
NitMADS31 Nitab4.5_0000715g0210.1 442 AGL104
NitMADS32 Nitab4.5_0000738g0160.1 221 AGL80
NitMADS33 Nitab4.5_0000748g0100.1 190 AGL12, XAL1, AGAMOUS-like 12
NitMADS34 Nitab4.5_0000772g0010.1 201 AGL62
NitMADS35 Nitab4.5_0000787g0180.1 370 AGL80
NitMADS36 Nitab4.5_0000832g0060.1 97 AGL20, SOC1, ATSOC1, AGAMOUS-like 20
NitMADS37 Nitab4.5_0000885g0080.1 71 ANR1, AGL44, AGAMOUS-like 44
NitMADS38 Nitab4.5_0000902g0340.1 186 SVP, AGL22 K-box region and MADS-box family protein
NitMADS39 Nitab4.5_0000915g0190.1 159 AGL1
NitMADS40 Nitab4.5_0000927g0060.1 90 AGL12, XAL1, AGAMOUS-like 12
NitMADS41 Nitab4.5_0000934g0190.1 327 AGL66
NitMADS42 Nitab4.5_0000935g0220.1 66 AGL21
NitMADS43 Nitab4.5_0001026g0080.1 189 SVP, AGL22, K-box region and MADS-box family protein
NitMADS44 Nitab4.5_0001030g0180.1 191 AGL62
NitMADS45 Nitab4.5_0001099g0010.1 185 AGL62
NitMADS46 Nitab4.5_0001113g0010.1 101 MAF4
NitMADS47 Nitab4.5_0001121g0240.1 260 AG
NitMADS48 Nitab4.5_0001127g0140.1 250 AGL6
NitMADS49 Nitab4.5_0001209g0020.1 532 vegetative cell wall protein gp1-like
NitMADS50 Nitab4.5_0001242g0040.1 78 AGL15
NitMADS51 Nitab4.5_0001244g0010.1 333 AGL15
NitMADS52 Nitab4.5_0001262g0020.1 164 AGL1
NitMADS53 Nitab4.5_0001339g0170.1 245 SEP2, AGL4, K-box region and MADS-box family protein
NitMADS54 Nitab4.5_0001376g0040.1 68 AGL20, SOC1 ATSOC1,AGAMOUS-like 20
NitMADS55 Nitab4.5_0001434g0020.1 227 SEP2, AGL4, K-box region and MADS-box family protein
NitMADS56 Nitab4.5_0001436g0060.1 277 MADS-box transcription factor 23-like
NitMADS57 Nitab4.5_0001463g0160.1 361 FEM111,AGL80, AGAMOUS-like 80
NitMADS58 Nitab4.5_0001468g0090.1 190 SVP, AGL22, K-box region and MADS-box family protein
NitMADS59 Nitab4.5_0001477g0020.1 222 AGL62
NitMADS60 Nitab4.5_0001541g0050.1 258 AGL8, FUL, AGAMOUS-like 8
NitMADS61 Nitab4.5_0001714g0110.1 119 AGL14
NitMADS62 Nitab4.5_0001797g0040.1 210 SEP4, AGL3, K-box region and MADS-box family protein
NitMADS63 Nitab4.5_0001932g0030.1 200 AGL62
NitMADS64 Nitab4.5_0001997g0120.1 75 AGL17
NitMADS65 Nitab4.5_0002011g0030.1 242 AGL62
NitMADS66 Nitab4.5_0002041g0030.1 245 SEP4, AGL3, K-box region and MADS-box family protein
NitMADS67 Nitab4.5_0002060g0090.1 67 AGL42
NitMADS68 Nitab4.5_0002207g0020.1 172 AGL29
NitMADS69 Nitab4.5_0002210g0020.1 179 AGL61
NitMADS70 Nitab4.5_0002228g0010.1 140 AGL20, SOC1, ATSOC1, AGAMOUS-like 20
NitMADS71 Nitab4.5_0002249g0010.1 185 AP1, AGL7, K-box region and MADS-box family protein
NitMADS72 Nitab4.5_0002266g0050.1 118 AP3, ATAP3, K-box region and MADS-box family protein
NitMADS73 Nitab4.5_0002290g0100.1 146 ANR1, AGL44, AGAMOUS-like 44
NitMADS74 Nitab4.5_0002324g0050.1 243 AGL62
NitMADS75 Nitab4.5_0002449g0010.1 256 AGL8, FUL, AGAMOUS-like 8
NitMADS76 Nitab4.5_0002467g0090.1 160 AP1, AGL7, K-box region and MADS-box family protein
NitMADS77 Nitab4.5_0002502g0010.1 185 AGL2
NitMADS78 Nitab4.5_0002516g0060.1 120 FEM111, AGL80, AGAMOUS-like 80
NitMADS79 Nitab4.5_0002583g0020.1 185 AGL61, DIA, AGAMOUS-like 61
NitMADS80 Nitab4.5_0002779g0020.1 185 AGL 2
NitMADS81 Nitab4.5_0002840g0130.1 173 MADS-box transcription factor 23-like
NitMADS82 Nitab4.5_0002860g0020.1 190 AGL61, DIA, AGAMOUS-like 61
NitMADS83 Nitab4.5_0002947g0010.1 185 AGL2
NitMADS84 Nitab4.5_0002949g0060.1 182 AGL104
NitMADS85 Nitab4.5_0003151g0030.1 228 AGL 2
NitMADS86 Nitab4.5_0003182g0070.1 214 AGL20, SOC1, ATSOC1, AGAMOUS-like 20
NitMADS87 Nitab4.5_0003184g0040.1 86 AGL16
NitMADS88 Nitab4.5_0003248g0010.1 237 MAF4
NitMADS89 Nitab4.5_0003336g0080.1 231 AGL21
NitMADS90 Nitab4.5_0003356g0030.1 78 AGL20, SOC1, ATSOC1, AGAMOUS-like 20
NitMADS91 Nitab4.5_0003390g0060.1 116 AGL29
NitMADS92 Nitab4.5_0003480g0010.1 177 AGL29
NitMADS93 Nitab4.5_0003504g0010.1 609 AGL30
NitMADS94 Nitab4.5_0003507g0010.1 232 AG
NitMADS95 Nitab4.5_0003563g0030.1 242 AGL62
NitMADS96 Nitab4.5_0003707g0020.1 80 STK, AGL11, K-box region and MADS-box family protein
NitMADS97 Nitab4.5_0003863g0050.1 242 TT16, ABS, AGL32, K-box region and MADS-box family protein
NitMADS98 Nitab4.5_0004004g0010.1 219 AGL62
NitMADS99 Nitab4.5_0004036g0060.1 183 AGL104
NitMADS100 Nitab4.5_0004086g0040.1 237 AP3, ATAP3, K-box region and MADS-box family protein
NitMADS101 Nitab4.5_0004114g0070.1 175 MADS-box protein AGL24-like
NitMADS102 Nitab4.5_0004153g0060.1 187 SVP, AGL22, K-box region and MADS-box family protein
NitMADS103 Nitab4.5_0004222g0040.1 345 AGL15
NitMADS104 Nitab4.5_0004263g0020.1 218 STK, AGL11, K-box region and MADS-box family protein
NitMADS105 Nitab4.5_0004346g0030.1 209 PI
NitMADS106 Nitab4.5_0004520g0010.1 133 SEP4, AGL3, K-box region and MADS-box family protein
NitMADS107 Nitab4.5_0004622g0050.1 225 AGL6
NitMADS108 Nitab4.5_0004673g0050.1 69 AGL16
NitMADS109 Nitab4.5_0004674g0030.1 196 AGL8, FUL, AGAMOUS-like 8
NitMADS110 Nitab4.5_0004907g0010.1 179 AGL1
NitMADS111 Nitab4.5_0004911g0040.1 121 AGL20, SOC1, ATSOC1, AGAMOUS-like 20
NitMADS112 Nitab4.5_0005046g0020.1 396 AGL62
NitMADS113 Nitab4.5_0005138g0050.1 248 AG
NitMADS114 Nitab4.5_0005163g0010.1 85 AGL21
NitMADS115 Nitab4.5_0005166g0020.1 212 PI
NitMADS116 Nitab4.5_0005183g0060.1 164 MADS-box transcription factor 23-like
NitMADS117 Nitab4.5_0005362g0010.1 123 AGL28
NitMADS118 Nitab4.5_0005468g0020.1 65 AGL15
NitMADS119 Nitab4.5_0005565g0020.1 154 MADS-box protein JOINTLESS-like isoform X4
NitMADS120 Nitab4.5_0005597g0030.1 495 AGL104
NitMADS121 Nitab4.5_0005688g0010.1 173 MADS-box transcription factor 23-like
NitMADS122 Nitab4.5_0005766g0030.1 181 AGL65
NitMADS123 Nitab4.5_0005772g0040.1 180 STK, AGL11, K-box region and MADS-box family protein
NitMADS124 Nitab4.5_0005798g0020.1 183 AGL2
NitMADS125 Nitab4.5_0006437g0030.1 96 SEP3, K-box region and MADS-box family protein
NitMADS126 Nitab4.5_0006477g0040.1 229 STK, AGL11, K-box region and MADS-box family protein
NitMADS127 Nitab4.5_0006520g0020.1 79 MADS-box transcription factor 16-like
NitMADS128 Nitab4.5_0006522g0010.1 156 AGL20, SOC1, ATSOC1, AGAMOUS-like 20
NitMADS129 Nitab4.5_0007204g0030.1 248 AG
NitMADS130 Nitab4.5_0007275g0010.1 325 AGL104
NitMADS131 Nitab4.5_0007355g0010.1 267 AGL 2
NitMADS132 Nitab4.5_0007505g0060.1 68 AGL8, FUL, AGAMOUS-like 8
NitMADS133 Nitab4.5_0007530g0020.1 208 AGL8, FUL, AGAMOUS-like 8
NitMADS134 Nitab4.5_0007721g0040.1 70 AGL16
NitMADS135 Nitab4.5_0008133g0010.1 167 AGL19, GL19, AGAMOUS-like 19
NitMADS136 Nitab4.5_0009469g0040.1 69 AGL24
NitMADS137 Nitab4.5_0009635g0020.1 177 AGL2
NitMADS138 Nitab4.5_0009637g0010.1 157 AGL80
NitMADS139 Nitab4.5_0010043g0030.1 83 ANR1, AGL44, AGAMOUS-like 44
NitMADS140 Nitab4.5_0010230g0020.1 169 AGL61, DIA, AGAMOUS-like 61
NitMADS141 Nitab4.5_0010657g0020.1 185 AGL2
NitMADS142 Nitab4.5_0010693g0010.1 180 SHP1, AGL1, K-box region and MADS-box family protein
NitMADS143 Nitab4.5_0010703g0030.1 162 AGL1
NitMADS144 Nitab4.5_0011208g0020.1 210 AGL62
NitMADS145 Nitab4.5_0011644g0010.1 623 AGL30
NitMADS146 Nitab4.5_0011705g0040.1 208 AGL62
NitMADS147 Nitab4.5_0012101g0010.1 196 SEP1, AGL2, K-box region and MADS-box transcription factor family protein
NitMADS148 Nitab4.5_0012471g0010.1 185 AGL1
NitMADS149 Nitab4.5_0012476g0010.1 185 AGL2
NitMADS150 Nitab4.5_0012816g0020.1 210 MAF4, FCL4, AGL69, K-box region and MADS-box family protein
NitMADS151 Nitab4.5_0013517g0010.1 118 AGL91
NitMADS152 Nitab4.5_0014584g0010.1 270 AP3, ATAP3, K-box region and MADS-box family protein
NitMADS153 Nitab4.5_0014719g0010.1 74 AGL16
NitMADS154 Nitab4.5_0015237g0010.1 76 SEPALLATA2
NitMADS155 Nitab4.5_0021852g0010.1 113 AGL20, SOC1, ATSOC1, AGAMOUS-like 20
NitMADS156 Nitab4.5_0023347g0010.1 151 AGL2
NitMADS157 Nitab4.5_0024332g0010.1 208 AGL62
NitMADS158 Nitab4.5_0024971g0010.1 91 AGL61, DIA, AGAMOUS-like 61
NitMADS159 Nitab4.5_0025184g0010.1 407 AGL62
NitMADS160 Nitab4.5_0027705g0010.1 201 AGL62
NitSUP1 Nitab4.5_0003721g0010.1 183 SUPERMAN
NitSUP2 Nitab4.5_0000086g0190.1 174 SUPERMAN
NitSUP3 Nitab4.5_0000342g0280.1 234 SUPERMAN
NitSUP4 Nitab4.5_0009537g0030.1 227 SUPERMAN
NitSUP5 Nitab4.5_0011666g0020.1 175 SUPERMAN

表2

烟草B类MADS-box基因和SUPERMAN基因"

基因
Gene name
转录本
Transcript
蛋白长度
Protein length (aa)
TAIR10_描述
TAIR10_description
NitMADS22 Nitab4.5_0000418g0050.1 212 PI
NitMADS23 Nitab4.5_0000508g0030.1 209 PI
NitMADS72 Nitab4.5_0002266g0050.1 118 AP3, ATAP3 K-box region and MADS-box family protein
NitMADS100 Nitab4.5_0004086g0040.1 237 AP3, ATAP3 K-box region and MADS-box family protein
NitMADS105 Nitab4.5_0004346g0030.1 209 PI
NitMADS115 Nitab4.5_0005166g0020.1 212 PI
NitMADS152 Nitab4.5_0014584g0010.1 270 AP3, ATAP3 K-box region and MADS-box family protein
NitSUP1 Nitab4.5_0003721g0010.1 183 SUPERMAN
NitSUP2 Nitab4.5_0000086g0190.1 174 SUPERMAN
NitSUP3 Nitab4.5_0000342g0280.1 234 SUPERMAN
NitSUP4 Nitab4.5_0009537g0030.1 227 SUPERMAN
NitSUP5 Nitab4.5_0011666g0020.1 175 SUPERMAN

图2

烟草MADS-box和SUPERMAN基因染色体定位"

图3

烟草MADS-box基因共线性分析"

图4

普通烟草、渐狭叶烟草和番茄物种间MADS-box共线性分析 Nitab: 普通烟草; Niatt: 渐狭叶烟草; Slyc: 番茄。红色连线表示普通烟草和渐狭叶烟草MADS-box基因间的共线性; 蓝色连线表示普通烟草和番茄MADS-box基因间的共线性。"

图5

普通烟草、渐狭叶烟草和番茄物种间SUPERMAN基因共线 Nitab: 普通烟草; Niatt: 渐狭叶烟草; Slyc: 番茄。红色连线表示普通烟草和渐狭叶烟草SUPERMAN基因间的共线性; 蓝色连线表示普通烟草和番茄SUPERMAN基因间的共线性。"

表3

烟草MADS-box基因的顺式作用元件"

基因
Gene name
脱落酸响应元件
ABRE
生长素响应元件
AuxRR-core
茉莉酸甲酯响应元件
CGTCA-motif
乙烯响应元件
ERE
水杨酸响应元件
TCA-element
茉莉酸甲酯响应元件
TGACG-motif
NitMADS115 0 1 1 3 1 1
NitMADS72 2 0 4 0 2 4
NitMADS100 3 0 1 0 1 1
NitMADS22 3 0 2 1 0 2
NitMADS23 1 0 0 4 1 3
NitMADS105 2 0 3 1 1 3

表4

烟草SUPERMAN基因的顺式作用元件"

基因
Gene
脱落酸响应
元件
ABRE
茉莉酸甲酯响应
元件
CGTCA-motif
乙烯响应
元件
ERE
赤霉素响应
元件
TATC-box
水杨酸响应
元件
TCA-element
生长素响应
元件
TGA-element
茉莉酸甲酯响应
元件
TGACG-motif
NitSUP1 1 3 0 1 0 0 2
NitSUP2 1 0 0 0 1 3 0
NitSUP3 2 2 0 1 6 0 2
NitSUP4 2 3 3 0 3 1 3
NitSUP5 2 1 0 0 1 0 1

图6

烟草不同花发育时期B类基因和SUPERMAN表达 K326: 保持系K326; msK326: 不育系K326。误差线表示n = 3的标准误。所有数据均为平均值±SD (n = 3)。**在P = 0.01水平差异显著, *在P = 0.05水平差异显著。"

[1] Crosatti C, Quansah L, Maré C, Giusti L, Roncaglia E, Atienza S G, Cattivelli L, Fait A. Cytoplasmic genome substitution in wheat affects the nuclear-cytoplasmic cross-talk leading to transcript and metabolite alterations. BMC Genomics, 2013, 10: 868.
[2] Kang L, Li P, Wang A, Ge X, Li Z. A novel cytoplasmic male sterility in Brassica napus (inap CMS) with carpelloid stamens via protoplast fusion with Chinese Woad. Front Plant Sci, 2017, 8: 529.
doi: 10.3389/fpls.2017.00529 pmid: 28428799
[3] Yang H, Xue Y, Li B, Lin Y, Li H, Guo Z, Li W, Fu Z, Ding D, Tang J. The chimeric gene atp6c confers cytoplasmic male sterility in maize by impairing the assembly of the mitochondrial ATP synthase complex. Mol Plant, 2022, 15: 872-886.
doi: 10.1016/j.molp.2022.03.002
[4] Xiao S, Zang J, Pei Y, Liu J, Liu J, Song W, Shi Z, Su A, Zhao J, Chen H. Activation of mitochondrial orf355gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic male sterility in maize. Mol Plant, 2020, 13: 1270-1283.
doi: 10.1016/j.molp.2020.07.002
[5] Takatsuka A, Kazama T, Arimura S I, Toriyama K. TALEN- mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. Plant J, 2022, 110: 994-1004.
doi: 10.1111/tpj.v110.4
[6] Kuwabara K, Arimura S I, Shirasawa K, Ariizumi T. Orf137 triggers cytoplasmic male sterility in tomato. Plant Physiol, 2022, 189: 465-468.
doi: 10.1093/plphys/kiac082
[7] Yamagishi H, Jikuya M, Okushiro K, Hashimoto A, Fukunaga A, Takenaka M, Terachi T. A single nucleotide substitution in the coding region of Ogura male sterile gene, orf138, determines effectiveness of a fertility restorer gene, Rfo, in radish. Mol Genet Genomics, 2021, 296: 705-717.
doi: 10.1007/s00438-021-01777-y pmid: 33772345
[8] Wen J F, Zhao K, Lyu J H, Huo J L, Wang Z R, Wan H J, Zhu H S, Zhang Z Q, Shao G F, Wang J, Zhang S, Yang T Y, Zhang J R, Zou X X, Deng M H. Orf165 is associated with cytoplasmic male sterility in pepper. Genet Mol Biol, 2021, 44: e20210030.
doi: 10.1590/1678-4685-gmb-2021-0030
[9] Zhu Y, Saraike T, Yamamoto Y, Hagita H, Takumi S, Murai K. Orf260cra, a novel mitochondrial gene, is associated with the homeotic transformation of stamens into pistil-like structures (pistillody) in alloplasmic wheat. Plant Cell Physiol, 2008, 49: 1723-1733.
doi: 10.1093/pcp/pcn143 pmid: 18794174
[10] Wang R, Cai X, Hu S, Li Y, Fan Y, Tan S, Liu Q, Zhou W. Comparative analysis of the mitochondrial genomes of Nicotiana tabacum: hints toward the key factors closely related to the cytoplasmic male sterility mechanism. Front Genet, 2020, 11: 257.
doi: 10.3389/fgene.2020.00257
[11] Chase C D. Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet, 2007, 23: 81-90.
doi: 10.1016/j.tig.2006.12.004 pmid: 17188396
[12] Chen L, Liu Y G. Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 2014, 65: 579-606.
doi: 10.1146/annurev-arplant-050213-040119 pmid: 24313845
[13] Zubko M K. Mitochondrial tuning fork in nuclear homeotic functions. Trends Plant Sci, 2004, 9: 61-64.
pmid: 15106588
[14] Teixeira R T, Farbos I, Glimelius K. Expression levels of meristem identity and homeotic genes are modified by nuclear- mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus. Plant J, 2005, 42: 731-742.
pmid: 15918886
[15] Bereterbide A, Hernould M, Farbos I, Glimelius K, Mouras A. Restoration of stamen development and production of functional pollen in an alloplasmic CMS tobacco line by ectopic expression of the Arabidopsis thaliana SUPERMAN gene. Plant J, 2002, 29: 607-615.
pmid: 11874573
[16] Prunet N, Yang W, Das P, Meyerowitz E M, Jack T P. SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers. Proc Natl Acad Sci USA, 2017, 114: 7166-7171.
doi: 10.1073/pnas.1705977114
[17] Xu Y, Prunet N, Gan E S, Wang Y, Stewart D, Wellmer F, Huang J, Yamaguchi N, Tatsumi Y, Kojima M, Kiba T, Sakakibara H, Jack T P, Meyerowitz E M. SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. EMBO J, 2018, 37: e97499.
doi: 10.15252/embj.201797499
[18] Nandi A K, Kushalappa K, Prasad K, Vijayraghavan U. A conserved function for Arabidopsis SUPERMAN in regulating floral-whorl cell proliferation in rice, a monocotyledonous plant. Curr Biol, 2000, 10: 215-218.
pmid: 10704413
[19] Lu S, Wang J, Chitsaz F, Derbyshire M K, Geer R C, Gonzales N R, Gwadz M, Hurwitz D I, Marchler G H, Song J S, Thanki N, Yamashita R A, Yang M, Zhang D, Zheng C, Lanczycki C J, Marchler-Bauer A. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res, 2020, 48: D265-D268.
[20] Chao J T, Li Z Y, Sun Y H, Aluko O O, Wu X R, Wang Q, Liu G S. MG2C: a user-friendly online tool for drawing genetic maps. Mol Hortic, 2021, 1: 16.
doi: 10.1186/s43897-021-00020-x
[21] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[22] Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cis- acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
[23] Meyerowitz E M. Genetic control of cell division patterns in developing plants. Cell, 1997, 88: 299-308.
pmid: 9039256
[24] Zhang K, Zhang H, Pan Y, Niu Y, Guo L, Ma Y, Tian S, Wei J, Wang C, Yang X, Fu Y, Qu P, Liu L, Zhang Y, Sun H, Bai Z, Dong J, Li C, Liu X. Cell- and noncell-autonomous AUXIN RESPONSE FACTOR3 controls meristem proliferation and phyllotactic patterns. Plant Physiol, 2022, 190: 2335-2349.
doi: 10.1093/plphys/kiac370 pmid: 35972411
[25] Uemura A, Yamaguchi N, Xu Y, Wee W, Ichihashi Y, Suzuki T, Shibata A, Shirasu K. Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis. Plant Reprod, 2018, 31: 89-105.
doi: 10.1007/s00497-017-0315-0 pmid: 29218596
[1] 刘颖超, 方敦煌, 徐海明, 童治军, 肖炳光. 烟草生物碱性状的QTL定位[J]. 作物学报, 2024, 50(1): 42-54.
[2] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182.
[3] 何永明, 张芳. 生长素调控水稻颖花开放的效应研究[J]. 作物学报, 2023, 49(6): 1690-1698.
[4] 李邦, 刘春娟, 郭俊杰, 武宇昕, 邓志成, 张敏, 崔彤, 刘畅, 周宇飞. 低氮胁迫下外源色氨酸对高粱幼苗根系伸长的调控作用[J]. 作物学报, 2023, 49(5): 1372-1385.
[5] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35.
[6] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[7] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探[J]. 作物学报, 2020, 46(9): 1368-1379.
[8] 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877.
[9] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[10] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[11] 王玉奎,张贺翠,白晓璟,廉小平,施松梅,刘倩莹,左同鸿,朱利泉. 甘蓝BoPINs家族基因的特征和表达分析[J]. 作物学报, 2019, 45(8): 1270-1278.
[12] 马晓寒,张杰,张环纬,陈彪,温心怡,许自成. 通过外源MeJA抑制H2O2积累提高烟草的耐冷性[J]. 作物学报, 2019, 45(3): 411-418.
[13] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[14] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
[15] 高堃,华营鹏,宋海星,官春云,张振华,周婷. 甘蓝型油菜PIN家族基因的鉴定与生物信息学分析[J]. 作物学报, 2018, 44(9): 1334-1346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .