作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3215-3226.doi: 10.3724/SP.J.1006.2023.31005
赵蝶1,2(), 胡文静2,3,*(), 程晓明2, 王书平1, 张春梅2, 李东升2, 高德荣2,3,*()
ZHAO Die1,2(), HU Wen-Jing2,3,*(), CHENG Xiao-Ming2, WANG Shu-Ping1, ZHANG Chun-Mei2, LI Dong-Sheng2, GAO De-Rong2,3,*()
摘要:
小麦的株高(plant height, PH)性状与赤霉病(fusarium head blight, FHB)抗性的关系密切。本研究利用扬麦4号/偃展1号(YM4/YZ1)杂交组合衍生的重组自交系(recombinant inbred lines, RIL)群体, 利用55K单核苷酸多态性(single-nucleotide polymorphism, SNP)芯片数据, 结合3年共6个环境下RIL群体及其亲本的株高数据, 挖掘株高性状的遗传位点。同时利用土壤表面赤霉病麦粒抛撒法和单花滴注法鉴定株高位点对赤霉病抗侵染(Type I)和抗扩展(Type II)两种类型的效应。在染色体2D、4B、4D、5A和7D上检测到7个与株高相关的数量性状位点(quantitative trait loci, QTL), 经过比对, QPh.yas-2D.2可能是新的株高位点。QPh.yas-2D.1、QPh.yas-2D.2和QPh.yas-5A的矮秆效应来源于扬麦4号, 其余4个QTL的矮秆效应来源于偃展1号。QPh.yas-4D和QPh.yas-5A均在6个环境下被检测到, 表型变异贡献率(PVE)范围分别为19.48%~44.11%和10.48%~13.71%。研究发现Rht-D1和QPh.yas-7D.2位点上的高秆等位变异(YM4等位变异)分别降低侵染型平均病小穗率(average percentage of infected spikelets, PIS) 34.97%和19.09%, QPh.yas-2D.2和QPh.yas-5A位点上的矮秆等位变异(YM4等位变异)分别降低扩展型平均病小穗率(average percentage of diseased spikelets, PDS) 24.73%和14.56%。QPh.yas-5A的矮秆等位变异来源于阿夫。利用小麦中国春2.1版本的参考基因组信息分析QPh.yas-5A区间, 发现一共有146个有注释功能的高置信基因, 主要涉及合成细胞色素P450、脱水反应元件结合蛋白、乙烯响应转录因子、转录因子MYC2和细胞壁受体相关激酶等。进一步将QPh.yas-5A位点紧密连锁SNP标记转化成育种可用分子标记KASP-5A, 并在126份小麦品种(系)中初步验证其对株高和赤霉病抗性的效应。研究结果可为QPh.yas-5A的育种应用和精细定位奠定基础。
[1] |
Liu T, Wu L, Gan X, Chen W, Liu B, Fedak G, Cao W, Chi D, Liu D, Zhang H, Zhang B. Mapping quantitative trait loci for 1000-grain weight in a double haploid population of common wheat. Int J Mol Sci, 2020, 21: 3960.
doi: 10.3390/ijms21113960 |
[2] |
Su Z, Jin S, Lu Y, Zhang G R, Chao S M, Bai G H. Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol Breed, 2016, 36: 1-11.
doi: 10.1007/s11032-015-0425-z |
[3] |
Sakamoto T, Matsuoka M. Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol, 2004, 15: 144-147.
doi: 10.1016/j.copbio.2004.02.003 |
[4] |
Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307 |
[5] |
Bellucci A, Torp A M, Bruun S, Magid J, Andersen S B, Rasmussen S K. Association mapping in Scandinavian winter wheat for yield, plant height, and traits important for second-generation bioethanol production. Front Plant Sci, 2015, 6: 1046.
doi: 10.3389/fpls.2015.01046 pmid: 26635859 |
[6] |
Cadalen T, Sourdille P, Charmet G, Tixier M H, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M. Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet, 1998, 96: 933-940.
doi: 10.1007/s001220050823 |
[7] |
Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder S, Weber E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936.
doi: 10.1007/s00122-002-0994-1 pmid: 12582918 |
[8] |
Borrell A K, Incoll L D, Dalling M J. The influence of the Rht1and Rht2 alleles on the growth of wheat stems and ears. Ann Bot, 1991, 67: 103-110.
doi: 10.1093/oxfordjournals.aob.a088108 |
[9] |
Tang N, Jiang Y, He B R, Hu Y G. The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA (3) on the coleoptile length and plant height of wheat. Agric Sci China, 2009, 8: 1028-1038.
doi: 10.1016/S1671-2927(08)60310-7 |
[10] |
Akman H, Bruckner P. Marker assisted selection for Rht8 and Rht-D1b dwarfing genes in winter wheat breeding program. New Biotechnol, 2012, 29: 139.
doi: 10.1016/j.nbt.2011.08.007 |
[11] |
Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016, 129: 1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516 |
[12] |
Korzun V, Roder M S, Ganal M W, Worland A J, Law C N. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I: Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104-1109.
doi: 10.1007/s001220050845 |
[13] |
Chai L, Xin M, Dong C, Chen Z, Zhai H, Zhuang J, Cheng X, Wang N, Geng J, Wang X, Bian R, Yao Y, Guo W, Hu Z, Peng H, Bai G, Sun Q, Su Z, Liu J, Ni Z. A natural variation in Ribonuclease H-like gene underlies Rht8 to confer ‘Green Revolution’ trait in wheat. Mol Plant, 2022, 15: 377-380.
doi: 10.1016/j.molp.2022.01.013 |
[14] |
Xiong H C, Zhou C Y, Fu M Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Li Y T, Zhang J Z, Wang K, Li X J, Liu L X. Cloning and functional characterization of Rht8, a ‘Green Revolution’ replacement gene in wheat. Mol Plant, 2022, 15: 373-376.
doi: 10.1016/j.molp.2022.01.014 |
[15] | 徐相波, 张爱民, 李新华, 孙永堂. 小麦矮源的利用和矮秆基因的研究进展. 核农学报, 2001, 15: 188-192. |
Xu X B, Zhang A M, Li X H, Sun Y T. Utilization of dwarf source and research progress of dwarf gene in wheat. J Nuclear Agric Sci, 2001, 15: 188-192. (in Chinese with English abstract) | |
[16] |
Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D, Yu K, Lu W, Xin P, Pei Z, Guo X, Liu D, Sun J, Zhan K, Chu J, Zhang A. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J, 2019, 97: 887-900.
doi: 10.1111/tpj.2019.97.issue-5 |
[17] |
Ford B A, Foo E, Sharwood R, Karafiatova M, Vrána J, MacMillan C, Nichols D S, Steuernagel B, Uauy C, Doležel J, Chandler P M, Spielmeyer W. Rht18 semidwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content. Plant Physiol, 2018, 177: 168-180.
doi: 10.1104/pp.18.00023 |
[18] |
Peng Z S, Li X, Yang Z J, Liao M L. A new reduced height gene found in the tetraploid semi-dwarf wheat landrace Aiganfanmai. Genet Mol Res, 2011, 10: 2349-2357.
doi: 10.4238/2011.October.5.5 pmid: 22002128 |
[19] |
Tian X, Xia X, Xu D, Liu Y, Xie L, Hassan M A, Song J, Li F, Wang D, Zhang Y, Hao Y, Li G, Chu C, He Z, Cao S. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol, 2022, 233: 738-750.
doi: 10.1111/nph.v233.2 |
[20] |
Borrill P, Mago R, Xu T, Ford B, Williams S J, Derkx A, Bovill W D, Hyles J, Bhatt D, Xia X, MacMillan C, White R, Buss W, Molnár I, Walkowiak S, Olsen O A, Doležel J, Pozniak C J, Spielmeyer W. An autoactive NB-LRR gene causes Rht13 dwarfism in wheat. Proc Natl Acad Sci USA, 2022, 119: e2209875119.
doi: 10.1073/pnas.2209875119 |
[21] |
Chen L, Yang Y, Cui C G, Lu S, Lu Q M, Du Y Y, Su R, Chai Y M, Li H J, Chen F Z, Yu F, Hu Y G. Effects of Vrn-B1 and Ppd-D1 on developmental and agronomic traits in Rht5dwarf plants of bread wheat. Field Crops Res, 2018, 219: 24-32.
doi: 10.1016/j.fcr.2018.01.022 |
[22] | Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A N. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theor Appl Genet, 2018, 131: 1815-1831. |
[23] |
Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X B, Pu X, Li J, Liu Z H, Zhang H L, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTL for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625-3641.
doi: 10.1007/s00122-021-03918-8 |
[24] |
Zhang L, Luo P G, Ren Z L, Zhang H Y. Controlling Fusarium head blight of wheat (Triticum aestivum L.) with genetics. Adv Biosci Biotechnol, 2011, 2: 263-270.
doi: 10.4236/abb.2011.24038 |
[25] |
Zhang K P, Wang J J, Qin H J, Wei Z Y, Hang L B, Zhang P W, Reynolds M, Wang D W. Assessment of the individual and combined effects of Rht8 and Ppd-D1a on plant height, time to heading and yield traits in common wheat. Crop J, 2019, 7: 845-856.
doi: 10.1016/j.cj.2019.06.008 |
[26] |
Zhu Z W, Hao Y F, Mergoum M, Bai G H, Humphreys G, Cloutier S, Xia X C, He Z H. Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada. Crop J, 2019, 7: 730-738.
doi: 10.1016/j.cj.2019.06.003 |
[27] | 陈云, 王建强, 杨荣明, 马忠华. 小麦赤霉病发生危害形势及防控对策. 植物保护, 2017, 43: 11-17. |
Chen Y, Wang J Q, Yang R M, Ma Z H. Current situation and management strategies of Fusarium head blight in China. Plant Protect, 2017, 43: 11-17. (in Chinese with English abstract) | |
[28] |
Zhu Z W, Xu X T, Fu L P, Wang F J, Dong Y C, Fang Z W, Wang W, Chen Y P, Gao C B, He Z H, Xia X C, Hao Y F. Molecular mapping of quantitative trait loci for fusarium head blight resistance in a doubled haploid population of Chinese bread wheat. Plant Dis, 2021, 105: 1339-1345.
doi: 10.1094/PDIS-06-20-1186-RE |
[29] | Schroeder H W, Christensen J J. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 1963, 53: 831-838. |
[30] |
胡文静, 张勇, 陆成彬, 王凤菊, 刘金栋, 蒋正宁, 王金平, 朱展望, 徐小婷, 郝元峰, 何中虎, 高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析. 作物学报, 2020, 46: 157-165.
doi: 10.3724/SP.J.1006.2020.91048 |
Hu W J, Zhang Y, Lu C B, Wang F J, Liu J D, Jiang Z N, Wang J P, Zhu Z W, Xu X T, Hao Y F, He Z H, Gao D R. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16. Acta Agron Sin, 2020, 46: 157-165. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91048 |
|
[31] | 陆成彬, 范金平, 印娟, 王朝顺, 褚正虎. 小麦主要农艺性状对赤霉病抗性的影响. 安徽农业科学, 2013, 41: 1091-1092. |
Lu C B, Fang J P, Yin J, Wang C S, Chu Z H. Effects of main agronomic traits of wheat on the resistance of Fusarium head blight. J Anhui Agric Sci, 2013, 41: 1091-1092. (in Chinese with English abstract) | |
[32] | 陆成彬, 张伯桥, 范金平, 吴荣林, 王朝顺, 褚正虎. 2个重组自交系群体的小麦赤霉病抗性与表型性状相关性. 江苏农业科学, 2012, 40: 99-101. |
Lu C B, Zhang B Q, Fan J P, Wu R L, Wang C S, Chu Z H. Correlation between resistance to Fusarium head blight and phenotypic traits in two recombinant inbred lines. Jiangsu Agric Sci, 2012, 40: 99-101. (in Chinese with English abstract) | |
[33] | 陈士强, 陈秀兰, 张容, 王建华, 王锦荣, 黄向明, 何震天. 小麦赤霉病抗性与株高的相关性研究. 江苏农业科学, 2015, 43: 144-147. |
Chen S Q, Chen X L, Zhang R, Wang J R, Huang X M, He Z T. Study on correlation between resistance to Fusarium head blight and plant height in wheat. Jiangsu Agric Sci, 2015, 43: 144-147. (in Chinese with English abstract) | |
[34] |
Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P. Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet, 2007, 115: 617-625.
doi: 10.1007/s00122-007-0592-3 pmid: 17607557 |
[35] |
Mao S L, Wei Y M, Cao W. Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica, 2010, 174: 343-356.
doi: 10.1007/s10681-010-0128-9 |
[36] |
Srinivasachary Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P. Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet, 2008, 116: 1145-1153.
doi: 10.1007/s00122-008-0742-2 pmid: 18347773 |
[37] |
Srinivasachary Gosman N, Steed A, Hollins T W, Bayles R, Jennings P, Nicholson P. Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet, 2009, 118: 695-702.
doi: 10.1007/s00122-008-0930-0 pmid: 19034409 |
[38] |
Hu W J, Wu H Y, Lu C B, Zheng X, Jia J, Xu W G. Genetic dissection of quantitative trait loci for spikelets compactness in two Yanzhan 1-derived recombinant inbred line wheat populations. Plant Breed, 2022, 141: 719-732.
doi: 10.1111/pbr.v141.6 |
[39] |
Hu W J, Zhu D M, Zhang Y, Liu J, Zhao D, Liao S, Jia J Z, Xu W G. Quantitative trait loci mapping for heading date and spikelet number in wheat (Triticum aestivum L.) based on two recombinant inbred line populations. Genet Resour Crop Evol, 2023, 70: 1179-1195.
doi: 10.1007/s10722-022-01496-2 |
[40] |
Hu W J, Liao S, Zhao D, Jia J Z, Xu W G, Cheng S H. Identification and validation of quantitative trait loci for grain size in bread wheat (Triticum aestivum L.). Agriculture, 2022, 12: 822.
doi: 10.3390/agriculture12060822 |
[41] |
Nyquist W E, Baker R J. Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci, 1991, 10: 235-322.
doi: 10.1080/07352689109382313 |
[42] | Holland J B, Nyquist W E, Cervantes-Martínez C T. Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev, 2003, 22: 9-112. |
[43] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[44] |
Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995, 35: 1137-1143.
doi: 10.2135/cropsci1995.0011183X003500040037x |
[45] |
Xu X T, Zhu Z W, Jia A L, Wang F J, Wang J P, Zhang Y L, Fu C, Fu L P, Bai G H, Xia X C, Hao Y F, He Z H. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2019, 216: 1.
doi: 10.1007/s10681-019-2539-6 |
[46] |
Hu W J, Gao D R, Zhang Y, Zheng X, Lu C, Wu H, Xu W, Cheng S H, Jia J Z. Mapping quantitative trait loci for type II fusarium head blight resistance in two wheat recombinant inbred line populations derived from Yangmai 4 and Yangmai 5. Plant Dis, 2023, 107: 422-430.
doi: 10.1094/PDIS-06-22-1338-RE |
[47] |
Li T, Deng G B, Su Y, Yang Z, Tang Y Y, Wang J H, Qiu X B, Pu X, Li J, Liu Z H, Zhang H L, Liang J J, Yang W Y, Yu M Q, Wei Y M, Long H. Identification and validation of two major QTLs for spike compactness and length in bread wheat (Triticum aestivum L.) showing pleiotropic effects on yield-related traits. Theor Appl Genet, 2021, 134: 3625-3641.
doi: 10.1007/s00122-021-03918-8 |
[48] |
Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2019, 69: 249-258.
doi: 10.1111/ppa.v69.2 |
[49] |
Chen Y, Song W, Xie X, Wang Z, Guan P, Peng H, Jiao Y, Ni Z, Sun Q, Guo W. A collinearity-incorporating homology inference strategy for connecting emerging assemblies in the Triticeae tribe as a pilot practice in the plant pangenomic era. Mol Plant, 2020, 13: 1694-1708.
doi: 10.1016/j.molp.2020.09.019 pmid: 32979565 |
[50] |
Ma S W, Wang M, Wu J H, Guo W L, Chen Y M, Li G W, Wang Y P, Shi W M, Xia G M, Fu D L, Kang Z S, Ni F. WheatOmics: a platform combing multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968.
doi: 10.1016/j.molp.2021.10.006 |
[51] |
胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证. 作物学报, 2022, 48: 1346-1356.
doi: 10.3724/SP.J.1006.2022.11055 |
Hu W J, Li D S, Yi X, Zhang C M, Zhang Y. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat. Acta Agron Sin, 2022, 48: 1346-1356. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11055 |
|
[52] |
Botwright T L, Rebetzke G J, Condon A G, Richards R A. Influence of the gibberellin-sensitive Rht8dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot, 2015, 95: 631-639.
doi: 10.1093/aob/mci069 |
[53] |
Huang X Q, Cöster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379-1389.
doi: 10.1007/s00122-002-1179-7 pmid: 12750781 |
[54] |
McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48: 870-883.
doi: 10.1139/g05-055 pmid: 16391693 |
[55] |
Hai L, Guo H J, Wagner C, Xiao S H, Friedt W. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci, 2008, 175: 226-232.
doi: 10.1016/j.plantsci.2008.03.006 |
[56] |
Jia H Y, Wan H S, Yang S H, Zhang Z Z, Kong Z X, Xue S L, Zhang L X, Ma Z Q. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet, 2013, 126: 2123-2139.
doi: 10.1007/s00122-013-2123-8 |
[57] |
Yan H, Li G, Shi J, Tian S, Zhang X, Cheng R, Wang X, Yuan Y, Cao S, Zhou J, Kong Z, Jia H, Ma Z. Genetic control of Fusarium head blight resistance in two Yangmai 158-derived recombinant inbred line populations. Theor Appl Genet, 2021, 134: 3037-3049.
doi: 10.1007/s00122-021-03876-1 pmid: 34110431 |
[58] |
Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci, 2015, 6: 1099.
doi: 10.3389/fpls.2015.01099 pmid: 26734019 |
[59] |
Zhang N, Fan X, Cui F, Hao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J, Ji J, Liu D, Zhao Z, Tong Y, Zhang A, Wang T, Li J. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet, 2017, 130: 1235-1252.
doi: 10.1007/s00122-017-2884-6 pmid: 28349175 |
[60] |
Zhang L, Zhang H, Qiao L Y, Miao L F, Yan D, Liu P, Zhao G Y, Jia J Z, Gao L F. Wheat MADS-box gene TaSEP3-D1 negatively regulates heading date. Crop J, 2021, 9: 1115-1123.
doi: 10.1016/j.cj.2020.12.007 |
[61] |
Tian X, Zhu Z, Xie L, Xu D, Li J, Fu C, Fu C, Chen X, Wang D, Xia X, He Z, Cao S. Preliminary exploration of the source, spread, and distribution of Rht24 reducing height in bread wheat. Crop Sci, 2019, 59: 19-24.
doi: 10.2135/cropsci2017.12.0711 |
[62] |
Yan H, Li G, Shi J, Tian S, Zhang X, Cheng R, Wang X, Yuan Y, Cao S, Zhou J, Kong Z, Jia H, Ma Z. Genetic control of Fusarium head blight resistance in two Yangmai 158-derived recombinant inbred line populations. Theor Appl Genet, 2021, 134: 3037-3049
doi: 10.1007/s00122-021-03876-1 pmid: 34110431 |
[63] |
Zhang N, Fan X, Cui F, Zhao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J, Ji J, Liu D, Zhao Z, Tong Y, Zhang A, Wang T, Li J. Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet, 2017, 130: 1235-1252.
doi: 10.1007/s00122-017-2884-6 pmid: 28349175 |
[64] |
Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M, Keller B. Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet, 2003, 107: 1226-1234.
pmid: 12928778 |
[65] |
Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K H. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci USA, 2013, 110: 19324-19329.
doi: 10.1073/pnas.1306373110 pmid: 24218613 |
[66] |
Li X, Zhang J B, Song B, Li H P, Xu H Q, Qu B, Dang F J, Liao Y C. Resistance to fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome P450 gene. Phytopathology, 2010, 100: 183-191.
doi: 10.1094/PHYTO-100-2-0183 pmid: 20055652 |
[67] |
Oñate-Sánchez L, Singh K B. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol, 2002, 128: 1313-1322.
pmid: 11950980 |
[68] |
Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 2002, 29: 23-32.
doi: 10.1046/j.1365-313x.2002.01191.x pmid: 12060224 |
[69] |
Theologis A, Ecker J R, Palm C J, Federspiel N A, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman C L, Brooks S Y, Buehler E, Chan A, Chao Q, Chen H, Cheuk R F, Chin C W, Chung M K, Conn L, Conway A B, Conway A R, Creasy T H, Dewar K, Dunn P, Etgu P, Feldblyum T V, Feng J, Fong B, Fujii C Y, Gill J E, Goldsmith A D, Haas B, Hansen N F, Hughes B, Huizar L, Hunter J L, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo H L, Kremenetskaia I, Kurtz D B, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee J M, Lenz C A, Li J H, Li Y, Lin X, Liu S X, Liu Z A, Luros J S, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman W C, Osborne B I, Pai G, Peterson J, Pham P K, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg S L, Schwartz J R, Shinn P, Southwick A M, Sun H, Tallon L J, Tambunga G, Toriumi M J, Town C D, Utterback T, Van Aken S, Vaysberg M, Vysotskaia V S, Walker M, Wu D, Yu G, Fraser C M, Venter J C, Davis R W. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 2000, 408: 816-820.
doi: 10.1038/35048500 |
[1] | 杨晨曦, 周文期, 周香艳, 刘忠祥, 周玉乾, 刘芥杉, 杨彦忠, 何海军, 王晓娟, 连晓荣, 李永生. 控制玉米株高基因PHR1的基因克隆[J]. 作物学报, 2024, 50(1): 55-66. |
[2] | 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31. |
[3] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[4] | 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551. |
[5] | 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581. |
[6] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[7] | 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104. |
[8] | 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143. |
[9] | 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170. |
[10] | 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209. |
[11] | 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224. |
[12] | 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258. |
[13] | 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287. |
[14] | 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307. |
[15] | 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905. |
|