欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1270-1278.doi: 10.3724/SP.J.1006.2019.84129

• 研究简报 • 上一篇    下一篇

甘蓝BoPINs家族基因的特征和表达分析

王玉奎1,张贺翠1,白晓璟1,廉小平2,施松梅2,刘倩莹1,左同鸿1,朱利泉1,*()   

  1. 1 西南大学农学与生物科技学院, 重庆 400715
    2 西南大学园艺园林学院, 重庆 400100
  • 收稿日期:2018-10-15 接受日期:2019-04-15 出版日期:2019-08-12 网络出版日期:2019-04-26
  • 通讯作者: 朱利泉
  • 作者简介:E-mail: wangyuk0808@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31572127);中央高校基本科研业务费项目资助(XDJK2017C023)

Characteristics and expression analysis of BoPINs family genes in Brassica oleracea

WANG Yu-Kui1,ZHANG He-Cui1,BAI Xiao-Jing1,LIAN Xiao-Ping2,SHI Song-Mei2,LIU Qian-Ying1,ZUO Tong-Hong1,ZHU Li-Quan1,*()   

  1. 1 College of Agriculture and Biotechnology, Southwest University, Chongqing 400715, China
    2 College of Horticulture and Gardening, Southwest University, Chongqing 400100, China
  • Received:2018-10-15 Accepted:2019-04-15 Published:2019-08-12 Published online:2019-04-26
  • Contact: Li-Quan ZHU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31572127);the Basic Research Fund of the Central University(XDJK2017C023)

摘要:

为了探索植物生长素极性运输载体蛋白编码基因BoPINs家族参与甘蓝自交不亲和性的成员数目与参与方式, 本文通过转录组分析获得BoPINs家族在甘蓝自花和异花授粉后的表达情况, 利用分子生物学技术和生物信息学方法对该家族的基因结构、蛋白进化亲缘关系和表达模式等特征进行分析。结果表明, 甘蓝BoPINs基因家族包含8个成员, 含有5波浪线9个外显子和4~8个内含子; 其编码的蛋白质的氨基酸残基数在350波浪线650之间, 相对分子质量为38波浪线70 kD; 除了BoPIN5和BoPIN8不含中间亲水区以外, 其余6个BoPINs家族成员都含有位于两端的疏水区和中间亲水环, 它们可能以膜锚定蛋白的形式发挥作用; 甘蓝BoPINs与芜菁BrPINs、拟南芥AtPINs基因家族亲缘关系较近; 染色体定位分析表明, BoPIN1-1BoPIN3-1、BoPIN3-2BoPIN6与S位点之间发生不同程度的连锁; 启动子活性分析表明, BoPINs家族蛋白参与甘蓝SI反应, 可能受IAA、ABA等激素相互交叉影响; BoPIN1-1BoPIN1-2BoPIN2BoPIN3-1BoPIN3-2BoPIN4BoPIN6BoPIN7-1BoPIN7-2在柱头中表达量均较高; 数据表达谱和荧光定量分析表明, 8个家族成员中的6个BoPINs基因在自花授粉后下调表达; 自花授粉后柱头生长素含量降低, 与SI反应呈负相关。因此, 在甘蓝BoPINs家族的8个成员中有6个BoPINs基因家族成员可能在膜上以负调节方式调控自交不亲和反应。

关键词: 甘蓝, 生长素, 自花授粉, BoPINs家族, 自交不亲和

Abstract:

In order to explore the number and expression of the BoPINs gene family participating in self-incompatibilty of Brassica, their expression after self-pollination and cross-pollination were detected by transcriptome analysis, and the corresponding gene structure, phylogenetic tree and expression patterns of the family were further analyzed by bioinformatics. This gene family contained 5-9 exons and 4-8 introns. The amino acid of the encoding protein residues were between 350 and 650 and had molecular weights ranging from 38 kD to 70 kD. Except that BoPIN5 and BoPIN8 did not contain internal hydrophilic cytoplasmic regions, the remaining six BoPINs proteins contained a hydrophobic region at both ends and an internal hydrophilic ring, showing they located on membrane. The evolutionary analysis indicated that BoPINs were closely related to the BrPINs and the AtPINs gene family. Chromosome localization analysis indicated that BoPIN1-1, BoPIN3-1, BoPIN3-2, and BoPIN6 members of the family were linked to S-loucs to different degrees. Tissue-specific expression analysis indicated that BoPIN1-1, BoPIN1-2, BoPIN2, BoPIN3-1, BoPIN3-2, BoPIN4, BoPIN6, BoPIN7-1, and BoPIN7-2 had higher expression levels in the stigma. Data expression profiling and fluorescence quantitative analysis indicated that six of the eight BoPINs genes were down-regulated after self-pollination. All these results indicate that six members of the eight BoPIN gene family members on the membrane may participate in the self-incompatibility response of Brassica oleracea in a negative regulatory manner.

Key words: Brassica oleracea, auxin, self-pollination, BoPINs family, self-incompatibility

表1

甘蓝BoPINs家族蛋白信息"

蛋白名称
Protein name
转录组号
Transcriptome No.
染色体定位
Chromosome localization
氨基酸
长度
Amino acid length
等电点
Isoelectric point (pI)
相对分子量
Molecular weight (kD)
平均亲水指数
Average hydropathic index
不稳定系数
Instability coefficient
亚细胞定位
Subcellular localization
BoPIN1-1 Bo2g080660 C6 617 9.2 66.50 0.121 39.70 Cell membrane
BoPIN1-2 Bo6g116850 C6 619 9.1 66.91 0.075 43.50 Cell membrane
BoPIN2 Bo3g019460 C3 652 9.2 70.46 0.058 40.66 Cell membrane
BoPIN3-1 Bo6g094450 C6 642 8.6 69.63 0.138 40.11 Cell membrane
BoPIN3-2 Bo6g112590 C6 635 8.2 68.40 0.184 40.11 Cell membrane
BoPIN4 Bo2g134160 C2 599 7.2 65.03 0.265 36.77 Cell membrane
BoPIN5 Bo9g165420 C9 362 9.4 39.71 0.702 44.60 Endoplasmic reticulum
BoPIN6 Bo6g121080 C6 567 9.2 61.69 0.409 37.67 Endoplasmic reticulum
BoPIN7-1 Bo6g112720 C6 577 8.5 63.09 0.272 39.44 Cell membrane
BoPIN7-2 Bo7g056420 C7 603 6.8 65.47 0.239 31.78 Cell membrane
BoPIN8 Bo9g163100 C9 348 6.2 38.22 0.703 36.56 Endoplasmic reticulum

图1

甘蓝BoPINs的进化树和基因结构图 左侧为进化树, 用MEGA6.0软件构建; 右侧为甘蓝BoPINs家族的基因结构图。"

图2

甘蓝家族BoPINs的系统进化树"

图3

BoPINs家族在甘蓝染色体的分布"

图4

BoPINs基因家族在自花授粉和异花授粉后的表达模式"

图5

甘蓝BoPINs家族在自花和异花授粉后的表达分析"

表2

BoPINs基因启动子的顺式作用元件"

基因
Gene
生长素
响应元件
Auxin response element
水杨酸
响应元件
Salicylic acid response element
脱落酸
响应元件
Abscisic acid response element
胁迫响应元件
Stress
response
element
赤霉素
响应元件
Gibberellin response element
厌氧诱导元件
Anaerobic induction
element
光响应元件
Light responsive element
茉莉酸甲酯
响应元件
MeJA response element
BoPIN1-1 2 2 1 1 1 7 1
BoPIN1-2 1 1 2 1 1 6 2
BoPIN2 1 1 1 1 8 2
BoPIN3-1 1 2 2 1 5
BoPIN3-2 1 2 1 2 9
BoPIN4 2 1 2 12 12 2
BoPIN5 1 3 1 1 5 2
BoPIN6 4 1 1 9 1
BoPIN7-1 1 2 1 1 14
BoPIN7-2 1 4 1 2 2 1
BoPIN8 2 1 1 1 1 9 2

图6

BoPINs基因家族成员在自花授粉后不同组织中的表达量分析"

图7

柱头授粉后生长素生物合成关键酶TAA1的mRNA含量变化"

[1] Vieten A, Sauer M, Brewer P B, Friml J . Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci, 2007,12:160-168.
doi: 10.1016/j.tplants.2007.03.006
[2] Petrášek J, Friml J . Auxin transport routes in plant development. Development, 2009,136:2675-2688.
doi: 10.1242/dev.030353
[3] Reinhardt D, Pesce E R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J . Regulation of phyllotaxis by polar auxin transport. Nature, 2003,426:255-260.
[4] Okada K, Ueda J, Komaki M K, Bell C J, Shimura Y . Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell, 1991,3:677-684.
doi: 10.2307/3869249
[5] Hall I V, Forsyth F R . Production of ethylene by flowers following pollination and treatments with water and auxin. Can J Bot, 1967,45:1163-1166.
doi: 10.1139/b67-121
[6] Safavian D, Zayed Y, Indriolo E, Chapman L, Ahmed A, Goring D R . RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol, 2015,169:2526-2538.
[7] Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, Islam M R . Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018,11:14, doi: 10.1186/s12284- 018-0206-5.
[8] Hasenstein K H, Zavada M S . Auxin modification of the incompatibility response in Theobroma cacao. Physiol Planta, 2001,112:113-118.
[9] Tantikanjana T, Nasrallah J B . Non-cell-autonomous regulation of crucifer self-incompatibility by Auxin Response Factor ARF3. Proc Natl Acad Sci USA, 2012,109:19468-19473.
doi: 10.1073/pnas.1217343109
[10] Vanneste S, Friml J . Auxin: a trigger for change in plant development. Cell, 2009,136:1005-1016.
doi: 10.1016/j.cell.2009.03.001
[11] Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J . Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003,115:591-602.
doi: 10.1016/S0092-8674(03)00924-3
[12] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[13] 王占军, 杨立伟, 徐忠东, 欧祖蓝, 袁华玲, 任意飞 . 麻疯树PIN基因家族的鉴定与生物信息学分析. 分子植物育种, 2015,13:1111-1122.
Wang Z J, Yang L W, Xu Z D, Ou Z L, Yuan H L, Ren Y F . Identification and bioinformatics analysis of the PIN gene family of Jatropha curcas. Mol Plant Breed, 2015,13:1111-1122 (in Chinese with English abstract).
[14] Liu Y, Wei H . Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max. Genome, 2017,60:564-571.
[15] Křeček P, Skůpa P, Libus J, Naramoto S, Tejos R, Friml J . The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol, 2009,10:249, doi: 10.1186/gb-2009-10-12-249.
doi: 10.1186/gb-2009-10-12-249
[16] Bendtsen J D, Jensen L J, Blom N, Heijne G, Brunak S . Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel, 2004,17:349-356.
doi: 10.1093/protein/gzh037
[17] Mravec J, Skůpa P, Bailly A, Hoyerova K, Krecek P, Bielach A, Petrasek J, Zhang J, Gaykova V, Stierhof Y D, Rolcik J, Stierhof D, Luschnig C, Benkova E, Zazimalova E, Geisler M, Friml J . Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 2009,459:1136-1140.
[18] Friml J . Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol, 2010,89:231-235.
doi: 10.1016/j.ejcb.2009.11.003
[19] Baker R P, Hasenstein K H, Zavada M S . Hormonal changes after compatible and incompatible pollination in Theobroma cacao L. HortScience, 1997,32:1231-1234.
[20] Ono K, Morimoto T, Akagi T, Wunsch A, Tao R . Genome re-sequencing of diverse sweet cherry (Prunus avium) individuals reveals a modifier gene mutation conferring pollen-part self- compatibility. Plant Cell Physiol, 2018,59:1265-1275.
[21] Zhou Z Y, Zhang C G, Wu L, Zhang C G, Chai J, Wang M, Jha A, Jia P F, Cui S J, Yang M, Chen R . Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. Plant J, 2011,66:516-527.
[22] Kakei Y, Nakamura A, Yamamoto M, Ishida Y, Yamazaki C, Sato A, Nara M N, Soeno K, Shimada Y . Biochemical and chemical biology study of rice OsTAR1 revealed that tryptophan aminotransferase is involved in auxin biosynthesis: identification of a potent OsTAR1 inhibitor, pyruvamine 2031. Plant Cell Physiol, 2017,58:598-606.
[23] Cazzonelli C I, Vanstraelen M, Simon S, Yin K, Arthur A, Nisar N, Tarle G, Cuttriss A J, Searle L R, Mathesius U, Masle J, Friml J, Pogson B J . Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One, 2013,8:e70069.
doi: 10.1371/journal.pone.0070069
[24] 齐国辉, 徐继忠, 张玉星 . 鸭梨自交不亲和性与花柱内源激素关系的研究. 河北农业大学学报, 2007,30(1):31-34.
Qi G H, Xu J Z, Zhang Y X . Study on the relationship between self-incompatibility and the endogenous hormones in style of Yali. J Hebei Agric Univ, 2007,30(1):31-34 (in Chinese with English abstract).
[25] Bavrina T V, Milyaeva E L, Machácčková I, Pustovoitova T N, Gurko N A, Kasumova I V, Zhdanova N E . Effect of phytohormone biosynthesis genes (ipt and iaaM+ iaaH) on the sexual reproduction of transgenic tobacco plants. Russ J Plant Physiol, 2002,49:484-491.
doi: 10.1023/A:1016355824539
[26] Chen D, Zhao J . Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Planta, 2008,134:202-215.
[27] Vieten A, Vanneste S, Wiśniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J . Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development, 2005,132:4521-4531.
doi: 10.1242/dev.02027
[28] Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B . The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005,433:39-44.
[29] Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B . ThePLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 2004,119:109-120.
[30] Geisler M, Blakeslee J J, Bouchard R, Lee O R, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer W A, Bailly A, Richard E L, Ejendal K F K, Smith A P, Baroux C, Grossniklaus U, Muller A, Hrycyna C A, Dudler R, Murphy A S, Murphy A S . Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J, 2005,44:179-194.
doi: 10.1111/j.1365-313X.2005.02519.x
[31] Petrasek J, Mravec J, Bouchard R, Blakeslee J J, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee O R, Fink G R, Geisler M, Murphy A S, Luschnig C, Zazimalova E, Friml J . PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006,312:914-918.
doi: 10.1126/science.1123542
[32] Lavenus J, Guyomarc’h S, Laplaze L . PIN transcriptional regulation shapes root system architecture. Trends Plant Sci, 2016,21:175-177.
doi: 10.1016/j.tplants.2016.01.011
[33] Simonini S, Bencivenga S, Trick M . Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. Plant Cell, 2017,29:1864-1882.
doi: 10.1105/tpc.17.00389
[34] Geldner N, Friml J, Stierhof Y D, Jurgens G, Palme K . Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001,413:425-428.
[35] Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G . The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 2003,112:219-230.
doi: 10.1016/S0092-8674(03)00003-5
[36] Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T . AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature, 2006,443:106-109.
[37] Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock J M . Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiol, 2003,133:919-929.
[38] Roux M, Zipfel C. Receptor kinase interactions: complexity of signaling. In: Receptor-like Kinases in Plants. Springer, 2012. pp 145-172.
[39] Michniewicz M, Zago M K, Abas L, Weijers D, Schweighofer A, Meskiene M G, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz E M, Luschnig C, Offringa R, Friml J . Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell, 2007,130:1044-1056.
doi: 10.1016/j.cell.2007.07.033
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[10] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[11] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[12] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[13] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[14] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[15] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!