作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1279-1285.doi: 10.3724/SP.J.1006.2019.94001
靳舒荣1,2,王艳玫1,2,常悦1,2,王月华1,2,李加纳1,2,倪郁1,2,*()
JIN Shu-Rong1,2,WANG Yan-Mei1,2,CHANG Yue1,2,WANG Yue-Hua1,2,LI Jia-Na1,2,NI Yu1,2,*()
摘要:
油菜“源”器官中光合产物向籽粒转移的效率是提高油菜收获指数的关键环节, 而“源”器官中淀粉酶活性影响同化物向籽粒的运输强度。β-淀粉酶(β-amylase, BAM)及其基因家族成员与油菜高收获指数形成之间的关系还不清楚。本研究选择高产高收获指数型、高产低收获指数型、低产低收获指数型3类油菜品种, 在终花期后5、10、15、20、25 d分别取茎杆、叶片、角果皮与种子, 分析β-淀粉酶活性及其基因家族成员的表达水平。结果表明, β-淀粉酶活性在所检测“源”器官中酶活性总体随发育时期增加。高收获指数型油菜叶片、角果皮中的β-淀粉酶活性显著高于低收获指数型油菜。β-淀粉酶基因家族中, BAM1、BAM4与BAM5在油菜茎、叶及角果皮中的表达量总体随发育时期增加。花后25 d时, BAM1与BAM3在高收获指数油菜叶片、角果皮中的表达量显著高于低收获指数油菜。BAM4与BAM5在高收获指数油菜角果皮中的表达量分别于花后15 d与20 d开始显著高于低收获指数油菜。综合分析认为, BAM1和BAM3可能通过促进叶片与角果皮淀粉分解而加强光合产物向籽粒的运输强度; BAM4与BAM5可能主要通过作用于角果皮淀粉分解而调控光合产物向籽粒的运输。BAM4与BAM5也可能参与了油菜种子中淀粉的调控。
[1] |
Hay R K M . Harvest index: a review of its use in plant breeding and crop physiology. Annu Appl Biol, 1995,126:197-216.
doi: 10.1111/aab.1995.126.issue-1 |
[2] | 袁婺洲, 官春云 . 油菜角果内的淀粉酶活性与有关同化物转运的调控. 湖南师范大学自然科学学报, 1995,18(3):74-79. |
Yuan W Z, Guan C Y . Regulation of assimilates transportation by amylase activity in rapeseed pods. J Nat Sci Univ Norm Hunan, 1995,18(3):74-79 (in Chinese with English abstract). | |
[3] | 袁婺洲, 官春云 . 影响油菜收获指数的几个生理因子. 作物学报, 1997,23:580-586. |
Yuan W Z, Guan C Y . Harvest index in rapeseed affected by a few physiological factors. Acta Agron Sin, 1997,23:580-586 (in Chinese with English abstract). | |
[4] |
Yu T S, Zeeman S C, Thorneycroft D, Fulton D C, Dunstan H, Lue W L, Hegemann B, Tung S Y, Umemoto T, Chapple A, Tsai D L, Wang S M, Smith A M, Chen J, Smith S M . alpha-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem, 2005,280:9773-9779.
doi: 10.1074/jbc.M413638200 |
[5] |
Weise S E, Kim K S, Stewart R P, Sharkey T D . β-Maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiol, 2005,137:756-761.
doi: 10.1104/pp.104.055996 |
[6] |
Scheidig A, Fröhlich A, Schulze S, Lloyd J R, Kossmann J . Down regulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J, 2002,30:581-591.
doi: 10.1046/j.1365-313X.2002.01317.x |
[7] |
Streb S, Zeeman S C . Starch metabolism in Arabidopsis. Arab Book, 2012,10:e0160.
doi: 10.1199/tab.0160 |
[8] | 申鸽子 . 不同生境下油菜高收获指数的激素平衡与调控. 西南大学硕士学位论文, 重庆, 2016. |
Shen G Z . Balance and Regulation of Hormones of High Harvest Index Rapeseed (Brassica napus L.) in Different Environments. MS Thesis of Southwest University, Chongqing, China, 2016 (in Chinese with English abstract). | |
[9] | 李加纳, 卢坤, 荐红举, 梁颖, 陆军花, 彭柳, 申鸽子, 张烨, 张超, 杨博, 张莉 . 油菜收获指数研究进展. 中国油料作物学报, 2018,40:640-648. |
Li J N, Lu K, Jian H J, Liang Y, Lu J H, Peng L, Shen G Z, Zhang Y, Zhang C, Yang B, Zhang L . Research advances on harvest index of Brassica napus L. Chin J Oil Crop Sci, 2018,40:640-648 (in Chinese with English abstract). | |
[10] |
Allen E J, Morgan D G, Ridgman W I . A physiological analysis of the growth of oilseed rape. J Agric Sci, 1971,77:339-341.
doi: 10.1017/S0021859600024515 |
[11] | Chapman J F, Daniels R W, Scarisbrick D H . Field studies on 14C assimilate fixation and movement in oil-seed rape (B. napus). J Agric Sci, 1984,102:23-31. |
[12] | Pechan P A, Morgan D G . Defoliation and its effects on pod and seed development in oil seed rape (Brassica napus L.). J Exp Bot, 1985,36:458-468. |
[13] | Tayo T O, Morgan D G . Factors influencing flower and pod development in oil-seed rape (Brassica napus L.). J Agric Sci, 1979,92:363-373. |
[14] |
Smith S M, Fulton D C, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman S C, Smith A M . Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol, 2004,136:2687-2699.
doi: 10.1104/pp.104.044347 |
[15] |
Monroe J D, Storm A R . The Arabidopsis β-amylase (BAM) gene family: Diversity of form and function. Plant Sci, 2018,276:163-170.
doi: 10.1016/j.plantsci.2018.08.016 |
[16] |
Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith A M, Smith S M, Zeeman S C . β-amylase 4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell, 2008,20:1040-1058.
doi: 10.1105/tpc.107.056507 |
[17] |
Lao N T, Schoneveld O, Mould R M, Hibberd J M, Gray J C, Kavanagh T A . An Arabidopsis gene encoding a chloroplast- targeted β-amylase. Plant J, 1999,20:519-527.
doi: 10.1046/j.1365-313X.1999.00625.x |
[18] |
Valerio C, Costa A, Marri L, Issakidis-Bourguet E, Pupillo P, Trost P, Sparla F . Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J Exp Bot, 2011,62:545-555.
doi: 10.1093/jxb/erq288 |
[19] |
Horrer D, Flütsch S, Pazmino D, Matthews J S, Thalmann M, Nigro A, Leonhardt N, Lawson T, Santelia D . Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening. Curr Biol, 2016,26:362-370.
doi: 10.1016/j.cub.2015.12.036 |
[20] |
Kaplan F, Guy C L . RNA interference of Arabidopsis beta- amylase 8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. Plant J, 2005,44:730-743.
doi: 10.1111/tpj.2005.44.issue-5 |
[21] |
Monroe J D, Storm A R, Badley E M, Lehman M D, Platt S M, Saunders L K, Schmitz J M, Torres C E . β-amylase 1 and β-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions. Plant Physiol, 2014,166:1748-1763.
doi: 10.1104/pp.114.246421 |
[22] | Monroe J D, Breault J S, Pope L E, Torres C E, Gebrejesus T B, Berndsen C E, Storm A R . Arabidopsis β-amylase 2 is a K+-requiring, catalytic tetramer with sigmoidal kinetics . Plant Physiol, 2017,175:1125-1135. |
[23] | Laby R J, Kim D, Gibson S I . The ram1 mutant of Arabidopsis exhibits severely decreased β-amylase activity. Plant Physiol, 2001,127:1798-1807. |
[24] | 黄露, 陶诗顺, 张敏, 姜磊, 彭雅利 . 甘蓝型杂交油菜收获指数及其品种间差异性研究. 江苏农业科学, 2011, (1):95-97. |
Huang L, Tao S S, Zhang M, Jiang L, Peng Y L . Differences analysis of harvest and varieties of Brassica napus L. Jiangsu Agric Sci, 2011, (1):95-97 (in Chinese with English abstract). |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[4] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[5] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[6] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[7] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[8] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[9] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[10] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[11] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[12] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[13] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[14] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[15] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
|