作物学报 ›› 2019, Vol. 45 ›› Issue (8): 1270-1278.doi: 10.3724/SP.J.1006.2019.84129
王玉奎1,张贺翠1,白晓璟1,廉小平2,施松梅2,刘倩莹1,左同鸿1,朱利泉1,*()
WANG Yu-Kui1,ZHANG He-Cui1,BAI Xiao-Jing1,LIAN Xiao-Ping2,SHI Song-Mei2,LIU Qian-Ying1,ZUO Tong-Hong1,ZHU Li-Quan1,*()
摘要:
为了探索植物生长素极性运输载体蛋白编码基因BoPINs家族参与甘蓝自交不亲和性的成员数目与参与方式, 本文通过转录组分析获得BoPINs家族在甘蓝自花和异花授粉后的表达情况, 利用分子生物学技术和生物信息学方法对该家族的基因结构、蛋白进化亲缘关系和表达模式等特征进行分析。结果表明, 甘蓝BoPINs基因家族包含8个成员, 含有5波浪线9个外显子和4~8个内含子; 其编码的蛋白质的氨基酸残基数在350波浪线650之间, 相对分子质量为38波浪线70 kD; 除了BoPIN5和BoPIN8不含中间亲水区以外, 其余6个BoPINs家族成员都含有位于两端的疏水区和中间亲水环, 它们可能以膜锚定蛋白的形式发挥作用; 甘蓝BoPINs与芜菁BrPINs、拟南芥AtPINs基因家族亲缘关系较近; 染色体定位分析表明, BoPIN1-1、BoPIN3-1、BoPIN3-2和BoPIN6与S位点之间发生不同程度的连锁; 启动子活性分析表明, BoPINs家族蛋白参与甘蓝SI反应, 可能受IAA、ABA等激素相互交叉影响; BoPIN1-1、BoPIN1-2、BoPIN2、BoPIN3-1、BoPIN3-2、BoPIN4、BoPIN6、BoPIN7-1和BoPIN7-2在柱头中表达量均较高; 数据表达谱和荧光定量分析表明, 8个家族成员中的6个BoPINs基因在自花授粉后下调表达; 自花授粉后柱头生长素含量降低, 与SI反应呈负相关。因此, 在甘蓝BoPINs家族的8个成员中有6个BoPINs基因家族成员可能在膜上以负调节方式调控自交不亲和反应。
[1] |
Vieten A, Sauer M, Brewer P B, Friml J . Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci, 2007,12:160-168.
doi: 10.1016/j.tplants.2007.03.006 |
[2] |
Petrášek J, Friml J . Auxin transport routes in plant development. Development, 2009,136:2675-2688.
doi: 10.1242/dev.030353 |
[3] | Reinhardt D, Pesce E R, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J . Regulation of phyllotaxis by polar auxin transport. Nature, 2003,426:255-260. |
[4] |
Okada K, Ueda J, Komaki M K, Bell C J, Shimura Y . Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell, 1991,3:677-684.
doi: 10.2307/3869249 |
[5] |
Hall I V, Forsyth F R . Production of ethylene by flowers following pollination and treatments with water and auxin. Can J Bot, 1967,45:1163-1166.
doi: 10.1139/b67-121 |
[6] | Safavian D, Zayed Y, Indriolo E, Chapman L, Ahmed A, Goring D R . RNA silencing of exocyst genes in the stigma impairs the acceptance of compatible pollen in Arabidopsis. Plant Physiol, 2015,169:2526-2538. |
[7] | Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, Islam M R . Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice, 2018,11:14, doi: 10.1186/s12284- 018-0206-5. |
[8] | Hasenstein K H, Zavada M S . Auxin modification of the incompatibility response in Theobroma cacao. Physiol Planta, 2001,112:113-118. |
[9] |
Tantikanjana T, Nasrallah J B . Non-cell-autonomous regulation of crucifer self-incompatibility by Auxin Response Factor ARF3. Proc Natl Acad Sci USA, 2012,109:19468-19473.
doi: 10.1073/pnas.1217343109 |
[10] |
Vanneste S, Friml J . Auxin: a trigger for change in plant development. Cell, 2009,136:1005-1016.
doi: 10.1016/j.cell.2009.03.001 |
[11] |
Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J . Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003,115:591-602.
doi: 10.1016/S0092-8674(03)00924-3 |
[12] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 |
[13] | 王占军, 杨立伟, 徐忠东, 欧祖蓝, 袁华玲, 任意飞 . 麻疯树PIN基因家族的鉴定与生物信息学分析. 分子植物育种, 2015,13:1111-1122. |
Wang Z J, Yang L W, Xu Z D, Ou Z L, Yuan H L, Ren Y F . Identification and bioinformatics analysis of the PIN gene family of Jatropha curcas. Mol Plant Breed, 2015,13:1111-1122 (in Chinese with English abstract). | |
[14] | Liu Y, Wei H . Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max. Genome, 2017,60:564-571. |
[15] |
Křeček P, Skůpa P, Libus J, Naramoto S, Tejos R, Friml J . The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol, 2009,10:249, doi: 10.1186/gb-2009-10-12-249.
doi: 10.1186/gb-2009-10-12-249 |
[16] |
Bendtsen J D, Jensen L J, Blom N, Heijne G, Brunak S . Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel, 2004,17:349-356.
doi: 10.1093/protein/gzh037 |
[17] | Mravec J, Skůpa P, Bailly A, Hoyerova K, Krecek P, Bielach A, Petrasek J, Zhang J, Gaykova V, Stierhof Y D, Rolcik J, Stierhof D, Luschnig C, Benkova E, Zazimalova E, Geisler M, Friml J . Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 2009,459:1136-1140. |
[18] |
Friml J . Subcellular trafficking of PIN auxin efflux carriers in auxin transport. Eur J Cell Biol, 2010,89:231-235.
doi: 10.1016/j.ejcb.2009.11.003 |
[19] | Baker R P, Hasenstein K H, Zavada M S . Hormonal changes after compatible and incompatible pollination in Theobroma cacao L. HortScience, 1997,32:1231-1234. |
[20] | Ono K, Morimoto T, Akagi T, Wunsch A, Tao R . Genome re-sequencing of diverse sweet cherry (Prunus avium) individuals reveals a modifier gene mutation conferring pollen-part self- compatibility. Plant Cell Physiol, 2018,59:1265-1275. |
[21] | Zhou Z Y, Zhang C G, Wu L, Zhang C G, Chai J, Wang M, Jha A, Jia P F, Cui S J, Yang M, Chen R . Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. Plant J, 2011,66:516-527. |
[22] | Kakei Y, Nakamura A, Yamamoto M, Ishida Y, Yamazaki C, Sato A, Nara M N, Soeno K, Shimada Y . Biochemical and chemical biology study of rice OsTAR1 revealed that tryptophan aminotransferase is involved in auxin biosynthesis: identification of a potent OsTAR1 inhibitor, pyruvamine 2031. Plant Cell Physiol, 2017,58:598-606. |
[23] |
Cazzonelli C I, Vanstraelen M, Simon S, Yin K, Arthur A, Nisar N, Tarle G, Cuttriss A J, Searle L R, Mathesius U, Masle J, Friml J, Pogson B J . Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One, 2013,8:e70069.
doi: 10.1371/journal.pone.0070069 |
[24] | 齐国辉, 徐继忠, 张玉星 . 鸭梨自交不亲和性与花柱内源激素关系的研究. 河北农业大学学报, 2007,30(1):31-34. |
Qi G H, Xu J Z, Zhang Y X . Study on the relationship between self-incompatibility and the endogenous hormones in style of Yali. J Hebei Agric Univ, 2007,30(1):31-34 (in Chinese with English abstract). | |
[25] |
Bavrina T V, Milyaeva E L, Machácčková I, Pustovoitova T N, Gurko N A, Kasumova I V, Zhdanova N E . Effect of phytohormone biosynthesis genes (ipt and iaaM+ iaaH) on the sexual reproduction of transgenic tobacco plants. Russ J Plant Physiol, 2002,49:484-491.
doi: 10.1023/A:1016355824539 |
[26] | Chen D, Zhao J . Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Planta, 2008,134:202-215. |
[27] |
Vieten A, Vanneste S, Wiśniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J . Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development, 2005,132:4521-4531.
doi: 10.1242/dev.02027 |
[28] | Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B . The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005,433:39-44. |
[29] | Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y S, Amasino R, Scheres B . ThePLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell, 2004,119:109-120. |
[30] |
Geisler M, Blakeslee J J, Bouchard R, Lee O R, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer W A, Bailly A, Richard E L, Ejendal K F K, Smith A P, Baroux C, Grossniklaus U, Muller A, Hrycyna C A, Dudler R, Murphy A S, Murphy A S . Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J, 2005,44:179-194.
doi: 10.1111/j.1365-313X.2005.02519.x |
[31] |
Petrasek J, Mravec J, Bouchard R, Blakeslee J J, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee O R, Fink G R, Geisler M, Murphy A S, Luschnig C, Zazimalova E, Friml J . PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006,312:914-918.
doi: 10.1126/science.1123542 |
[32] |
Lavenus J, Guyomarc’h S, Laplaze L . PIN transcriptional regulation shapes root system architecture. Trends Plant Sci, 2016,21:175-177.
doi: 10.1016/j.tplants.2016.01.011 |
[33] |
Simonini S, Bencivenga S, Trick M . Auxin-induced modulation of ETTIN activity orchestrates gene expression in Arabidopsis. Plant Cell, 2017,29:1864-1882.
doi: 10.1105/tpc.17.00389 |
[34] | Geldner N, Friml J, Stierhof Y D, Jurgens G, Palme K . Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature, 2001,413:425-428. |
[35] |
Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G . The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell, 2003,112:219-230.
doi: 10.1016/S0092-8674(03)00003-5 |
[36] | Jaillais Y, Fobis-Loisy I, Miege C, Rollin C, Gaude T . AtSNX1 defines an endosome for auxin-carrier trafficking in Arabidopsis. Nature, 2006,443:106-109. |
[37] | Vanoosthuyse V, Tichtinsky G, Dumas C, Gaude T, Cock J M . Interaction of calmodulin, a sorting nexin and kinase-associated protein phosphatase with the Brassica oleracea S locus receptor kinase. Plant Physiol, 2003,133:919-929. |
[38] | Roux M, Zipfel C. Receptor kinase interactions: complexity of signaling. In: Receptor-like Kinases in Plants. Springer, 2012. pp 145-172. |
[39] |
Michniewicz M, Zago M K, Abas L, Weijers D, Schweighofer A, Meskiene M G, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz E M, Luschnig C, Offringa R, Friml J . Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell, 2007,130:1044-1056.
doi: 10.1016/j.cell.2007.07.033 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[4] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[8] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[9] | 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113. |
[10] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[11] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[12] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[13] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[14] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|