欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2720-2730.doi: 10.3724/SP.J.1006.2024.44019

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

MeTCP3a转录因子在木薯叶片发育中的功能鉴定

王连南1(), 李远超3, 余乃通2, 麦伟涛1, 李亚军2,*(), 陈新2,*()   

  1. 1海南大学热带农林学院, 海南海口 570228
    2中国热带农业科学院热带生物技术研究所, 海南海口 571101
    3广西大学生命科学与技术与学院, 广西南宁 530004
  • 收稿日期:2024-01-31 接受日期:2024-06-20 出版日期:2024-11-12 网络出版日期:2024-07-11
  • 通讯作者: *李亚军, E-mail: liyajun@itbb.org.cn; 陈新, E-mail: chenxin@itbb.org.cn
  • 作者简介:E-mail: 1636794739@qq.com
  • 基金资助:
    中国热带农业科学院国家热带农业科学中心科技创新团队(CATASCXTD202301);财政部和农业农村部国家现代农业产业技术体系建设专项(木薯, CARS11-HNCX)

Functional identification of MeTCP3a transcription factor in cassava leaf development

WANG Lian-Nan1(), LI Yuan-Chao3, YU Nai-Tong2, MAI Wei-Tao1, LI Ya-Jun2,*(), CHEN Xin2,*()   

  1. 1College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, Hainan, China
    2Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
    3College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2024-01-31 Accepted:2024-06-20 Published:2024-11-12 Published online:2024-07-11
  • Contact: *E-mail: liyajun@itbb.org.cn; E-mail: chenxin@itbb.org.cn
  • Supported by:
    Chinese Academy of Tropical Agricultural Sciences for Science and Technology Innovation Team of National Tropical Agricultural Science Center(CATASCXTD202301);China Agriculture Research System of MOF and MARA (Cassava, CARS11-HNCX)

摘要:

叶片是绿色植物进行光合作用的主要器官, 木薯叶片的发育间接影响其块根产量以及淀粉含量, 但木薯叶片发育的调控机制并不明晰, 本文探究了转录因子MeTCP3a在木薯叶片发育中的功能。氨基酸序列比对及进化树分析表明, MeTCP3a与橡胶(Hevea brasiliensis Muell. Arg) TCP4蛋白相似性最高。通过亚细胞定位和蛋白互作试验证实, MeTCP3a定位于细胞核, 且具有转录激活能力, 还能形成同源及异源二聚体, 表明其具备转录因子特性。此外, 不同组织部位表达分析发现, MeTCP3a在成熟叶片中表达活性最高, 而通过VIGS技术在木薯叶片中将其沉默后, 发现木薯心叶形态出现卷曲、皱缩。进一步实时荧光定量PCR分析发现, 与叶片形态发育相关的下游基因MeCUC1/2/3MeIAA的表达量也随之下调, 表明MeTCP3a可能通过调控下游基因的表达来影响叶片形态发育。本文为进一步探索TCP类转录因子在木薯叶片生长发育中的调控机制提供了理论依据。

关键词: 木薯, 叶片发育, MeTCP3a, 蛋白互作, VIGS

Abstract:

Leaves are the primary organs of photosynthesis in green plants, and their development indirectly affects the yield and starch content of cassava storage roots. However, the regulatory mechanisms governing cassava leaf development remain unclear. In this study, we explored the function of the MeTCP3a transcription factor in cassava leaf development. Amino acid sequence alignment and phylogenetic analysis showed that MeTCP3a was closely related to the TCP4 protein in rubber (Hevea brasiliensis Muell. Arg.). Subcellular localization and protein interaction assays demonstrated that MeTCP3a was localized in the nucleus, possessed transcriptional activation ability, and could form both homodimers and heterodimers in the nucleus, indicating its properties as a transcription factor. Expression analysis showed that the relative expression level of MeTCP3a was significantly higher in mature leaves compared to other tissues. When MeTCP3a expression was suppressed using VIGS (virus-induced gene silencing) technology, cassava heart leaves exhibited curled edges and a wrinkled appearance. Further real-time quantitative PCR analysis revealed that the expression levels of downstream genes related to leaf morphological development, such as MeCUC1/2/3 and MeIAA, were also down-regulated. This result suggested that MeTCP3a might influence leaf morphological development by regulating the expression of these downstream genes. This study provides a theoretical basis for further exploring the regulatory mechanisms of TCP-like transcription factors associated with leaf growth and development in cassava.

Key words: cassava, leaf development, MeTCP3a, protein interaction, VIGS

表1

本研究所用引物"

基因名称
Gene name
上游引物
Forward primer (5'-3')
下游引物
Reverse primer (5'-3')
MeTCP3a-pG1300-GFP GTTGATACATATGCCCGTCGACATGAAAGGAGCTGGAGGAG GTGGTGGAGCTCGGATCCGGTACCAGGAGTGGAGGAGGATGG
MeTCP3a-pGADT7 ATGATCGATGAATTCGTCGACATGAAAGGAGCTGGAGGAG CATCTGCAGCTCGATGGATCCAGGAGTGGAGGAGGATGG
MeTCP3a-pGBKT7 AGGACCTGCATATGATCGATATGAAAGGAGCTGGAGGAG TAGTTATGCGGCCGCTGCATAGGAGTGGAGGAGGATGG
MeTCP3a-BiFC AGTGGTCTCTGTCCAGTCCTATGAAAGGAGCTGGAGGAG GGTCTCAGCAGACCACAAGTAGGAGTGGAGGAGGATGG
MeTCP3a-nLUC GGACGAGCTCGGTACCCGGGATCCATGAAAGGAGCTGGAGGAG CCACGCGTACGAGATCTGGTCGACAGGAGTGGAGGAGGATGG
MeTCP3a-cLUC CCCGGGGCGGTACCCGGGATCCATGAAAGGAGCTGGAGGAG AACGAAAGCTCTGCAGGTCGACAGGAGTGGAGGAGGATGG
MeTCP3a-pCsCMV AGTGGTCTCTGTCCAGTCCTGTATAGTTTTCAGCTCCACAG GGTCTCAGCAGACCACAAGTATTGAAGCTGAGCCTGCAAA
qMeActin TCTTCTCAACTGAGGAGCTGCT CCTTCGTCTGGACCTTGCTG
qCP TTGTAGCTGCCGTCCTAACTTGG ACCAAATTGGAGGCTGGCTTCA
qMeTCP3a TGCCACAGCCACAATCAATG CCTCTGTTGCAAACCTGCTG
qMeCUC1 CTGCTGAGTTCCCTAGTCTTCC GCAATCTTGATGCGAGACGG
qMeCUC2 TCTCAACCTCATGTACTGTCTGG TCTGTCTTGCACTGTTTGGGA
qMeCUC3 TACCTCCTGGCTTTAGGTTTCAC GGCTCTATTAGTTCTCAGCCCA
qMeIAA CAAGACTGCTGTGCTGGAGA TTGTTGGGTTAGGTCGAAGGAA

图1

MeTCP3a蛋白与其他植物中同源蛋白的序列比对(A)及进化树分析(B) 图A中用红色、蓝色、黄色和绿色方框标示的为bHLH结构域。图B中的标尺代表遗传相似性。"

图2

MeTCP3a蛋白的亚细胞定位和转录激活能力检测 A: MeTCP3a蛋白在烟草中的亚细胞定位, 标尺为30 μm; B: 酵母中MeTCP3a的转录激活能力检测。"

图3

酵母双杂交、LCI和BiFC三种技术验证蛋白互作 A: 酵母双杂交试验中MeTCP3a自身能形成同源二聚体; B: LCI试验中MeTCP3a能形成同源二聚体; C: BiFC分析显示MeTCP3a能够在细胞核中形成同源和异源二聚体。标尺为30 μm。"

图4

MeTCP3a在木薯SC8的根、茎、叶、腋芽等不同组织部位表达分析 R: 块根; Tl: 嫩叶; Ts: 嫩茎; Tsc: 嫩茎皮层; Ml: 成熟叶; P: 叶柄; Lb: 腋芽; S: 茎; Sc: 茎皮层; Sx: 茎中柱。不同小写字母表示差异显著(P < 0.05)。"

图5

基因沉默植株中病毒积累量和MeTCP3a基因表达量检测及表型鉴定 A: MeTCP3a沉默木薯植株(MeTCP3a-VIGS)和对照植株(CsCMV-NC)叶片中的病毒积累量; B: MeTCP3a沉默木薯植株(MeTCP3a- VIGS)叶片中MeTCP3a表达量较对照(CsCMV-NC)降低; C: 接种36 d后, MeTCP3a基因沉默木薯植株和对照植株(CsCMV-NC)新叶的表型。Mock为未接种植株, MeChlI-VIGS为阳性对照。*表示显著相关(P < 0.05), **表示极显著相关(P < 0.01)。"

图6

候选靶基因在CsCMV-NC和MeTCP3a-VIGS植株中的相对表达量 A: 接种7 d后候选靶基因在MeTCP3a沉默木薯植株(MeTCP3a-VIGS)中的表达量; B: 接种36 d后候选靶基因在MeTCP3a沉默木薯植株(MeTCP3a-VIGS)中的表达量。*表示显著相关(P < 0.05), **表示极显著相关(P < 0.01)。"

[1] 杨梅琼. 广西木薯产业发展形势与对策建议. 农业研究与应用, 2020, 33(6): 74-77.
Yang M Q. Development situation of Guangxi’s cassava industry and its countermeasures. Agric Res Appl, 2020, 33(6): 74-77 (in Chinese with English abstract).
[2] 欧桂宁, 贝丽萍, 张静柔, 韩笑, 彭晓辉, 黎亮武, 阳太亿, 黄苑航, 韦茂贵. 木薯不同叶形及叶片着生姿态对光能利用效率的影响. 分子植物育种, 网络首发[2024-01-30], https://kns.cnki.net/kcms2/detail/46.1068.S.20230529.0910.002.html.
Ou G N, Bei L P, Zhang J R, Han X, Peng X H, Li L W, Yang T Y, Huang Y H, Wei M G. Effects of the leaf shape and growth posture on light use efficiency of cassava. Mol Plant Breed, Published online [2024-01-30], https://kns.cnki.net/kcms2/detail/46.1068.S.20230529.0910.002.html (in Chinese with English abstract).
[3] 陆柳英, 曹升, 谢向誉, 曾文丹, 严华兵. 木薯叶形与光合特性、SPAD值的相关性研究. 南方农业学报, 2014, 45: 558-564.
Lu L Y, Cao S, Xie X Y, Zeng W D, Yan H B. Correlation of leaf shape of cassava with SPAD value and photosynthetic characteristics. J Southern Agric, 2014, 45: 558-564 (in Chinese with English abstract).
[4] 陈代波, 程式华, 曹立勇. 水稻窄叶性状的研究进展. 中国稻米, 2010, 16(3): 1-4.
Chen D B, Cheng S H, Cao L Y. Research progress of narrow leaf traits in rice. China Rice, 2010, 16(3): 1-4 (in Chinese).
[5] Yu X L, Ruan M B, Wang B, Yang Y L, Wang S C, Peng M. A homeodomain-leucine zipper I transcription factor, MeHDZ14, regulates internode elongation and leaf rolling in cassava (Manihot esculenta Crantz). Crop J, 2023, 11: 1419-1430.
[6] Aguilar-Martínez J A, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell, 2007, 19: 458-472.
doi: 10.1105/tpc.106.048934 pmid: 17307924
[7] Rubio-Somoza I, Weigel D. Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genet, 2013, 9: e1003374.
[8] Sun X D, Wang C D, Xiang N, Li X, Yang S H, Du J C, Yang Y P, Yang Y Q. Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor. Plant Biotechnol J, 2017, 15: 1284-1294.
doi: 10.1111/pbi.12715 pmid: 28233945
[9] Lopez J A, Sun Y, Blair P B, Mukhtar M S. TCP three-way handshake: linking developmental processes with plant immunity. Trends Plant Sci, 2015, 20: 238-245.
doi: 10.1016/j.tplants.2015.01.005 pmid: 25655280
[10] Danisman S. TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci, 2016, 7: 1930.
[11] Cubas P, Lauter N, Doebley J, Coen E. The TCP domain: a motif found in proteins regulating plant growth and development. Plant J, 1999, 18: 215-222.
doi: 10.1046/j.1365-313x.1999.00444.x pmid: 10363373
[12] Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425: 257-263.
[13] Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci, 2010, 15: 31-39.
doi: 10.1016/j.tplants.2009.11.003 pmid: 19963426
[14] Cao B T, Wang H F, Bai J J, Wang X, Li X R, Zhang Y F, Yang S X, He Y K, Yu X. miR319-regulated TCP3 modulates silique development associated with seed shattering in Brassicaceae. Cells 2022, 11: 3096.
[15] Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez J P, Blum E, Zamir D, Eshed Y. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet, 2007, 39: 787-791.
doi: 10.1038/ng2036 pmid: 17486095
[16] Li D B, Zhang H Y, Mou M H, Chen Y L, Xiang S Y, Chen L G, Yu D Q. Arabidopsis Class II TCP transcription factors integrate with the FT-FD module to control flowering. Plant Physiol, 2019, 181: 97-111.
doi: 10.1104/pp.19.00252 pmid: 31235561
[17] Wei B Y, Zhang J Z, Pang C X, Yu H, Guo D S, Jiang H, Ding M X, Chen Z Y, Tao Q, Gu H Y, Qu L J, Qin G J. The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res, 2015, 25: 121-134.
[18] Vadde B V L, Challa K R, Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana. Plant J, 2018, 93: 259-269.
[19] Danisman S, Wal F D, Dhondt S, Waites R, Folter S D, Bimbo A, Dijk A D, Muino J M, Cutri L, Dornelas M C, Angenent G C, Immink R G. Arabidopsis Class I and Class II TCP transcription factors regulate Jasmonic Acid metabolism and leaf development antagonistically. Plant Physiol, 2012, 159: 1511-1523.
doi: 10.1104/pp.112.200303 pmid: 22718775
[20] 兰婧秋, 秦跟基. Class II TCP转录因子的主要功能和分子调控机制. 中国科学: 生命科学, 2021, 51: 1542-1557.
Lan J Q, Qin G J. The molecular function and regulation of Class II TCP transcription factors. Sci Sin Vitae, 2021, 51: 1542-1557 (in Chinese with English abstract).
[21] Li S T, Zachgo S.TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Plant J, 2013, 76: 901-913.
[22] Lei N, Yu X, Li S X, Zeng C Y, Zou L P, Liao W B, Peng M. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Sci Rep, 2017, 7: 10016.
doi: 10.1038/s41598-017-09398-5 pmid: 28855620
[23] Tuo D C, Zhou P, Yan P, Cui H G, Liu Y, Wang H, Yang X K, Liao W B, Sun D, Li X Y, Shen W T. A cassava common mosaic virus vector for virus-induced gene silencing in cassava. Plant Methods, 2021, 17: 74.
doi: 10.1186/s13007-021-00775-w pmid: 34247636
[24] Yu H Y, Zhang L, Wang W Y, Tian P, Wang W, Wang K Y, Gao Z, Liu S, Zhang Y X, Irish VF, Huang T B. TCP5 controls leaf margin development by regulating KNOX and BEL-like transcription factors in Arabidopsis. J Exp Bot, 2021, 72: 1809-1821.
[25] 杨文源, 俞玉, 张世媛, 张娟, Tuersun M Y N E, 杨涛, 徐丽萍. 一种基于ImageJ软件的植物叶片表型参数测量方法. 北方农业学报, 2022, 50(6): 128-134.
doi: 10.12190/j.issn.2096-1197.2022.06.17
Yang W Y, Yu Y, Zhang S Y, Zhang J, Tuersun M Y N E, Yang T, Xu L P. A method of measuring plant leaves phenotypic parameters based on ImageJ software. J Nouthern Agric, 2022, 50(6): 128-134 (in Chinese with English abstract).
[26] Danisman S, Dijk A D, Bimbo A, Wal F D, Hennig L, Folter S D, Angenent G C, Immink R G. Analysis of functional redundancies within the Arabidopsis TCP transcription factor family. J Exp Bot, 2013, 64: 5673-5685.
[27] Lin Y F, Chen Y Y, Hsiao Y Y, Shen C Y, Hsu J L, Yeh C M, Mitsuda N, Ohme-Takagi M, Liu Z J, Tsai W C. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. J Exp Bot, 2016, 67: 5051-5066.
[28] Andriankaja M E, Danisman S, Mignolet-Spruyt L F, Claeys H, Kochanke I, Vermeersch M, Milde L D, Bodt S D, Storme V, Skirycz A, Maurer F, Bauer P, Mühlenbock P, Breusegem F V, Angenent G C, Immink R G, Inzé D. Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Mol Biol, 2014, 85: 233-245.
doi: 10.1007/s11103-014-0180-2 pmid: 24549883
[29] Song C B, Shan W, Yang Y Y, Tan X L, Fan Z Q, Chen J Y, Lu W J, Kuang J F. Heterodimerization of MaTCP proteins modulates the transcription of MaXTH10/11 genes during banana fruit ripening. Biochim Biophys Acta Gene Regul Mech, 2018, 1861: 613-622.
[30] 李文略, 柳婷婷, 陈常理, 骆霞虹, 安霞, 邹丽娜, 朱关林, 李苹芳. 植物TCP蛋白作用机制研究进展. 分子植物育种, 2023, 21: 4650-4658.
Li W L, Liu T T, Chen C L, Luo X H, An X, Zou L N, Zhu G L, Li P F. Advances in the mechanism of action of TCP proteins in plants. Mol Plant Breed, 2023, 21: 4650-4658 (in Chinese with English abstract).
[31] Nath U, Crawford B C, Carpenter R, Coen E. Genetic control of surface curvature. Science, 2003, 299: 1404-1407.
doi: 10.1126/science.1079354 pmid: 12610308
[32] Efroni I, Blum E, Goldshmidt A, Eshed Y. A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell, 2008, 20: 2293-2306.
doi: 10.1105/tpc.107.057521 pmid: 18805992
[33] Seki K, Komatsu K, Tanaka K, Hiraga M, Kajiya-Kanegae H, Matsumura H, Uno Y. A CIN-like TCP transcription factor (LsTCP4) having retrotransposon insertion associates with a shift from Salinas type to Empire type in crisphead lettuce (Lactuca sativa L.). Hortic Res, 2020, 1: 223-236.
[34] Viola I L, Gonzalez D H. TCP transcription factors in plant reproductive development: juggling multiple roles. Biomolecules, 2023, 13: 750.
[35] Koyama T, Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M.TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell, 2010, 22: 3574-3588.
[36] Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P.The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell, 2006, 18: 2929-2945.
[37] Wang J, Bao J L, Zhou B B, Li M, Li X Z, Jin J. The osa-miR164 target OsCUC1 functions redundantly with OsCUC3 in controlling rice meristem/organ boundary specification. New Phytol, 2021, 229: 1566-1581.
[38] Bilsborough G D, Runions A, Barkoulas M, Jenkins H W, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA, 2011, 108: 3424-3429.
doi: 10.1073/pnas.1015162108 pmid: 21300866
[39] 柯锦秀, 陈多, 郭延平. 植物叶缘形态的发育调控机理. 生物多样性, 2018, 26: 988-997.
doi: 10.17520/biods.2018127
Ke J X, Chen D, Guo Y P. Designing leaf marginal shapes: regulatory mechanisms of leaf serration or dissection. Biodivers Sci, 2018, 26: 988-997 (in Chinese with English abstract).
[40] Das Gupta M, Aggarwal P, Nath U. CINCINNATA in Antirrhinum majus directly modulates genes involved in cytokinin and auxin signaling. New Phytol, 2014, 204: 901-912.
[41] Ben-Gera H, Shwartz I, Shao M R, Shani E, Estelle M, Ori N. ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response. Plant J, 2012, 70: 903-915.
[1] 肖明昆, 严炜, 宋记明, 张林辉, 刘倩, 段春芳, 李月仙, 姜太玲, 沈绍斌, 周迎春, 沈正松, 熊贤坤, 罗鑫, 白丽娜, 刘光华. 卷叶木薯及其突变体叶片的比较转录组分析[J]. 作物学报, 2024, 50(8): 2143-2156.
[2] 玉泉馨, 杨宗桃, 张海, 程光远, 焦文迪, 曾康, 罗廷绪, 黄国强, 王璐, 徐景升. 甘蔗类钙调素ScCML13与SCMV运动蛋白P3N-PIPO的互作研究[J]. 作物学报, 2024, 50(7): 1855-1866.
[3] 望嘉翔, 郁雪婷, 李梦桃, 麦伟涛, 陈新, 王文泉. MeLAZY1c基因调控木薯株型的初步研究[J]. 作物学报, 2024, 50(6): 1514-1524.
[4] 吴法轩, 李秦, 杨昕, 李新根, 徐建堂, 陶爱芬, 方平平, 祁建民, 张立武. 红麻HcKAN4基因克隆、表达及在类黄酮合成中的功能[J]. 作物学报, 2024, 50(3): 645-655.
[5] 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484.
[6] 郁雪婷, 李可, 李梦桃, 鲍茹雪, 陈新, 王文泉. 木薯蛋白激酶MeSnRK2.12与转录因子MebHLH1的互作鉴定及其表达分析[J]. 作物学报, 2023, 49(9): 2594-2600.
[7] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[8] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[9] 陈会鲜, 梁振华, 黄珍玲, 韦婉羚, 张秀芬, 杨海霞, 李恒锐, 何文, 李天元, 兰秀, 阮丽霞, 蔡兆琴, 农君鑫. 木薯花性别分化关键时期的转录组分析及雌花分化相关候选基因的筛选[J]. 作物学报, 2023, 49(12): 3250-3260.
[10] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[11] 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676.
[12] 梁曦彤, 高先原, 周琳, 穆春, 杜明伟, 李芳军, 田晓莉, 李召虎. 利用病毒诱导的基因沉默cDNA文库高通量筛选鉴定棉花功能基因[J]. 作物学报, 2022, 48(12): 2967-2977.
[13] 刘淑娴, 杨宗桃, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗易化子家族蛋白ScZIFL1与6K2互作应答SCMV侵染[J]. 作物学报, 2022, 48(12): 3080-3090.
[14] 李相辰, 沈旭, 周新成, 陈新, 王海燕, 王文泉. 木薯PEPC基因家族成员鉴定及表达分析[J]. 作物学报, 2022, 48(12): 3108-3119.
[15] 许彬, 曹绍玉, 苏甜, 彭梦玲, 吕霞, 李振林, 张国平, 许俊强. 结球甘蓝类钙调蛋白CMLs与花粉萌发NPG1及NPGRs相互作用研究[J]. 作物学报, 2022, 48(11): 2934-2944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!