欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2712-2719.doi: 10.3724/SP.J.1006.2024.43008

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米穗发芽突变体vp2的基因克隆及功能研究

张馨月1,2(), 秦阳2, 李瑞3, 黄全生4, 王逸茹2,*(), 郑军1,2,*()   

  1. 1青岛农业大学农学院, 山东青岛 266109
    2中国农业科学院作物科学研究所, 北京 100081
    3甘肃农业大学农学院, 甘肃兰州 730070
    4新疆农业科学院核技术生物技术研究所, 新疆乌鲁木齐 830091
  • 收稿日期:2024-02-05 接受日期:2024-06-20 出版日期:2024-11-12 网络出版日期:2024-07-11
  • 通讯作者: *郑军, E-mail: zhengjun02@caas.cn; 王逸茹, E-mail: wangyiru@caas.c
  • 作者简介:E-mail: winnie990820@163.com
  • 基金资助:
    新疆维吾尔自治区重点实验室开放课题(2023D04070)

Cloning and functional analysis of viviparous mutant vp2 in maize

ZHANG Xin-Yue1,2(), QIN Yang2, LI Rui3, HUANG Quan-Sheng4, WANG Yi-Ru2,*(), ZHENG Jun1,2,*()   

  1. 1College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Agriculture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    4Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2024-02-05 Accepted:2024-06-20 Published:2024-11-12 Published online:2024-07-11
  • Contact: *E-mail: zhengjun02@caas.cn; E-mail: wangyiru@caas.c
  • Supported by:
    Open Project of Key Laboratory, Xinjiang Uygur Autonomous Region(2023D04070)

摘要:

玉米穗发芽是指籽粒在果穗上未脱离母体时胚芽便开始萌发生长, 穗发芽会严重影响玉米的产量和品质。因此高效挖掘和利用优良基因, 培育抗穗发芽玉米品种对我国农业生产非常重要。本研究中的玉米穗发芽突变体vp2具有明显的穗发芽表型且性状能稳定遗传, 受隐性单基因控制。通过分析vp2突变体基因组序列发现突变体中2个编码基因(Zm00001d015355Zm00001d015356)存在缺失, Zm00001d015356编码对羟基苯丙酮酸双加氧酶(ZmHPPD1)。hppd1突变体表现穗发芽表型, 且与vp2杂交后代中正常与穗发芽籽粒符合3∶1遗传分离比, 结果表明Vp2编码ZmHPPD1基因。为进一步分析ZmHPPD1调控籽粒穗发芽的机制, 我们检测了突变体中内源激素和ABA合成通路代谢物含量的变化, 发现与正常籽粒相比, 穗发芽籽粒中ABA含量显著下降, 八氢番茄红素显著积累, 且紫黄质、玉米黄质和叶黄素含量显著降低。这表明ZmHPPD1通过影响八氢番茄红素向番茄红素的转化, 使ABA合成受阻, 导致玉米籽粒打破休眠提前萌发。以上研究结果为解析玉米穗发芽的机制提供了基因资源。

关键词: 玉米, 穗发芽, 植物激素, 脱落酸

Abstract:

Maize vivipary, the precocious germination of seeds on the ear, significantly impacts maize yield and quality. Developing vivipary-resistant maize varieties through the discovery of novel genes is crucial for agricultural production in China. In this study, the maize mutant vp2 exhibited a clear viviparous phenotype with stable inheritance, controlled by a single recessive gene. Genome sequence analysis of the vp2 mutant revealed deletions in two coding genes (Zm00001d015355 and Zm00001d015356), with Zm00001d015356 encoding p-hydroxypyruvate dioxygenase (ZmHPPD1). The hppd1 mutant also displayed a viviparous phenotype. Furthermore, test crosses between vp2 and hppd1 heterozygous plants showed a 3:1 segregation ratio between normal and viviparous kernels, suggesting that ZmHPPD1 is the candidate gene for vp2. To further investigate the mechanism by which ZmHPPD1 regulates maize vivipary, we analyzed endogenous hormone and metabolite content in the ABA synthesis pathway. The results indicated a significant decrease in ABA levels, a substantial accumulation of octahydro lycopene, and a notable reduction in purple xanthophyll, zeaxanthin, and lutein in viviparous kernels. ZmHPPD1 disrupts ABA synthesis by affecting the conversion of octahydro lycopene to lycopene, leading to the loss of dormancy and early germination of maize kernels. These findings provide valuable genetic resources for breeding vivipary-resistant maize.

Key words: maize, viviparous, plant hormones, abscisic acid

图1

vp2突变体穗发芽表型 A: vp2杂合突变体授粉后25 d果穗及籽粒表型, 标尺为1 cm; B: 18 d、21 d、25 d收获的正常籽粒(WT)和穗发芽籽粒(vp2)的纵向切片, 标尺为500 μm。"

表1

本研究所用的引物"

引物
Primer
引物序列
Primer sequences (5′-3′)
vp2-F1 CGCAGCCAGATACAAACGTT
vp2-R1 GGGACATGGGAGCTCGAATT
TIR8.1 GAAGCCAACGCCAWCGCCTCYATTTCGTCGAAT
vp2-F2 ACTACGGGCTGAGCAGGTT
vp2-R2 TGAAGATTTGGAGCAGCACG
GAPDH-F CCCTTCATCACCACGGACTAC
GAPDH-R AACCTTCTTGGCACCACCCT

表2

vp2杂合突变体自交授粉后正常籽粒和穗发芽籽粒的分离情况"

植株基因型
Plant genotype
籽粒表型 Kernel phenotype
正常籽粒
Normal
穗发芽籽粒
Viviparous
总数
Total
χ2
(3:1)
B73×vp2/+ 162 48 210 0.406
128 37 165 0.454

图2

Vp2编码对羟基苯丙酮酸双加氧酶ZmHPPD1 A: 利用BSR-Seq对vp2突变体基因进行初定位; B: B73和vp2突变体材料中基因差异; C: vp2突变体中ZmHPPD1的表达量。"

图3

利用杂合突变体hppd1对vp2进行等位测验 A: ZmHPPD1基因结构示意图及hppd1突变体的突变位置; B: hppd1中Mu转座子插入突变体的鉴定; C: hppd1杂合突变果穗及籽粒表型; D: hppd1突变体与vp2杂交果穗及籽粒表型。"

表3

hppd1杂合突变体自交授粉以及与vp2等位测验后正常籽粒和穗发芽籽粒的分离情况"

植株基因型
Plant genotype
籽粒表型 Kernel phenotype
正常籽粒
Normal
穗发芽籽粒
Viviparous
总数
Total
χ2
(3:1)
hppd1/+ 96 31 127 0.003
128 44 172 0.008
hppd1/+×vp2/+ 171 64 235 0.512
156 57 213 0.264

图4

WT和vp2籽粒中内源激素含量分析 A: 脱落酸; B: 脱落酸葡萄糖酯; C: 水杨酸; D: 生长素; E: 独角金内酯; F: 茉莉酸; G: 细胞分裂素; H: 乙烯。**表示在0.01概率水平显著相关。"

图5

ABA合成通路上相关代谢物质的含量 A: 八氢番茄红素; B: α-胡萝卜素; C: 叶黄素; D: β-胡萝卜素; E: 玉米黄质; F: 紫黄质。*、**分别表示在0.05和0.01概率水平显著相关。"

图6

WT和vp2突变体的ABA生物合成途径 A: WT籽粒ABA生物合成途径; B: vp2突变体ABA生物合成途径。代谢通路中绿色表示物质含量下降, 红色表示物质含量上升。"

[1] Xu F, Tang J, Gao S, Cheng X, Du L, Chu C. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. Plant J, 2019, 100: 1036-1051.
[2] Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J, Chen K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. J Exp Bot, 2021, 72: 2857-2876.
doi: 10.1093/jxb/erab024 pmid: 33471899
[3] Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol, 2022, 23: 680-694.
[4] Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62: 25-54.
doi: 10.1111/jipb.12899
[5] 陈唯, 曾晓贤, 谢楚萍, 田长恩, 周玉萍. 植物内源ABA水平的动态调控机制. 植物学报, 2019, 54: 677-687.
doi: 10.11983/CBB19092
Chen W, Zeng X X, Xie C P, Tian C E, Zhou Y P. The dynamic regulation mechanism of the endogenous ABA in plant. Chin Bull Bot, 2019, 54: 677-687 (in Chinese with English abstract).
[6] Endo A, Okamoto M, Koshiba T. ABA biosynthetic and catabolic pathways. In: ZhangD P, Transport and Signaling.eds. Abscisic Acid:Metabolism, Dordrecht: Springer, 2014. pp 21-45.
[7] 伍静辉, 谢楚萍, 田长恩, 周玉萍. 脱落酸调控种子休眠和萌发的分子机制. 植物学报, 2018, 53: 542-555.
doi: 10.11983/CBB18080
Wu J H, Xie C P, Tian C G, Zhou Y P. Molecular mechanism of abscisic acid regulation during seed dormancy and germination. Chin Bull Bot, 2018, 53: 542-555 (in Chinese with English abstract).
[8] Fang J, Chai C, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z, Chu C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo- oxidation in rice. Plant J, 2008, 54: 177-189.
[9] Lang J, Fu Y, Zhou Y, Cheng M, Deng M, Li M, Zhu T, Yang J, Guo X, Gui L, Li L, Chen Z, Yi Y, Zhang L, Hao M, Huang L, Tan C, Chen G, Jiang Q, Qi P, Pu Z, Ma J, Liu Z, Liu Y, Luo M C, Wei Y, Zheng Y, Wu Y, Liu D, Wang J. Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. New Phytol, 2021, 230: 1940-1952.
[10] Mei S, Zhang M, Ye J, Du J, Jiang Y, Hu Y. Auxin contributes to jasmonate-mediated regulation of abscisic acid signaling during seed germination in Arabidopsis . Plant Cell, 2023, 35: 1110-1133.
[11] Cheng W H, Chiang M H, Hwang S G, Lin P C. Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Mol Biol, 2009, 71: 61-80.
[12] Xiong M, Chu L Y, Li Q F, Yu J W, Yang Y H, Zhou P, Zhou Y, Zhang Q Q, Fan X L, Zhao D S, Yan C J, Liu Q Q. Brassinosteroid and gibberellin coordinate rice seed germination and embryo growth by regulating glutelin mobilization. Crop J, 2021, 9: 1039-1048.
doi: 10.1016/j.cj.2020.11.006
[13] Robertson D S. The genetics of vivipary in maize. Genetics, 1955, 40: 745.
doi: 10.1093/genetics/40.5.745 pmid: 17247587
[14] McCarty D R, Carson C B, Stinard P S, Robertson D S. Molecular analysis of viviparous-I: an abscisic acid-insensitive mutant of maize. Plant Cell, 1989, 1: 523-532.
[15] Dai D, Tong H, Cheng L, Peng F, Zhang T, Qi W, Song R. Maize Dek33 encodes a pyrimidine reductase in riboflavin biosynthesis that is essential for oil-body formation and ABA biosynthesis during seed development. J Exp Bot, 2019,70: 5173-5187.
[16] Suzuki M, Latshaw S, Sato Y, Settles A M, Koch K E, Hannah L C, Kojima M, Sakakibara H, McCarty D R. The maize Viviparous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1- like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol, 2008, 146: 1193-1206.
[17] Porch T G, Tseung C W, Schmelz E A, Settles A M. The maize Viviparous10/Viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis. Plant J, 2006, 45: 250-263.
[18] Schwartz S H, Tan B C, Gage D A, Zeevaart J A, McCarty D R. Specific oxidative cleavage of carotenoids by VP14 of maize. Science, 1997, 276: 1872-1874.
doi: 10.1126/science.276.5320.1872 pmid: 9188535
[19] Suzuki M, Settles A M, Tseung C W, Li Q B, Latshaw S, Wu S, Porch T G, Schmelz E A, James M G, McCarty D R. The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J, 2006, 45: 264-274.
[20] Hable W E, Oishi K K, Schumaker K S. Viviparous-5 encodes phytoene desaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize. Mol Gen Genet, 1998, 257: 167-176.
[21] Singh M, Lewis P E, Hardeman K, Bai L, Rose J K, Mazourek M, Chomet P, Brutnell T P. Activator mutagenesis of the pink scutellum l/viviparous7 locus of maize. Plant Cell, 2003, 15: 874-884.
[22] Chen Y, Li J, Fan K, Du Y, Ren Z, Xu J, Zheng J, Liu Y, Fu J, Ren D, Wang G. Mutations in the maize zeta-carotene desaturase gene lead to viviparous kernel. PLoS One, 2017, 12: e0174270.
[23] Maluf M P Saab I N, Wurtzel E T, Mark Settles A. The viviparous12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. J Exp Bot, 1997, 48: 1259-1268.
[24] Li F, Murillo C, Wurtzel E T. Maize Y9 encodes a product essential for 15-cis-ζ-carotene isomerization. Plant Physiol, 2007, 144: 1181-1189.
[25] Hunter C T, Saunders J W, Magallanes-Lundback M, Christensen S A, Willett D, Stinard P S, Li Q B, Lee K, DellaPenna D, Koch K E. Maize w3 disrupts homogentisate solanesyl transferase (ZmHst) and reveals a plastoquinone-9 independent path for phytoene desaturation and tocopherol accumulation in kernels. Plant J, 2018, 93: 799-813.
[26] Matthews P D, Luo R, Wurtzel E T. Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot, 2003, 54: 2215-2230.
pmid: 14504297
[27] McCarty D R, Latshaw S, Wu S, Suzuki M, Hunter C T, Avigne W T, Koch K E. Mu-seq: sequence-based mapping and identification of transposon induced mutations. PLoS One, 2013, 8: e77172.
[28] 郭宇航. 玉米穗发芽突变体vp-like8的转录组分析与玉米杂交种耐旱性遗传解析. 山西农业大学硕士学位论文, 山西太原, 2020.
Guo Y H. Transcriptome Analysis of Maize Viviparous Mutant vp-like8 and Genetic Analysis of Drought Tolerance of Hybrid Maize. MS Thesis of Shanxi Agricultural University, Taiyuan, Shanxi, China 2020 (in Chinese with English abstract).
[29] 周蕴赟, 李正名. HPPD抑制剂类除草剂作用机制和研究进展. 世界农药, 2013, 35(1): 1-7.
Zhou Y Y, Li Z M. Recent advances in 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors. World Pestic, 2013, 35(1): 1-7.
[30] 何波, 王大伟, 杨文超, 陈琼, 杨光富. 对羟基苯丙酮酸双加氧酶(HPPD)的结构及其吡唑类除草剂的最新研究进展. 有机化学, 2017, 37: 2895-2904.
doi: 10.6023/cjoc201705031
He B, Wang D W, Yang W C, Chen Q, Yang G F. Advances in research on 4-hydroxyphenylpyruvate dioxygenase (HPPD) structure and pyrazole-containing herbicides. Chin J Org Chem, 2017, 37: 2895-2904 (in Chinese with English abstract).
[31] Beaudoin N, Serizet C, Gosti F, Giraudat J. Interactions between abscisic acid and ethylene signaling cascades. Plant Cell, 2000, 12: 1103-1115.
pmid: 10899977
[32] Liu X, Hu Q, Yan J, Sun K, Liang Y, Jia M, Meng X, Fang S, Wang Y, Jing Y, Liu G, Wu D, Chu C, Smith S M, Chu J, Wang Y, Li J, Wang B. ζ-carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid. Mol Plant, 2020, 13: 1784-1801.
doi: 10.1016/j.molp.2020.10.001 pmid: 33038484
[33] Huang X, Hou L, Meng J, You H, Li Z, Gong Z, Yang S, Shi Y. The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in Arabidopsis. Mol Plant, 2018, 11: 970-982.
[34] Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, Tong X, Zhang J. Abscisic acid promotes jasmonic acid biosynthesis via a “SAPK10- bZIP72-AOC” pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytol, 2020, 228: 1336-1353.
[1] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[2] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[3] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[4] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[5] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[6] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[7] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[8] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[9] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[10] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[11] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[12] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[13] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[14] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[15] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!