作物学报 ›› 2024, Vol. 50 ›› Issue (3): 645-655.doi: 10.3724/SP.J.1006.2024.34084
吴法轩1,2(), 李秦1,2, 杨昕1,2, 李新根1,2, 徐建堂1,2, 陶爱芬1,2, 方平平1,2, 祁建民1,2, 张立武1,2,*()
WU Fa-Xuan1,2(), LI Qin1,2, YANG Xin1,2, LI Xin-Gen1,2, XU Jian-Tang1,2, TAO Ai-Fen1,2, FANG Ping-Ping1,2, QI Jian-Min1,2, ZHANG Li-Wu1,2,*()
摘要:
MYB类转录因子KAN4 (KANADI4)在红麻类黄酮合成和纤维发育中发挥着重要作用。本研究以红麻品种‘福红952’为材料, 对HcKAN4基因进行克隆和表达模式分析, 探讨TRV-VIGS诱导该基因沉默对类黄酮合成途径中关键酶基因表达量改变的影响。基因克隆显示, HcKAN4基因开放阅读框(open reading frame, ORF)全长为966 bp, 编码322个氨基酸, 包含一个MYB保守结构域。进化树分析发现, 其与拟南芥和木槿KAN4s的亲缘关系较近。表达分析表明, 该基因在红麻不同组织中均有表达, 且转录水平随着植物生长而递增。VIGS诱导基因沉默显示, 6株HcKAN4的转录水平显著下调, 达到基因沉默效果。进一步实时荧光定量PCR检测发现, 类黄酮合成相关基因HcCHS、HcF3’5’H、HcANS、HcANR的转录水平显著下调, 分别是对照组的0.51、0.14、0.23、0.11倍, 表明HcKAN4基因可调控红麻类黄酮生物合成相关基因。这些结果为阐明红麻MYB转录因子调控类黄酮合成提供了依据, 同时为改善纤维品质提供了研究思路。
[1] |
Afzal M Z, Ibrahim A K, Xu Y, Niyitanga S, Li Y, Li D, Yang X, Zhang L. Kenaf (Hibiscus cannabinus L.) breeding. J Nat Fibers, 2022, 19: 4063-4081.
doi: 10.1080/15440478.2020.1852998 |
[2] | Sreenivas H T, Krishnamurthy N, Arpitha G R. A comprehensive review on light weight kenaf fiber for automobiles. Intl J Lightweight Mater Manufact, 2020, 3: 328-337. |
[3] |
Saba N, Paridah M T, Jawaid M. Mechanical properties of kenaf fiber reinforced polymer composite: a review. Constr Build Mater, 2015, 76: 87-96.
doi: 10.1016/j.conbuildmat.2014.11.043 |
[4] | Mahmood A, Sapuan S M, Karmegam K, Abu A S. Design and development of kenaf fiber-reinforced polymer composite polytechnic chairs. Asian J Agric Biol, 2018, 6: 62-65. |
[5] | 张迪, 赵文军, 马丽娟, 柴友荣. 原花青素的性质、功能、纯化和利用. 安徽农学通报, 2009, 15(1): 35-39. |
Zhang D, Zhao W J, Ma L J, Chai Y R. Properties, functions, purification and utilization of proanthocyanidins. Anhui Agric Sci Bull, 2009, 15(1): 35-39 (in Chinese with English abstract). | |
[6] | 刘淑华, 臧丹丹, 孙燕, 李金霞, 赵恒田. 花青素生物合成途径及关键酶研究进展. 土壤与作物, 2022, 11: 336-346. |
Liu S H, Zang D D, Sun Y, Li J X, Zhao H T. Research advances on biosynthesis pathway of anthocyanins and relevant key enzymes. Soil Crop, 2022, 11: 336-346 (in Chinese with English abstract). | |
[7] | 赵文军, 张迪, 马丽娟. 原花青素的生物合成途径、功能基因和代谢工程. 植物生理学通讯, 2009, 45: 509-519. |
Zhao W J, Zhang D, Ma L J. Biosynthetic pathway, functional genes and metabolic engineering of proanthocyanidins. Plant Physiol J, 2009, 45: 509-519 (in Chinese with English abstract). | |
[8] | 苏全胜, 王爽, 孙玉强, 梅俊, 柯丽萍. 植物原花青素生物合成及调控研究进展. 中国细胞生物学学报, 2021, 43(1): 219-229. |
Su Q S, Wang S, Sun Y Q, Mei J, He L P. Advances in biosynthesis and regulation of plant proanthocyanidins. Chin J Cell Biol, 2021, 43(1): 219-229 (in Chinese with English abstract). | |
[9] |
Chen L H, Hu B, Qin Y H, Hu G B, Zhao J T. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors. Plant Physiol Biochem, 2019, 136: 178-187.
doi: 10.1016/j.plaphy.2019.01.024 |
[10] | 安秀红, 张修德, 陈可钦, 刘肖娟, 郝玉金, 程存刚. 苹果MdMYB9、MdMYB11表达及其蛋白互作分析. 中国农业科学, 2015, 11: 2208-2216. |
An X H, Zhang X D, Chen K Q, Liu X J, Hao Y J, Cheng C G. Expression and protein interaction analysis of MdMYB9 and MdMYB11 in apple. Sci Agric Sin, 2015, 11: 2208-2216 (in Chinese with English abstract). | |
[11] |
Peter C P. Molecular controls of proanthocyanidin synthesis and structure: Prospects for genetic engineering in crop plants. J Agric Food Chem, 2018, 66: 9882-9888.
doi: 10.1021/acs.jafc.8b02950 |
[12] | Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell, 2001, 13: 2009-2114. |
[13] |
Akhter D, Qin R, Nath U K, Jin X L, Shi C H. A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling. Gene, 2019, 699: 62-72.
doi: S0378-1119(19)30234-3 pmid: 30858135 |
[14] |
Liu C C, Jun J H, Dixon R A. MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol, 2014, 165: 1424-1439.
doi: 10.1104/pp.114.241877 |
[15] |
Zhou M L, Sun Z M, Ding M Q, Logacheva M D, Kreft I, Wang D, Yan M L, Shao J R, Tang Y X, Wu Y M, Zhu X M. FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. New Phytol, 2017, 216: 814-828.
doi: 10.1111/nph.2017.216.issue-3 |
[16] |
Gao P, Li X A, Cui D J, Wu L M, Parkin I, Gruber M Y, Margaret Y G. A new dominant Arabidopsis transparent testa mutant, sk21- D, and modulation of seed flavonoid biosynthesis by KAN4. Plant Biotechnol J, 2010, 8: 979-993.
doi: 10.1111/pbi.2010.8.issue-9 |
[17] |
Purkayastha A, Dasgupta I. Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem, 2009, 47: 967-976.
doi: 10.1016/j.plaphy.2009.09.001 |
[18] |
Chantreau M, Chabbert B, Billiard S, Billiard S, Hawkins S, Neutelings G. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. Plant Biotechnol J, 2015, 13: 1312-1324.
doi: 10.1111/pbi.12350 pmid: 25688574 |
[19] |
王心宇, 吕坤, 蔡彩平, 徐军, 郭旺珍. TRV 病毒介导的基因沉默体系在棉花中的建立及应用. 作物学报, 2014, 40: 1356-1363.
doi: 10.3724/SP.J.1006.2014.01356 |
Wang X Y, Lyu K, Cai C P, Xu J, Guo W Z. Establishment and application of TRV-mediated virus-induced gene silencing in cotton. Acta Agron Sin, 2014, 40: 1356-1363 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01356 |
|
[20] |
Liu Y L, Schiff M, Dinesh-Kumar S P. Virus-induced gene silencing in tomato. Plant J, 2002, 31: 777-786.
doi: 10.1046/j.1365-313x.2002.01394.x pmid: 12220268 |
[21] |
Zhang L W, Wan X B, Xu J T, Lin L H, Qi J M. De novo assembly of kenaf (Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. Mol Breed, 2015, 35: 192.
doi: 10.1007/s11032-015-0388-0 |
[22] |
Ryu J, Kwon S J, Sung S Y, Kim W J, Kim D, Ahn J W, Kim J B, Kin S, Ha B K, Kang S Y. Molecular cloning, characterization, and expression analysis of lignin biosynthesis genes from kenaf (Hibiscus cannabinus L.). Genes Genomics, 2015, 38: 59-67.
doi: 10.1007/s13258-015-0341-y |
[23] | 涂礼莉, 谭家福, 郭凯, 李中华, 张献龙. 类黄酮代谢途径与棉花纤维发育. 中国科学: 生命科学, 2014, 44: 758-765. |
Tu L L, Tan J Q, Guo K, Li Z H, Zhang X L. Flavonoid pathway in cotton fiber development. Sci Sin Vitae, 2014, 44: 758-765 (in Chinese with English abstract).
doi: 10.1360/052014-89 |
|
[24] |
郭光艳, 柏峰, 刘伟, 秘彩莉. 转录因子对木质素生物合成调控的研究进展. 中国农业科学, 2015, 48: 1277-1287.
doi: 10.3864/j.issn.0578-1752.2015.07.03 |
Guo G Y, Bai F, Liu W, Bei C L. Advances in research of the regulation of transcription factors of lignin biosynthesis. Sci Agric Sin, 2015, 48: 1277-1287 (in Chinese with English abstract). | |
[25] |
Zhang L W, Xu Y, Zhang X T, Ma X K, Zhang L L, Liao Z Y, Zhang Q, Wan X B, Chen Y, Zhang J S, Li D X, Zhang L M, Xu J T, Tao A F, Lin L H, Fang P P, Chen S, Qi R, Xu X M, Qi J M, Ming R. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fiber and leaf shape biogenesis. Plant Biotechnol J, 2020, 18: 1796-1809.
doi: 10.1111/pbi.13341 pmid: 31975524 |
[26] |
Qin G J, Gu H Y, Ma L G, Peng Y B, Deng X W, Chen Z L, Qu L J. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res, 2007, 17: 471-482.
doi: 10.1038/cr.2007.40 |
[27] |
高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜 BjuB.KAN4 基因调控类黄酮的途径. 作物学报, 2020, 46: 1322-1331.
doi: 10.3724/SP.J.1006.2020.04008 |
Gao G Y, Wu X F, Huang W, Zhou D G, Zhang D W, Zhou M L, Zhang K X, Yan M L. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea. Acta Agron Sin, 2020, 46: 1322-1331 (in Chinese with English abstract). | |
[28] |
Zhai R, Wang Z M, Zhang S W, Meng G, Song L Y, Wang Z G, Li P M, Ma F W, Xu L F. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). J Exp Bot, 2016, 67: 1275-1284.
doi: 10.1093/jxb/erv524 pmid: 26687179 |
[29] |
Li Y Q, Shan X T, Zhou L D, Gao R F, Yang S, Wang S C, Wang L, Gao X. The R2R3-MYB factor FhMYB5 from freesia hybrid a contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis. Front Plant Sci, 2018, 9: 1935.
doi: 10.3389/fpls.2018.01935 |
[30] |
Zhu L, Guan Y X, Zhang Z H, Song A P, Chen S M, Jiang J F, Chen F D. CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum. Plant Physiol Biochem, 2020, 149: 217-224.
doi: 10.1016/j.plaphy.2020.02.010 |
[31] |
Wang N H, Ma Q, Ma J J, Pei W F, Liu G Y, Cui Y P, Wu M, Zang X S, Zhang J F, Yu S X, Ma L J, Yu J W. A comparative genome-wide analysis of the R2R3-MYB gene family among four gossypium species and their sequence variation and association with fiber quality traits in an interspecific G. hirsutum × G. barbadense population. Front Genet, 2019, 10: 741.
doi: 10.3389/fgene.2019.00741 |
[32] |
Chapman S, Kavanagh T, Baulcombe D. Potato virus X as a vector for gene expression in plants. Plant J, 1992, 2: 549-557.
pmid: 1344890 |
[33] |
Liu Y L, Schiff M, Dinesh-Kumar S P. Virus-induced gene silencing in tomato. Plant J, 2002, 31: 777-786.
doi: 10.1046/j.1365-313x.2002.01394.x pmid: 12220268 |
[34] | 李萌晗. 油棕病毒诱导的基因沉默(VIGS)体系的建立. 优化和验证研究. 海南大学硕士学位论文, 海南海口, 2022. |
Li M H. Establishment, Optimization and Validation of Oil Palm Virus-induced Gene Silencing (VIGS) System. MS Thesis of Hainan University, Haikou, Hainan, China, 2022 (in Chinese with English abstract). | |
[35] |
Jia H F, Lu D, Sun J H, Li C L, Xing Y, Qin L, Shen Y Y. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J Exp Bot, 2013, 64: 1677-1687.
doi: 10.1093/jxb/ert028 |
[36] |
李玉霞, 曲延英, 艾海提·艾合买提, 王慧敏, 黄启秀, 陈琴, 陈全家. 通过GbF3’H基因单独沉默及其与GbCHI和GbDFR基因共沉默研究其在海岛棉中抗枯萎病功能. 棉花学报, 2020, 32(1): 1-10.
doi: 10.11963/1002-7807.lyxcqj.20200109 |
Li Y X, Qu Y Y, Aihaiti A, Wang H M, Huang Q X, Chen Q, Chen Q J. Through single silencing GbF3’H gene and its co-silencing with GbCHI and GbDFR genes to study their function in resistance to fusarium wilt in Gossypium barbadense. Cotton Sci, 2020, 32(1): 1-10 (in Chinese with English abstract). |
[1] | 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413. |
[2] | 梁曦彤, 高先原, 周琳, 穆春, 杜明伟, 李芳军, 田晓莉, 李召虎. 利用病毒诱导的基因沉默cDNA文库高通量筛选鉴定棉花功能基因[J]. 作物学报, 2022, 48(12): 2967-2977. |
[3] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[4] | 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用红麻HcPDIL5-2a非全长基因创制雄性不育新种质[J]. 作物学报, 2021, 47(6): 1043-1053. |
[5] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099. |
[6] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[7] | 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331. |
[8] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922. |
[9] | 万雪贝,李东旭,徐益,徐建堂,张力岚,张列梅,林荔辉,祁建民,张立武. 红麻EST-SSR标记的开发及其多态性评价[J]. 作物学报, 2017, 43(08): 1170-1180. |
[10] | 穆春,周琳,李茂营,杜明伟,张明才,田晓莉,李召虎*. 水培条件下病毒诱导棉花基因沉默体系的建立及优化[J]. 作物学报, 2016, 42(06): 844-849. |
[11] | 张立武,黄枝秒,万雪贝,林荔辉,徐建堂,陶爱芬,方平平,祁建民. 红麻光周期钝感材料的鉴定与遗传分析[J]. 作物学报, 2014, 40(12): 2098-2103. |
[12] | 王心宇,吕坤,蔡彩平,徐君,郭旺珍. TRV病毒介导的基因沉默体系在棉花中的建立及应用[J]. 作物学报, 2014, 40(08): 1356-1363. |
[13] | 贺洋, 岳洁瑜, 王华忠. 利用表达分析和基因沉默方法研究硫代硫酸硫转移酶基因TaTST与小麦抗白粉病反应的关系[J]. 作物学报, 2012, 38(02): 231-239. |
[14] | 汪斌, 祁伟, 兰涛, 陈惠端, 徐建堂, 粟建光, 李爱青, 祁建民. 应用ISSR分子标记绘制红麻种质资源DNA指纹图谱[J]. 作物学报, 2011, 37(06): 1116-1123. |
[15] | 陈美霞, 祁建民, 危成林, 谢增荣, 林培清, 兰涛, 陶爱芬, 陈涛. 红麻五个质量性状在遗传连锁图谱中的初步定位[J]. 作物学报, 2011, 37(01): 165-169. |
|