欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (3): 645-655.doi: 10.3724/SP.J.1006.2024.34084

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

红麻HcKAN4基因克隆、表达及在类黄酮合成中的功能

吴法轩1,2(), 李秦1,2, 杨昕1,2, 李新根1,2, 徐建堂1,2, 陶爱芬1,2, 方平平1,2, 祁建民1,2, 张立武1,2,*()   

  1. 1福建农林大学作物遗传育种与综合利用教育部重点实验室 / 农业农村部闽台作物生物育种重点实验室 / 福建省作物设计育种重点实验室, 福建福州 350002
    2福建农林大学农业农村部东南黄红麻实验观测站 / 福建省麻类种质资源共享平台 / 福建省南方经济作物遗传育种与多用途开发国际科技合作基地, 福建福州 350002
  • 收稿日期:2023-05-17 接受日期:2023-09-13 出版日期:2024-03-12 网络出版日期:2023-09-28
  • 通讯作者: *张立武, E-mail: lwzhang@fafu.edu.cn; zhang_liwu@hotmail.com
  • 作者简介:E-mail: 2534995528@qq.com
  • 基金资助:
    国家自然科学基金项目(31972968);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-16)

Cloning, expression, and function of HcKAN4 gene of kenaf in flavonoid synthesis

WU Fa-Xuan1,2(), LI Qin1,2, YANG Xin1,2, LI Xin-Gen1,2, XU Jian-Tang1,2, TAO Ai-Fen1,2, FANG Ping-Ping1,2, QI Jian-Min1,2, ZHANG Li-Wu1,2,*()   

  1. 1Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University / Key Laboratory of Ministry of Agriculture and Rural Affairs for Biological Breeding of Fujian and Taiwan Crops / Fujian Key Laboratory for Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China, Fujian Agriculture and Forestry University / Public Platform of Fujian for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2023-05-17 Accepted:2023-09-13 Published:2024-03-12 Published online:2023-09-28
  • Contact: *E-mail: lwzhang@fafu.edu.cn; zhang_liwu@hotmail.com
  • Supported by:
    National Natural Science Foundation of China(31972968);China Agriculture Research System of MOF and MARA(CARS-16)

摘要:

MYB类转录因子KAN4 (KANADI4)在红麻类黄酮合成和纤维发育中发挥着重要作用。本研究以红麻品种‘福红952’为材料, 对HcKAN4基因进行克隆和表达模式分析, 探讨TRV-VIGS诱导该基因沉默对类黄酮合成途径中关键酶基因表达量改变的影响。基因克隆显示, HcKAN4基因开放阅读框(open reading frame, ORF)全长为966 bp, 编码322个氨基酸, 包含一个MYB保守结构域。进化树分析发现, 其与拟南芥和木槿KAN4s的亲缘关系较近。表达分析表明, 该基因在红麻不同组织中均有表达, 且转录水平随着植物生长而递增。VIGS诱导基因沉默显示, 6株HcKAN4的转录水平显著下调, 达到基因沉默效果。进一步实时荧光定量PCR检测发现, 类黄酮合成相关基因HcCHSHcF3’5’HHcANSHcANR的转录水平显著下调, 分别是对照组的0.51、0.14、0.23、0.11倍, 表明HcKAN4基因可调控红麻类黄酮生物合成相关基因。这些结果为阐明红麻MYB转录因子调控类黄酮合成提供了依据, 同时为改善纤维品质提供了研究思路。

关键词: 红麻, HcKAN4, 类黄酮合成, VIGS

Abstract:

MYB-like transcription factor KAN4 (KANADI4) plays an important role in flavonoid synthesis and fiber development in kenaf. In this study, the variety “Fuhong 952” was used as the experimental material to clone and analyze the relative expression pattern of HcKAN4 genes, and to investigate the effect of TRV-VIGS-induced silencing of HCKAN4 gene on the expression of key enzyme genes in flavonoid synthesis pathway in kenaf, the variety ‘Fuhong 952’ was used as the experimental material. Gene cloning showed that the total length of ORF of HcKAN4 gene was 966 bp, encoding 322 amino acids and containing a conserved domain of MYB. Phylogenetic tree revealed that it was closely related to KAN4s of Arabidopsis and Hibiscus. The relative expression pattern indicated that the gene was expressed in different plant tissues, and the transcription level increased with plant growth in kenaf. VIGS-induced gene silencing revealed that the transcription level of 6 HcKAN4 individuals was significantly down-regulated, indicating gene silencing successfully. Real-time quantitative PCR demonstrated that the relative level of flavonoid synthesis-related genes, HcCHS, HcF3'5'H, HcANS, and HcANR, were significantly down-regulated, which were 0.51, 0.14, 0.23, and 0.11 times of those in the control group, respectively, suggesting that the relative expression level of HcKAN4 gene can regulate the biosynthesis of flavonoid in kenaf. These results provide a basis for clarifying the regulation of flavonoid synthesis by MYB transcription factor and give research ideas for improving fiber quality in kenaf.

Key words: kenaf, HcKAN4, flavonoid synthesis, VIGS

附表1

本试验所用引物"

引物名称
Prime name
引物序列
Prime sequences (5°-3°)
扩增长度Amplification length (bp) 用途
Usage
HcKAN4-F ACACTTGAGAAGAGACAACTCGT 966 基因克隆
Gene cloning
HcKAN4-R ATGATGAGAACCGCACTTTT
HcKAN4-SF GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCATCCAAATCAACAATCC 254 基因沉默片段克隆
Fragment cloning of gene silencing
HcKAN4-SR GGGGACAAGTTTGTACAAAAAAGCAGGCTTCAAGCGTCAGAGCTCCCAG
pDONR207-F GTAACATCAGAGATTTTGAGACAC 250 载体检测
Vector detection
pDONR207-R TCGCGTTAACGCTAGCATGGATCTC
ATTB1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTC 250 pTRV1 and pTRV2
ATTB1-R GGGGACCACTTTGTACAAGAAAGCTGGGTC
Hc18sRNA-F GGTTCACCTACGGAAACCTTG 175 qRT-PCR检测引物
Detection primers of qRT-PCR
Hc18sRNA-R CTACGTCCCTGCCCTTTGTA
HcKAN4-q-F TTTTGCCTGATCTATCCCTGC 145
HcKAN4-q-R AAATCGCTTCCACTACTCCCA
HcCHS-F GCACAAAGAGCCGAGGGTC 103
HcCHS-R TTCGCTGTTGGTGATACGGA
HcF3’5’H-F GCTAAGGCAGGCAGAAAGAGG 237
HcF3’5’H-R AGTGGGAAAAACGCCAAAATC
HcF3’H-F TTCAAGAACTGAGCCGCCA 136
HcF3’H-R TTGCCGCATATGAGCCCTA
HcANS-F GAGCAAAGGTACGAGGAGGGA 173
HcANS-R CAGCAACGGCAAGTTCAAGAG
HcANR-F CCCTTGCCCTTCAAATACTCC 171
HcANR-R GTTCCTCCACAAAAGATACCCG

图1

红麻HcKAN4基因克隆及序列分析 a: HcKAN4基因克隆电泳图。其中, M表示DL2000 DNA marker, 1和2表示克隆产物。b: HcKAN4蛋白与其他物种同源蛋白序列比对图。其中红框表示MYB保守结构域, HcKAN4表示红麻KAN4蛋白, HsKAN4表示木槿KAN4蛋白, GhKAN4表示棉花KAN4蛋白, DzKAN4表示榴莲KAN4蛋白, VvKAN4表示葡萄KAN4蛋白。c: HcKAN4基因结构示意图。"

附图1

不同植物KAN4蛋白系统进化树 CaKAN4: 辣椒KAN4蛋白; ZmKAN4: 玉米KAN4蛋白; BaKAN4: 油菜KAN4蛋白; CsKAN4: 黄瓜蛋白; VvKAN4: 葡萄KAN4蛋白; HsKAN4: 木槿KAN4蛋白; ATKAN4: 拟南芥KAN4蛋白; HcKAN4: 红麻KAN4蛋白; GaKAN4: 棉花KAN4蛋白; DzKAN4: 榴莲KAN4蛋白。"

附图2

Hc.KAN4蛋白跨膜结构预测"

图2

红麻HcKAN4基因在不同时期不同组织中的表达分析 root-60 d、stem-stick-60 d、leaf-60 d、stem-bark-60 d、stem-bark- 120 d分别代表种子萌发60 d后根、茎骨、叶、茎皮、和种子萌发120 d后茎皮; R、B3、B5、B7分别代表种子萌发120 d后圆叶、三裂叶、五裂叶和七裂叶。"

图3

红麻Hc.KAN4基因重组载体质粒转化后菌液PCR检测 M: DL2000 DNA marker。a: P代表质粒, 1~4代表pTRV2-KAN4待测农杆菌; b: 1~5代表pTRV1待测农杆菌; c: 1~5代表pTRV2 (空载)待测农杆菌。"

图4

红麻HcKAN4的cDNA和氨基酸序列 红色线标出沉默片段。"

图5

HcKAN4基因沉默后红麻植株的沉默效果检测 a: VIGS沉默后叶片HcKAN4基因的qRT-PCR分析; b: VIGS沉默后茎皮HcKAN4基因的qRT-PCR分析。柱上不同小写字母表示同一基因在不同植株表达量差异达到显著水平(P < 0.05)。"

表1

NCBI (CDD)鉴定红麻类黄酮合成基因及其结构域"

基因简称
Gene abbreviation
红麻数据库编号
Database number of H. cannabinus L.
结构域
Domain
CDD (蛋白Protein)
区间 Interval EE-value
Hc.CHS Hc.02G012910 PLN03172 super family 36-424 0
Hc.F3’H Hc.17G017480 p450 super family 23-510 0
Hc.ANR Hc.12G017890 PLN00198 super family 1-335 0
Hc.F3’5’H Hc.10G006460 p450 super family 6-508 0
Hc.ANS Hc.11G024480 PLN03178 2-355 0

图6

红麻类黄酮合成相关基因在不同时期茎皮的表达分析 Hypocotyl-10 d: 种子萌发后10 d的下胚轴; stem-bark-60 d: 种子萌发后60 d的茎皮; stem-bark-120 d: 种子萌发后120 d的茎皮。柱上不同小写字母表示同一基因在不同时期表达量差异达到显著水平(P < 0.05)。"

图7

红麻纤维素和木质素合成相关基因在不同时期茎皮的表达量 a: 表示木质素合成相关基因在不同时期茎皮的表达量; b: 表示纤维素合成相关基因在不同时期茎皮的表达量; Hypocotyl-10 d: 种子萌发后10 d的下胚轴; stem-bark-60 d: 种子萌发后60 d的茎皮; stem-bark-120 d: 种子萌发后120 d的茎皮。柱上不同小写字母表示同一基因在不同时期表达量差异达到显著水平(P < 0.05)。"

图8

红麻HcKAN4基因VIGS沉默后类黄酮合成相关基因的qRT-PCR分析 每组数据代表3次技术重复的平均值, 误差以SD表示; *表示在0.05概率水平差异显著, **表示在0.01概率水平差异显著。HcCHS: 查尔酮合成酶基因; HcF3’H: 类黄酮3’-羟化酶基因; HcF3’5’H: 类黄酮3’5’-羟化酶基因; HcANS: 花青素合成酶基因; HcANR: 花青素还原酶基因。"

[1] Afzal M Z, Ibrahim A K, Xu Y, Niyitanga S, Li Y, Li D, Yang X, Zhang L. Kenaf (Hibiscus cannabinus L.) breeding. J Nat Fibers, 2022, 19: 4063-4081.
doi: 10.1080/15440478.2020.1852998
[2] Sreenivas H T, Krishnamurthy N, Arpitha G R. A comprehensive review on light weight kenaf fiber for automobiles. Intl J Lightweight Mater Manufact, 2020, 3: 328-337.
[3] Saba N, Paridah M T, Jawaid M. Mechanical properties of kenaf fiber reinforced polymer composite: a review. Constr Build Mater, 2015, 76: 87-96.
doi: 10.1016/j.conbuildmat.2014.11.043
[4] Mahmood A, Sapuan S M, Karmegam K, Abu A S. Design and development of kenaf fiber-reinforced polymer composite polytechnic chairs. Asian J Agric Biol, 2018, 6: 62-65.
[5] 张迪, 赵文军, 马丽娟, 柴友荣. 原花青素的性质、功能、纯化和利用. 安徽农学通报, 2009, 15(1): 35-39.
Zhang D, Zhao W J, Ma L J, Chai Y R. Properties, functions, purification and utilization of proanthocyanidins. Anhui Agric Sci Bull, 2009, 15(1): 35-39 (in Chinese with English abstract).
[6] 刘淑华, 臧丹丹, 孙燕, 李金霞, 赵恒田. 花青素生物合成途径及关键酶研究进展. 土壤与作物, 2022, 11: 336-346.
Liu S H, Zang D D, Sun Y, Li J X, Zhao H T. Research advances on biosynthesis pathway of anthocyanins and relevant key enzymes. Soil Crop, 2022, 11: 336-346 (in Chinese with English abstract).
[7] 赵文军, 张迪, 马丽娟. 原花青素的生物合成途径、功能基因和代谢工程. 植物生理学通讯, 2009, 45: 509-519.
Zhao W J, Zhang D, Ma L J. Biosynthetic pathway, functional genes and metabolic engineering of proanthocyanidins. Plant Physiol J, 2009, 45: 509-519 (in Chinese with English abstract).
[8] 苏全胜, 王爽, 孙玉强, 梅俊, 柯丽萍. 植物原花青素生物合成及调控研究进展. 中国细胞生物学学报, 2021, 43(1): 219-229.
Su Q S, Wang S, Sun Y Q, Mei J, He L P. Advances in biosynthesis and regulation of plant proanthocyanidins. Chin J Cell Biol, 2021, 43(1): 219-229 (in Chinese with English abstract).
[9] Chen L H, Hu B, Qin Y H, Hu G B, Zhao J T. Advance of the negative regulation of anthocyanin biosynthesis by MYB transcription factors. Plant Physiol Biochem, 2019, 136: 178-187.
doi: 10.1016/j.plaphy.2019.01.024
[10] 安秀红, 张修德, 陈可钦, 刘肖娟, 郝玉金, 程存刚. 苹果MdMYB9、MdMYB11表达及其蛋白互作分析. 中国农业科学, 2015, 11: 2208-2216.
An X H, Zhang X D, Chen K Q, Liu X J, Hao Y J, Cheng C G. Expression and protein interaction analysis of MdMYB9 and MdMYB11 in apple. Sci Agric Sin, 2015, 11: 2208-2216 (in Chinese with English abstract).
[11] Peter C P. Molecular controls of proanthocyanidin synthesis and structure: Prospects for genetic engineering in crop plants. J Agric Food Chem, 2018, 66: 9882-9888.
doi: 10.1021/acs.jafc.8b02950
[12] Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell, 2001, 13: 2009-2114.
[13] Akhter D, Qin R, Nath U K, Jin X L, Shi C H. A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling. Gene, 2019, 699: 62-72.
doi: S0378-1119(19)30234-3 pmid: 30858135
[14] Liu C C, Jun J H, Dixon R A. MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol, 2014, 165: 1424-1439.
doi: 10.1104/pp.114.241877
[15] Zhou M L, Sun Z M, Ding M Q, Logacheva M D, Kreft I, Wang D, Yan M L, Shao J R, Tang Y X, Wu Y M, Zhu X M. FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. New Phytol, 2017, 216: 814-828.
doi: 10.1111/nph.2017.216.issue-3
[16] Gao P, Li X A, Cui D J, Wu L M, Parkin I, Gruber M Y, Margaret Y G. A new dominant Arabidopsis transparent testa mutant, sk21- D, and modulation of seed flavonoid biosynthesis by KAN4. Plant Biotechnol J, 2010, 8: 979-993.
doi: 10.1111/pbi.2010.8.issue-9
[17] Purkayastha A, Dasgupta I. Virus-induced gene silencing: a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem, 2009, 47: 967-976.
doi: 10.1016/j.plaphy.2009.09.001
[18] Chantreau M, Chabbert B, Billiard S, Billiard S, Hawkins S, Neutelings G. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing. Plant Biotechnol J, 2015, 13: 1312-1324.
doi: 10.1111/pbi.12350 pmid: 25688574
[19] 王心宇, 吕坤, 蔡彩平, 徐军, 郭旺珍. TRV 病毒介导的基因沉默体系在棉花中的建立及应用. 作物学报, 2014, 40: 1356-1363.
doi: 10.3724/SP.J.1006.2014.01356
Wang X Y, Lyu K, Cai C P, Xu J, Guo W Z. Establishment and application of TRV-mediated virus-induced gene silencing in cotton. Acta Agron Sin, 2014, 40: 1356-1363 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01356
[20] Liu Y L, Schiff M, Dinesh-Kumar S P. Virus-induced gene silencing in tomato. Plant J, 2002, 31: 777-786.
doi: 10.1046/j.1365-313x.2002.01394.x pmid: 12220268
[21] Zhang L W, Wan X B, Xu J T, Lin L H, Qi J M. De novo assembly of kenaf (Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. Mol Breed, 2015, 35: 192.
doi: 10.1007/s11032-015-0388-0
[22] Ryu J, Kwon S J, Sung S Y, Kim W J, Kim D, Ahn J W, Kim J B, Kin S, Ha B K, Kang S Y. Molecular cloning, characterization, and expression analysis of lignin biosynthesis genes from kenaf (Hibiscus cannabinus L.). Genes Genomics, 2015, 38: 59-67.
doi: 10.1007/s13258-015-0341-y
[23] 涂礼莉, 谭家福, 郭凯, 李中华, 张献龙. 类黄酮代谢途径与棉花纤维发育. 中国科学: 生命科学, 2014, 44: 758-765.
Tu L L, Tan J Q, Guo K, Li Z H, Zhang X L. Flavonoid pathway in cotton fiber development. Sci Sin Vitae, 2014, 44: 758-765 (in Chinese with English abstract).
doi: 10.1360/052014-89
[24] 郭光艳, 柏峰, 刘伟, 秘彩莉. 转录因子对木质素生物合成调控的研究进展. 中国农业科学, 2015, 48: 1277-1287.
doi: 10.3864/j.issn.0578-1752.2015.07.03
Guo G Y, Bai F, Liu W, Bei C L. Advances in research of the regulation of transcription factors of lignin biosynthesis. Sci Agric Sin, 2015, 48: 1277-1287 (in Chinese with English abstract).
[25] Zhang L W, Xu Y, Zhang X T, Ma X K, Zhang L L, Liao Z Y, Zhang Q, Wan X B, Chen Y, Zhang J S, Li D X, Zhang L M, Xu J T, Tao A F, Lin L H, Fang P P, Chen S, Qi R, Xu X M, Qi J M, Ming R. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fiber and leaf shape biogenesis. Plant Biotechnol J, 2020, 18: 1796-1809.
doi: 10.1111/pbi.13341 pmid: 31975524
[26] Qin G J, Gu H Y, Ma L G, Peng Y B, Deng X W, Chen Z L, Qu L J. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res, 2007, 17: 471-482.
doi: 10.1038/cr.2007.40
[27] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜 BjuB.KAN4 基因调控类黄酮的途径. 作物学报, 2020, 46: 1322-1331.
doi: 10.3724/SP.J.1006.2020.04008
Gao G Y, Wu X F, Huang W, Zhou D G, Zhang D W, Zhou M L, Zhang K X, Yan M L. Regulation of flavonoid pathway by BjuB.KAN4 gene in Brassica juncea. Acta Agron Sin, 2020, 46: 1322-1331 (in Chinese with English abstract).
[28] Zhai R, Wang Z M, Zhang S W, Meng G, Song L Y, Wang Z G, Li P M, Ma F W, Xu L F. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). J Exp Bot, 2016, 67: 1275-1284.
doi: 10.1093/jxb/erv524 pmid: 26687179
[29] Li Y Q, Shan X T, Zhou L D, Gao R F, Yang S, Wang S C, Wang L, Gao X. The R2R3-MYB factor FhMYB5 from freesia hybrid a contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis. Front Plant Sci, 2018, 9: 1935.
doi: 10.3389/fpls.2018.01935
[30] Zhu L, Guan Y X, Zhang Z H, Song A P, Chen S M, Jiang J F, Chen F D. CmMYB8 encodes an R2R3 MYB transcription factor which represses lignin and flavonoid synthesis in chrysanthemum. Plant Physiol Biochem, 2020, 149: 217-224.
doi: 10.1016/j.plaphy.2020.02.010
[31] Wang N H, Ma Q, Ma J J, Pei W F, Liu G Y, Cui Y P, Wu M, Zang X S, Zhang J F, Yu S X, Ma L J, Yu J W. A comparative genome-wide analysis of the R2R3-MYB gene family among four gossypium species and their sequence variation and association with fiber quality traits in an interspecific G. hirsutum × G. barbadense population. Front Genet, 2019, 10: 741.
doi: 10.3389/fgene.2019.00741
[32] Chapman S, Kavanagh T, Baulcombe D. Potato virus X as a vector for gene expression in plants. Plant J, 1992, 2: 549-557.
pmid: 1344890
[33] Liu Y L, Schiff M, Dinesh-Kumar S P. Virus-induced gene silencing in tomato. Plant J, 2002, 31: 777-786.
doi: 10.1046/j.1365-313x.2002.01394.x pmid: 12220268
[34] 李萌晗. 油棕病毒诱导的基因沉默(VIGS)体系的建立. 优化和验证研究. 海南大学硕士学位论文, 海南海口, 2022.
Li M H. Establishment, Optimization and Validation of Oil Palm Virus-induced Gene Silencing (VIGS) System. MS Thesis of Hainan University, Haikou, Hainan, China, 2022 (in Chinese with English abstract).
[35] Jia H F, Lu D, Sun J H, Li C L, Xing Y, Qin L, Shen Y Y. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J Exp Bot, 2013, 64: 1677-1687.
doi: 10.1093/jxb/ert028
[36] 李玉霞, 曲延英, 艾海提·艾合买提, 王慧敏, 黄启秀, 陈琴, 陈全家. 通过GbF3’H基因单独沉默及其与GbCHIGbDFR基因共沉默研究其在海岛棉中抗枯萎病功能. 棉花学报, 2020, 32(1): 1-10.
doi: 10.11963/1002-7807.lyxcqj.20200109
Li Y X, Qu Y Y, Aihaiti A, Wang H M, Huang Q X, Chen Q, Chen Q J. Through single silencing GbF3’H gene and its co-silencing with GbCHI and GbDFR genes to study their function in resistance to fusarium wilt in Gossypium barbadense. Cotton Sci, 2020, 32(1): 1-10 (in Chinese with English abstract).
[1] 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413.
[2] 梁曦彤, 高先原, 周琳, 穆春, 杜明伟, 李芳军, 田晓莉, 李召虎. 利用病毒诱导的基因沉默cDNA文库高通量筛选鉴定棉花功能基因[J]. 作物学报, 2022, 48(12): 2967-2977.
[3] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[4] 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用红麻HcPDIL5-2a非全长基因创制雄性不育新种质[J]. 作物学报, 2021, 47(6): 1043-1053.
[5] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[6] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[7] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331.
[8] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[9] 万雪贝,李东旭,徐益,徐建堂,张力岚,张列梅,林荔辉,祁建民,张立武. 红麻EST-SSR标记的开发及其多态性评价[J]. 作物学报, 2017, 43(08): 1170-1180.
[10] 穆春,周琳,李茂营,杜明伟,张明才,田晓莉,李召虎*. 水培条件下病毒诱导棉花基因沉默体系的建立及优化[J]. 作物学报, 2016, 42(06): 844-849.
[11] 张立武,黄枝秒,万雪贝,林荔辉,徐建堂,陶爱芬,方平平,祁建民. 红麻光周期钝感材料的鉴定与遗传分析[J]. 作物学报, 2014, 40(12): 2098-2103.
[12] 王心宇,吕坤,蔡彩平,徐君,郭旺珍. TRV病毒介导的基因沉默体系在棉花中的建立及应用[J]. 作物学报, 2014, 40(08): 1356-1363.
[13] 贺洋, 岳洁瑜, 王华忠. 利用表达分析和基因沉默方法研究硫代硫酸硫转移酶基因TaTST与小麦抗白粉病反应的关系[J]. 作物学报, 2012, 38(02): 231-239.
[14] 汪斌, 祁伟, 兰涛, 陈惠端, 徐建堂, 粟建光, 李爱青, 祁建民. 应用ISSR分子标记绘制红麻种质资源DNA指纹图谱[J]. 作物学报, 2011, 37(06): 1116-1123.
[15] 陈美霞, 祁建民, 危成林, 谢增荣, 林培清, 兰涛, 陶爱芬, 陈涛. 红麻五个质量性状在遗传连锁图谱中的初步定位[J]. 作物学报, 2011, 37(01): 165-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .