欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1356-1363.doi: 10.3724/SP.J.1006.2014.01356

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

TRV病毒介导的基因沉默体系在棉花中的建立及应用

王心宇1,*,吕坤1,蔡彩平2,徐君2,郭旺珍2   

  1. 1 南京农业大学生命科学学院, 江苏南京210095;2 南京农业大学农学院 / 作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2014-01-10 修回日期:2014-06-04 出版日期:2014-08-12 网络出版日期:2014-06-12
  • 通讯作者: 王心宇, E-mail: xywang@njau.edu.cn, Tel: 025-84395736
  • 基金资助:

    本研究由国家自然科学基金项目(31171590)和江苏省自然科学基金项目(BK2010065)资助。

Establishment and Application of TRV-mediated Virus-Induced Gene Silencing in Cotton

WANG Xin-Yu1,*,LÜ Kun1,CAI Cai-Ping2,XU Jun2,GUO Wang-Zhen2   

  1. 1 College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2 State Key Laboratory of Crop Genetics & Germplasm Enhancement / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2014-01-10 Revised:2014-06-04 Published:2014-08-12 Published online:2014-06-12
  • Contact: 王心宇, E-mail: xywang@njau.edu.cn, Tel: 025-84395736

摘要:

以陆地棉CLA1基因为标记基因,利用烟草脆裂病毒(tobacco rattle virusTRV)载体建立基于病毒介导的棉花基因沉默体系(virus-induced gene silencing, VIGS)。病毒RNA2RT-PCR分析证明,棉花子叶接种TRV病毒后,该病毒可高效扩散到受体的根、茎、叶等器官。利用TRV-VIGS体系同时诱导34份不同来源棉花材料CLA1基因沉默,尽管不同材料间的抑制程度有差异,但均可有效抑制CLA1基因的表达,说明该体系在棉花研究中的广谱利用性。GhMAPKKK基因受黄萎病菌诱导表达, 接种后96 h表达量达到高峰。利用TRV-VIGS体系,成功抑制了棉花GhMAPKKK基因的表达,与对照株相比,抑制后的棉花植株接种黄萎病菌后更易感病,说明GhMAPKKK参与了棉花对黄萎病菌的抗性反应。具有广谱性、灵敏性和高通量等特点的棉花TRV-VIGS体系建立将加速棉花功能基因组研究进程。

关键词: 棉花, TRV-VIGS, GhCLA1, GhMAPKKK, 黄萎病

Abstract:

Using upland cotton GhCLA1 as marker gene, tobacco rattle virus induced genes silencing (TRV-VIGS) was established in cotton. A gene fragment of TRV subgenomic RNA2 was amplified by reverse transcription-polymerase chain reaction (RT-PCR) in root, stem and leaf of cotton, demonstrating the virus can spread into various organs. The TRV induced silencing of CLA1 gene was further tested in 34 different cotton varieties (lines) originated from several ecological regions of China. The results showed that CLA1 could be silenced in all tested varieties (lines), though the levels of silencing showed a little difference, implicating wide application perspective of TRV-VIGS system in cotton. GhMAPKKK, a mitogen-activated protein kinase (MAPK) kinase kinase gene of cotton, was up-regulated in cotton at 96 hours post inoculation by Verticillium dahliae. Silencing GhMAPKKK in G. barbadense cv. Hai 7124, a cotton variety with high resistance to V. dahlia exhibited reduced resistance to V. dahliae infection, suggesting that GhMAPKKK participated in cotton resistance signaling pathway to V. dahliae. With the wide adaption without genotype selection, sensitivity and high throughput, the TVR-VIGS system will significantly promote functional gene analysis in cotton.

Key words: Cotton, TRV-VIGS, GhCLA1, GhMAPKKK, Verticillium wilt

[1]Lu R, Martin-Hernandez A M, Peart J R. Virus-induced gene silencing in plant. Methods, 2003, 30: 296–303



[2]Purkayastha A, Dasgupta I. Virus-induced gene silencing: A versatile tool for discovery of gene functions in plants. Plant Physiol Biochem, 2009, 47: 967–976



[3]Ryu C M, Anand A, Kang L, Mysore K S. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J, 2004, 40: 322–331



[4]Senthil-Kumar M, Hema R, Anand A, Kang L, Udayakumar M, Mysore K S. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol, 2007, 176: 782–791



[5]Czosnek H, Eybishtz A, Sade D, Gorovits R, Sobol I, Bejarano E, Rosas-Díaz T, Lozano-Durán R. Discovering host genes involved in the infection by the tomato yellow leaf curl virus complex and in the establishment of resistance to the virus using tobacco rattle virus-based post transcriptional gene silencing. Viruses, 2013, 5: 998–1022



[6]Burch-Smith T M, Schiff M, Liu Y, Dinesh-Kumar S P. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol, 2006, 142: 21–27



[7]Ye J, Qu J, Bui H T, Chua N H. Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J, 2009, 7: 964–976



[8]Spitzer B, Zvi M M, Ovadis M, Marhevka E, Barkai O, Edelbaum O, Marton I, Masci T, Alon M, Morin S, Rogachev I, Aharoni A, Vainstein A. Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in Petunia. Plant Physiol, 2007, 145: 1241–1250



[9]Hileman L C, Drea S, Martino G, Litt A, Irish V F. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Plant J, 2005, 44: 334–341



[10]Wege S, Scholz A, Gleissberg S, Becker A. Highly efficient virus-induced gene silencing (VIGS) in California poppy (Eschscholzia californica): an evaluation of VIGS as a strategy to obtain functional data from non-model plants. Ann Bot, 2007, 100: 641–649



[11]Tuttle J R, Idris A M, Brown J K, Haigler C H, Robertson D. Geminivirus-mediated gene silencing from cotton leaf crumple virus is enhanced by low temperature in cotton. Plant Physiol, 2008, 148: 41–50



[12]Mandel M A, Feldmann K A, Herrera-Estrella L, Rocha-Sosa M, León P. CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J, 1996, 9: 649–658



[13]Gao X, Britt R C Jr, Shan L, He P. Agrobacterium-mediated virus-induced gene silencing assay in cotton. J Vis Exp, 2011, 54: pii: 2938. doi: 10.3791/2938



[14]Gao X, Wheeler T, Li Z, Kenerley C M, He P, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J, 2011, 66: 293–305



[15]Qu J, Ye J, Geng Y F, Sun Y W, Gao S Q, Zhang B P, Chen W, Chua N H. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. Plant Physiol, 2012, 160: 738–748



[16]Paterson A H, Wendel J F, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker K C, Shu S, Udall J, Yoo M J, Byers R, Chen W, Doron-Faigenboim A, Duke M V, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T H, Li J, Lin L, Liu T, Marler B S, Page J T, Roberts A W, Romanel E, Sanders W S, Szadkowski E, Tan X, Tang H, Xu C, Wang J, Wang Z, Zhang D, Zhang L, Ashrafi H, Bedon F, Bowers JE, Brubaker C L, Chee P W, Das S, Gingle A R, Haigler C H, Harker D, Hoffmann L V, Hovav R, Jones D C, Lemke C, Mansoor S, ur Rahman M, Rainville L N, Rambani A, Reddy U K, Rong J K, Saranga Y, Scheffler B E, Scheffler J A, Stelly D M, Triplett B A, Van Deynze A, Vaslin M F, Waghmare V N, Walford S A, Wright R J, Zaki E A, Zhang T, Dennis E S, Mayer K F, Peterson D G, Rokhsar D S, Wang X, Schmutz J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492: 423–427



[17]Velásquez A C, Chakravarthy S, Martin G B. Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp, 2009, 28:PII: 1292. DOI: 10.3791/1292



[18]蒋建雄, 张天真. 利用CTAB/酸酚法提取棉花组织总RNA. 棉花学报, 2003, 15: 166–167



Jiang J X, Zhang T Z. Extraction of total RNA in cotton tissues with CTAB-acidic phenolic method. Cotton Sci, 2003, 15:166–167



[19]徐理, 朱龙付, 张献龙. 棉花抗黄萎病机制研究进展. 作物学报, 2012, 38: 1553–1560



Xu L, Zhu L F, Zhang X L. Research on resistance mechanism of cotton to Verticillium wilt. Acta Agron Sin, 2012, 38: 1553–1560

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!