欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1364-1370.doi: 10.3724/SP.J.1006.2014.01364

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

硬粒小麦品种Lpx-B1位点等位变异的分子鉴定及其脂肪氧化酶活性

张福彦1,2,**,尚晓丽1,**,吴培培1,宋双1,陈锋1,*,崔党群1,*   

  1. 1 河南农业大学农学院/河南省粮食作物协同创新中心 / 小麦玉米作物学国家重点实验室, 河南郑州 450002; 2 河南省核农学重点实验室 / 河南省科学院同位素研究所有限责任公司, 河南郑州 450015
  • 收稿日期:2013-11-15 修回日期:2014-04-16 出版日期:2014-08-12 网络出版日期:2014-06-03
  • 通讯作者: 陈锋, E-mail: chf0088@gmail.com; 崔党群, E-mail: cdq62@sohu.com
  • 基金资助:

    本研究由国家重点基础研究计划(973计划)项目(2014CB138105), 教育部新世纪优秀人才项目(NCET-13-0776), 河南省高校青年骨干教师资助计划项目(2011GGJS-044)和河南省小麦产业技术体系建设专项资金项目(Z2010-01-04)资助。

Molecular Identification of Alleles on Lpx-B1 locus and Lipoxygenase Activity in Durum Wheat (Triticum turgidum L.)

ZHANG Fu-Yan1,2,**,SHANG Xiao-Li1,**,WU Pei-Pei1,SONG Shuang1,CHEN Feng1,*,CUI Dang-Qun1,*   

  1. 1 College of Agronomy / Collaborative Innovation Center of Henan Grain Crops / National Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China; 2 Henan Key Laboratory of Nuclear Agricultural Sciences / Isotope Institute Co., Ltd, Henan Academy of Sciences, Zhengzhou 450015, China?
  • Received:2013-11-15 Revised:2014-04-16 Published:2014-08-12 Published online:2014-06-03
  • Contact: 陈锋, E-mail: chf0088@gmail.com; 崔党群, E-mail: cdq62@sohu.com

摘要:

硬粒小麦籽粒中脂肪氧化酶(LOX)与硬粒小麦面制品的加工品质关系密切相关, Lpx-B1位点不同变异类型对LOX活性有重要影响。对来自不同国家和地区的167份硬粒小麦品种的LOX活性进行测定, 并对其Lpx-B1位点不同变异类型进行分子鉴定。不同品种间LOX活性差异明显, 变幅为0.207.98 AU min-1 g-1Lpx-B1.1位点鉴定出3种等位变异, 分别为Lpx-B1.1aLpx-B1.1bLpx-B1.1c, Lpx-B1.1a所占比例最高(55.1%), 其次为Lpx-B1.1c (37.1%), Lpx-B1.1b仅占7.8%; Lpx-B1.2Lpx-B1.3二者总是互补出现在不同的品种中, 146份品种为Lpx-B1.2, 其余21份品种均为Lpx-B1.3, 表明二者可能互为一对等位因子。在Lpx-B1.1位点的3种等位变异类型中, Lpx-B1.1b类型品种的LOX活性显著高于Lpx-B1.1aLpx-B1.1c类型品种, Lpx-B1.1c类型品种的LOX活性最低。Lpx-B1.3类型品种的LOX活性显著高于Lpx-B1.2类型的品种。参试品种共有6Lpx-B1基因型组合, 其中Lpx-B1.1b/Lpx-B1.3基因型的LOX活性显著高于其他基因型, Lpx-B1.1c/Lpx-B1.2Lpx-B1.1c/Lpx-B1.3基因型的LOX活性最低。这些观测结果为硬粒小麦品质育种提供了重要信息。

关键词: 硬粒小麦, Lpx-B1位点, 等位变异, 脂肪氧化酶

Abstract:

Lipoxygenase (LOX) has a close relationship to the processing quality of flour products in durum wheat (Triticum turgidum L.). Activity of LOX is greatly influenced by the locus of Lpx-B1. The Lpx-B1 alleles in 167 durum wheat varieties from different countries or regions were identified using gene-specific primers, and the Lpx-B1 genotypes were analyzed based on LOX activity data. The LOX activity varied greatly in the 167 varieties, ranging from 0.20 to 7.98 AU min-1 g-1. On Lpx-B1.1 locus, three alleles (Lpx-B1.1a, Lpx-B1.1b, and Lpx-B1.1c) were identified with frequencies of 55.1%, 7.8%, and 37.1%, respectively. Loci Lpx-B1.2 and Lpx-B1.3 were always reciprocally present in varieties, in which Lpx-B1.2 was presented in 146 varieties and Lpx-B1.3 in the remaining 21 varieties. This result indicates the allelic possibility of Lpx-B1.2 and Lpx-B1.3. In the three Lpx-B1.1 genotypes, the Lpx-B1.1b varieties had significantly higher LOX activity than the Lpx-B1.1a and Lpx-B1.1c varieties, and varieties carrying Lpx-B1.1c allele possessed the lowest LOX activity. The LOX activity in Lpx-B1.3 genotypes was significantly higher than that in Lpx-B1.2 genotypes. A total of six genotypic combinations on the three Lpx-B1 loci in 167 varieties. Among them, Lpx-B1.1b/Lpx-B1.3 combination had the highest LOX activity and combinations of Lpx-B1.1c/Lpx-B1.2 and Lpx-B1.1c/Lpx-B1.3 had the lowest LOX activity. These results are informative to quality breeding of durum wheat.

Key words: Triticum turgidum L., Lpx-B1 locus, Alleles, Lipoxygenase

[1]Loiseau J, Vu B L, Macherel M H, Deunff Y L. Seed lipoxygeanses: occurrence and functions. Seed Sci Res, 2001, 11: 199–211



[2]汪仁, 沈文飚, 翟虎渠, 万建民. 植物种子脂氧合酶. 植物生理学通讯, 2005, 41: 388–395



Wang R, Shen W B, Zhai H Q, Wan J M. Plant seed lipoxygenase. Plant Physiol Comm, 2005, 41: 388–395 (in Chinese with English abstract)



[3]Hessler T G, Thomson M J, Benscher D, Nachit M M, Sorrells M E. Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum seeds. Crop Sci, 2002, 42: 1695–1700



[4]Shiiba K, Nengishi Y, Okada K, Nagao S. Purification and characterization of lipoxygenase isozymes from wheat germ. Cereal Chem, 1991, 68: 115–122



[5]Pastore D, Trono D, Padalino L, Simone S, Valenti D, Fonzo N D, Passarella S. Inhibition by α-tocopherol and L-aseorbate of linoleate hydroperoxidation and β-carotene bleaching activities in durum wheat semolina. J Cereal Sci, 2000, 31: 41–54



[6]郑文寅, 姚大年, 张文明. 脂肪氧化酶及其在小麦品质改良中的研究与应用. 粮食与饲料工业, 2009, (8): 5–6



Zheng W Y, Yao D N, Zhang W M. Research and application of lipoxygenase for improvement of wheat quality. Cereal Feed Ind, 2009, (8): 5–6 (in Chinese with English abstract)



[7]Borrelli G M, Deleonardis A M, Platani C, Troccoli A. Distribution along durum wheat kernel of the components involved in semolina color. J Cereal Sci, 2008, 48: 494–502



[8]王慧, 郑文寅, 樊宏, 汪帆, 王青, 王冠球, 张文明, 姚大年. 不同小麦品种籽粒中LOX活性及基因型和环境互作分析. 中国粮油学报, 2011, 26 (1): 11–14



Wang H , Zheng W Y, Fan H, Wang F, Wang Q, Wang G Q, Zhang W M, Yao D N. Lipoxygenase activity and its genotype and environment interactions for different wheat varietier. J Chin Cereals Oils Assoc, 2011, 26(1): 11–14 (in Chinese with English abstract)



[9]Leenhardt F, Lyana B, Rocka E, Boussard A, Potus J, Chanliaud E, Remesy C. Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties. Eur J Agron, 2006, 25: 170–176



[10]Hart G E, Langston P J. Chromosome location and evolution of isozyme structural genes in hexaploid wheat. Heredity, 1977, 39: 263–277



[11]Hsieh C C, McDonald CE. Isolation of lipoxygenase isoenzymes from ?our of durum wheat endosperm. Cereal Chem, 1984, 61: 392–398



[12]Garbus I, Carrera A D, Dubcovsky J, Echenique V. Physical mapping of durum wheat lipoxygenase genes. J Cereal Sci,2009, 50: 67–73



[13]Psheniehnikova T A, Osipova S V, Permyakova M D, Mitrofanova T N, Trufanov V A, Lohwasser U, Röder M, Börner A. Mapping of quantitative trait loci (QTL) associated with activity of disulfide reductase and lipoxygenase in grain of bread wheat. Russ J Genet, 2008, 44: 567–574



[14]Carrera A, Echenique V, Zhang W, Helguera M, Manthey F, Schrager A, Picca A, Cervigni G, Dubcovsky J. A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improves pasta color in durum wheat (Triticum turgidum ssp. durum). J Cereal Sci, 2007, 45: 67–77



[15]Verlotta A, Simone V D, Mastrangelo A M, Cattivelli L, Papa R, Trono D. In sight into durum wheat Lpx-B1: a small gene family coding for the lipoxygenase responsible for carotenoid bleaching in mature grains. BMC Plant Biol, 2010, 10: 263



[16]Feng B, Dong Z Y, Xu Z B,Wang D W, Wang T. Molecular characterization of a novel type of lipoxygenase (LOX) gene from common wheat (Triticum aestivum L.). Mol Breed, 2012, 30: 113–124



[17]Geng H W, Xia X C, Zhang L P, Qu Y Y, He Z H. Development of functional markers for a lipoxygenase gene TaLox-B1 on chromosome 4BS in common wheat. Crop Sci, 2012, 52: 568–576



[18]Garbus I, Soresi D, Romero J, Echenique V. Identification, mapping and evolutionary course of wheat lipoxygenase-1 genes located on the A genome. J Cereal Sci, 2013, 58: 298–304



[19]Feng B, Dong Z Y, Xu Z B, An X L, Qin H J, Wu N, Wang D W, Wang T. Molecular analysis of lipoxygenase (LOX) genes in common wheat and phylogenetic investigation of LOX proteins from model and crop plants. J Cereal Sci, 2010, 52: 387–394



[20]Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E, Remesy C. Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during bread making. J Agric Food Chem, 2006, 54: 1710–1715



[21]Borrelli G M, Ficco D B M, Fonzo N D, Fares C. Effects of lipoxygenase and of chemical oxidising agent potassium iodate on rheological properties of durum dough. Int J Food Sci Technol, 2006, 41: 639–645



[22]郑文寅, 汪帆, 司红起, 张文明, 姚大年. 普通小麦籽粒LOX、PPO活性和类胡萝卜素含量变异及对全麦粉色泽的影响. 中国农业科学, 2013, 46: 1087–1094



Zheng W Y, Wang F, Si H Q, Zhang W M, Yao D N. Variations of LOX and PPO activities and carotenoid content as well as their influence on whole flour color in common wheat. Sci Agric Sin, 2013, 46: 1087-1094 (in Chinese with English abstract)



[23]Chen F, He Z H, Xia X C, Lillemo M, Morris C. A new puroindoline b mutation presented in Chinese winter wheat cultivar Jingdong 11. J Cereal Sci, 2005, 42: 267–269



[24]Borrelli G M, Troeeoli A, Fonzo N D, Fares C. Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chem, 1999, 76: 335–340



[25]赵丹, 张玉荣, 林家永, 周显青. 小麦储藏品质评价指标研究进展.粮食与饲料工业, 2012, (2): 10–14



Zhao D, Zhang Y R, Lin J Y, Zhou X Q . Research on quality evaluation of wheat storage. Cereal Feed Ind, 2012, (2): 10–14 (in Chinese with English abstract)



[26]Trufanov V A, Permyakova M D, Pshenichnikova T A, Ermakova M F, Davydov V A, Permyakov A V, Berezovskaya E V. The effect of intercultivar substitution of wheat Triticum aestivum L. chromosomes on lipoxygenase activity and its correlation with the technological properties of flour. Appl Biochem Microbiol, 2007, 43: 91–97



[27]Permyakova M D, Trufanov V A, Pshenichnikova T A, Ermakova M F. Role of lipoxygenase in the determination of wheat grain quality. Appl Biochem Microbiol, 2010, 46: 87–92



[28]?ili? S, Dodig D, Šukalovi? V H-T, Maksimovi? M, Saratli? G, Škrbi? B. Bread and durum wheat compared for antioxidants contents, and lipoxygenase and peroxidase activities. Int J Food Sci Tech, 2010, 45: 1360–1367



[29]Geng H W, Zhang Y, He Z H, Zhang L P, Appels R, Qu Y Y, Xia X C. Molecular markers for tracking variation in lipoxygenase activity in wheat breeding. Mol Breed, 2011, 28: 117–126



[30]Bagge M, Xia X C, L?bberstedt T. Functional markers in wheat. Curr Opin Plant Biol, 2007, 10: 211–216



[31]Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1–10

[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 段亚梅, 罗贤磊, 陈士强, 高勇, 陈建民, 戴毅. 硬粒小麦-长穗偃麦草附加系、代换系和易位系的创制[J]. 作物学报, 2021, 47(7): 1402-1414.
[3] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[4] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[5] 王娟,董承光,刘丽,孔宪辉,王旭文,余渝. 棉花适宜机采相关性状的SSR标记关联分析及优异等位基因挖掘[J]. 作物学报, 2017, 43(07): 954-966.
[6] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[7] 寇程,高欣,李立群,李扬,王中华,李学军*. 小麦粒重基因TaGW2-6A等位变异的组成分析及育种选择[J]. 作物学报, 2015, 41(11): 1640-1647.
[8] 李文,万千,刘风珍,张昆,张秀荣,厉广辉,万勇善. 花生转录因子基因NAC4的等位变异分析[J]. 作物学报, 2015, 41(01): 31-41.
[9] 相吉山,穆培源,桑伟,徐红军,聂迎彬,崔凤娟,庄丽,韩新年,邹波. 新疆小麦Psy-A1Ppo-A1Ppo-D1TaLox-B1等位变异对面粉色泽的影响[J]. 作物学报, 2015, 41(01): 72-79.
[10] 孙晓棠,卢冬冬,欧阳林娟,胡丽芳,边建民,彭小松,陈小荣,傅军如,贺晓鹏,贺浩华*,朱昌兰*. 水稻纹枯病抗性关联分析及抗性等位变异发掘[J]. 作物学报, 2014, 40(05): 779-787.
[11] 胡文明,阚海华,王伟,徐辰武. 等位基因功能差异的统计遗传学分析及应用[J]. 作物学报, 2014, 40(01): 72-79.
[12] 张国华,高明刚,张桂芝,孙金杰,靳雪梅,王春阳,赵岩,李斯深. 黄淮麦区小麦品种(系)产量性状与分子标记的关联分析[J]. 作物学报, 2013, 39(07): 1187-1199.
[13] 范虎,文自翔,王春娥,王芳,邢光南,赵团结,盖钧镒. 中国野生大豆群体农艺加工性状与SSR关联分析和特异材料的遗传构成[J]. 作物学报, 2013, 39(05): 775-788.
[14] 刘亚男,夏先春,何中虎. 普通小麦TaDep1基因克隆与特异性标记开发[J]. 作物学报, 2013, 39(04): 589-598.
[15] 黄冰艳,张新友,苗利娟,高伟,韩锁义,董文召,汤丰收,刘志勇. 花生ahFAD2A等位基因表达变异与种子油酸积累关系[J]. 作物学报, 2012, 38(10): 1752-1759.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!