欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 503-515.doi: 10.3724/SP.J.1006.2025.42019

• 耕作栽培·生理生化 • 上一篇    下一篇

氮素水平对北方优良食味粳米品质及精碾磨粉颗粒特性的影响

闫秉春(), 万雪, 钟敏, 刘宇奇, 赵艳泽, 姜红芳, 刘雅, 刘惠玲, 马沁春, 高继平(), 张文忠()   

  1. 沈阳农业大学水稻研究所 / 北方粳稻育种栽培技术国家地方联合工程实验室 / 农业农村部东北水稻生物学与遗传育种重点实验室, 辽宁沈阳 110866
  • 收稿日期:2024-04-18 接受日期:2024-09-18 出版日期:2025-02-12 网络出版日期:2024-10-10
  • 通讯作者: 高继平, E-mail: jipinggao@syau.edu.cn; 张文忠, E-mail: zwzhong1@syau.edu.cn
  • 作者简介:E-mail: 2021200069@stu.syau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFD2301603);国家自然科学基金项目(31501250);辽宁省“兴辽英才计划”项目(XLYC2002073);辽宁省“兴辽英才计划”项目(XLYC2007169)

Effects of nitrogen levels on quality and fine grinding powder characteristics of northern japonica rice

YAN Bing-Chun(), WAN Xue, ZHONG Min, LIU Yu-Qi, ZHAO Yan-Ze, JIANG Hong-Fang, LIU Ya, LIU Hui-Ling, MA Qin-Chun, GAO Ji-Ping(), ZHANG Wen-Zhong()   

  1. Rice Research Institute, Shenyang Agricultural University / Northern Japonica Rice Breeding and Cultivation Technology National and Local Joint Engineering Laboratory / Northeast Key Laboratory of Rice Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Shenyang 110866, Liaoning, China
  • Received:2024-04-18 Accepted:2024-09-18 Published:2025-02-12 Published online:2024-10-10
  • Contact: E-mail: jipinggao@syau.edu.cn; E-mail: zwzhong1@syau.edu.cn
  • Supported by:
    National Key Research and Development Program(2023YFD2301603);National Natural Science Foundation of China(31501250);Liaoning Revitalization Talents Program(XLYC2002073);Liaoning Revitalization Talents Program(XLYC2007169)

摘要: 为探究氮素对粳米食味品质、营养品质和精碾磨粉特性的影响, 以不同食味粳稻品种沈农9816、秋田小町、北粳3号和盐粳476为试验材料, 设置0 kg hm-2 (N0)、50 kg hm-2 (N1)、100 kg hm-2 (N2)和200 kg hm-2 (N3) 4个氮素水平, 研究了氮素水平对不同食味稻米品质与精碾磨粉颗粒形态特征的影响及其相互关系。结果表明: (1) 稻米食味值表现为秋田小町>盐粳476>北粳3号>沈农9816, 在不同氮素水平下表现一致。(2) 随着氮素水平的提高, 除秋田小町外, 不同粳稻品种的食味品质(蒸煮食味值、外观、黏度、胶稠度)、支链淀粉A链、B1链含量均显著降低, 硬度、直链淀粉含量和蛋白组分含量显著提高; 峰值黏度、热浆黏度、最终黏度呈降低趋势, 崩解值、消减值、糊化温度受氮素影响较小; 精碾磨粉表面由光滑变为粗糙, 颗粒粒径变大、数量增多呈堆积状, 并伴随裂痕和空隙现象发生。(3) 相关分析表明, 氮素水平与与蒸煮食味品质(黏度、外观和食味值)、RVA特征值谱(峰值黏度、热浆黏度、最终黏度)均呈极显著负相关, 但与硬度及精碾磨粉表面颗粒粒径呈极显著正相关; 精碾磨粉表面颗粒粒径与蒸煮食味品质(食味值、外观)、RVA特征值谱(黏度、峰值黏度、热浆黏度及最终黏度)呈极显著负相关, 但与硬度呈显著正相关。综合来看, 食味值高的品种对氮素响应较弱, 且精碾磨粉表面特性稳定, 进而保证了其食味品质的稳定性。

关键词: 食味品质, 淀粉含量, 蛋白组分, 精碾磨粉, 颗粒粒径, 氮素

Abstract:

The objective of this study was to investigate the effects of nitrogen application on the eating quality, nutritional quality, and milling characteristics of japonica rice. Four rice varieties were analyzed: Shennong 9816, Akita-Komachi, Beijing 3, and Yanjing 476. Four nitrogen levels were applied: 0 kg hm-2 (N0), 50 kg hm-2 (N1), 100 kg hm-2 (N2), and 200 kg hm-2 (N3), to assess their impact on rice quality and the grain morphology of finely milled rice. The results showed that the eating quality of Akita-Komachi was superior to that of Yanjing 476, Beijing 3, and Shennong 9816, and this superiority remained consistent across different nitrogen levels. As nitrogen levels increased, the eating quality (cooking taste value, appearance, viscosity, gel consistency), as well as the distribution of amylopectin A chain and B1 chain content, significantly decreased across all japonica rice varieties. Meanwhile, hardness, amylose content, and protein content significantly increased. Peak viscosity, holding viscosity, and final viscosity decreased with increasing nitrogen levels, although nitrogen had less impact on breakdown, setback, and pasting temperature. Furthermore, the surface texture of the fine milled rice powder transitioned from smooth to rough with increasing nitrogen levels, accompanied by larger particle size, more particles, and the appearance of cracks and voids. Correlation analysis revealed a significant negative correlation between nitrogen levels and cooking quality traits (viscosity, appearance, cooking taste value) as well as RVA (Rapid visco analyzer) profile values (peak viscosity, holding viscosity, final viscosity). In contrast, nitrogen levels were positively correlated with hardness and the surface particle size of the fine milled powder. Surface particle size was negatively correlated with cooking quality traits (cooking taste value, appearance) and RVA profile values (viscosity, peak viscosity, holding viscosity, and final viscosity), but positively correlated with hardness. In conclusion, rice varieties with higher food taste values demonstrated a weaker response to nitrogen, particularly in terms of fine milling powder surface characteristics.

Key words: eating quality, starch content, protein component, fine grinding powder, surface particle size, nitrogen

图1

不同氮素水平对稻米蒸煮品质的影响 N0、N1、N2和N3表示不同氮素施用水平处理, 施氮量为0、50、100、200 kg hm-2。A、B、C和D分别为沈农9816、秋田小町、北粳3号和盐粳476的蒸煮品质, 包括外观值(appearance)、硬度值(hardness)、黏度值(viscosity)、直链淀粉含量(amylose)、胶稠度(gel consistency)和蒸煮食味值(cooking taste value)。同一品种不同小写字母表示在氮素处理间在0.05概率水平差异显著。"

表1

不同氮素水平对供试品种RVA谱特征值的影响"

表2

不同氮素水平下供试品种支链淀粉链长分布的差异"

处理
Treatment
品种
Cultivar
A 链含量
A chain content (%)
B1 链含量
B1 chain content (%)
N0 沈农9816 Shennong 9816 24.86±0.36 c 40.42±0.42 c
秋田小町Akita-Komachi 27.65±0.15 a 47.08±0.38 a
北粳3号Beijing 3 25.46±0.23 b 42.44±0.24 b
盐粳476 Yanjing 476 26.97±0.34 a 46.56±0.19 a
N1 沈农9816 Shennong 9816 23.56±0.42 d 37.42±0.47 c
秋田小町Akita-Komachi 26.51±0.15 a 43.56±0.19 a
北粳3号Beijing 3 24.48±0.14 c 41.44±0.07 b
盐粳476 Yanjing 476 25.35±0.67 b 43.08±0.38 a
N2 沈农9816 Shennong 9816 22.47±0.22 c 36.63±0.12 c
秋田小町Akita-Komachi 25.66±0.42 a 42.74±0.11 a
北粳3号Beijing 3 23.39±0.14 c 40.87±0.54 b
盐粳476 Yanjing 476 24.41±0.63 b 42.03±0.23 a
N3 沈农9816 Shennong 9816 21.35±0.13 d 34.70±1.44 c
秋田小町Akita-Komachi 25.24±0.50 a 42.51±0.08 a
北粳3号Beijing 3 22.19±0.02 c 37.32±0.43 b
盐粳476 Yanjing 476 24.15±0.74 b 41.46±0.11 ab
方差分析
ANOVA
氮素水平Nitrogen level (N) ** **
品种Cultivar (C) ** **
氮素水平×品种 N×C ns ns

表3

不同氮素水平下供试水稻品种的籽粒蛋白组分含量的差异"

处理
Treatment
品种
Cultivar
清蛋白
Albumin
球蛋白
Globulin
醇溶蛋白
Gliadin
谷蛋白
Glutenin
N0 沈农9816 Shennong 9816 0.42±0.02 a 0.51±0.01 b 0.61±0.01 a 3.03±0.07 b
秋田小町Akita-Komachi 0.26±0.19 c 0.52±0.08 b 0.63±0.01 a 3.04±0.08 b
北粳3号Beijing 3 0.36±0.01 b 0.57±0.01 a 0.56±0.03 b 3.17±0.19 a
盐粳476 Yanjing 476 0.33±0.05 b 0.54±0.02 b 0.62±0.02 a 3.04±0.08 b
N1 沈农9816 Shennong 9816 0.50±0.03 a 0.68±0.03 a 0.82±0.01 a 3.85±0.05 b
秋田小町Akita-Komachi 0.29±0.05 b 0.53±0.01 b 0.66±0.01 c 3.31±0.10 c
北粳3号Beijing 3 0.47±0.01 a 0.68±0.04 a 0.72±0.03 b 3.94±0.17 a
盐粳476 Yanjing 476 0.37±0.01 b 0.60±0.01a b 0.65±0.04 c 3.71±0.05 b
N2 沈农9816 Shennong 9816 0.59±0.03 a 0.69±0.01 ab 1.06±0.03 a 4.37±0.10 b
秋田小町Akita-Komachi 0.30±0.02 b 0.64±0.02 b 0.78±0.05 b 3.89±0.12 c
北粳3号Beijing 3 0.51±0.02 a 0.71±0.05 a 1.07±0.21 a 4.83±0.08 a
盐粳476 Yanjing 476 0.38±0.01 b 0.68±0.05 ab 0.67±0.01 c 4.41±0.17 b
N3 沈农9816 Shennong 9816 0.62±0.02 a 0.77±0.03 a 1.14±0.05 a 4.89±0.10 b
秋田小町 Akita-Komachi 0.36±0.03 c 0.68±0.02 b 0.89±0.12 b 4.32±0.09 c
北粳3号Beijing 3 0.68±0.06 a 0.82±0.01 a 1.27±0.14 a 5.12±0.08 a
盐粳476 Yanjing 476 0.45±0.01 b 0.71±0.02 b 0.78±0.06 c 4.76±0.07 b
方差分析
ANOVA
氮素水平 Nitrogen level (N) ** ** ** **
品种Cultivar (C) ** ** ** **
氮素水平×品种N×C ns ns ** **

图2

不同氮素水平下沈农9816精碾磨粉颗粒的形态特征 A~D分别在N0、N1、N2和N3氮素水平下放大500倍的电镜扫描图; E~H分别在N0、N1、N2和N3氮素水平下放大2000倍的电镜扫描图; I~L分别在N0、N1、N2和N3氮素水平下放大5000倍的电镜扫描图。"

图3

不同氮素水平下秋田小町精碾磨粉的形态特征 处理同图2。"

图4

不同氮素水平下北粳3号精碾磨粉的形态特征 处理同图2。"

图5

不同氮素水平下盐粳476精碾磨粉的形态特征 处理同图2。"

图6

不同氮素水平下各品种的精碾磨粉表面颗粒粒径分布 N0、N1、N2和N3为不同氮素施用水平处理, 施氮量为0、50、100、200 kg hm-2。A~D分别是沈农9816、秋田小町、北粳3号及盐粳476精碾磨粉表面颗粒粒径分布。"

图7

氮素水平与稻米品质性状及精碾磨粉表面颗粒粒径相关性分析 相关系数用图1、图2和图6数据得出。*和**分别表示相关性达显著(P < 0.05)或极显著(P < 0.01)水平。稻米品质性状包括氮素水平(N)、蒸煮食味值(cooking taste value)、外观(appearance)、硬度(hardness)、黏度(viscosity)、峰值黏度(PKV)、热浆黏度(HPV)、最终黏度(CPV)和颗粒粒径(diameter)。"

[1] 顾铭洪. 水稻高产育种中一些问题的讨论. 作物学报, 2010, 36: 1431-1439.
doi: 10.3724/SP.J.1006.2010.01431
Gu M H. Discussion on the aspects of high-yielding breeding in rice. Acta Agron Sin, 2010, 36: 1431-1439 (in Chinese with English abstract).
[2] 徐海, 孙健, 徐铨, 潘国君, 周广春, 张忠旭, 孙玥, 徐正进, 陈温福. 北方粳稻优化穗部性状和籼型血缘改良品质研究进展. 科学通报, 2022, 67: 135-142.
Xu H, Sun J, Xu Q, Pan G J, Zhou G C, Zhang Z X, Sun Y, Xu Z J, Chen W F. Research progress on optimizing panicle characters and quality improvement of indica pedigree in northern japonica rice. Chin Sci Bull, 2022, 67: 135-142 (in Chinese with English abstract).
[3] 唐亮, 陈温福. 东北粳稻发展趋势及展望. 中国稻米, 2021, 27(5): 1-4.
doi: 10.3969/j.issn.1006-8082.2021.05.001
Tang L, Chen W F. Development trend and prospect of Geng rice in Northeast China. China Rice, 2021, 27(5): 1-4 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2021.05.001
[4] 邓祝云, 曲乐庆, 巫永睿, 张劲松, 王台. 作物品质研究现状与展望. 中国科学: 生命科学, 2021, 51: 1405-1414.
Deng Z Y, Qu L Q, Wu Y R, Zhang J S, Wang T. Current progress, and prospect of crop quality research. Sci Sin Vitae, 2021, 51: 1405-1414 (in Chinese with English abstract).
[5] 李宏, 周少川, 黄道强, 赖穗春, 王志东, 周德贵, 王重荣. 水稻优质食味的认知及育种实践. 广东农业科学, 2014, 41: 15-18.
Li H, Zhou S C, Huang D Q, Lai S C, Wang Z D, Zhou D G, Wang C R. Cognition and breeding practice for good eating quality of rice. Guangdong Agric Sci, 2014, 41: 15-18 (in Chinese with English abstract).
[6] 盛婧, 陶红娟, 陈留根. 灌浆结实期不同时段温度对水稻结实与稻米品质的影响. 中国水稻科学, 2007, 21: 396-402.
Sheng J, Tao H J, Chen L G. Response of seed-setting and grain quality of rice to temperature at different time during grain filling period. Chin J Rice Sci, 2007, 21: 396-402 (in Chinese with English abstract).
[7] 王秋菊. 黑龙江地区土壤肥力和积温对水稻产量、品质影响研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2012.
Wang Q J. Effects of Soil Fertility and Accumulated Temperature on Rice Yield and Quality in Heilongjiang Province. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2012 (in Chinese with English abstract).
[8] 朱大伟. 三种关键栽培措施对软米粳稻产量与品质的影响. 扬州大学博士学位论文, 江苏扬州, 2018.
Zhu D W.Effects of Three Key Cultivation Measures on Yield and Quality of Soft Rice Japonica Rice. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2018 (in Chinese with English abstract).
[9] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei H Y, Gao H, Hu Y J, Cui P Y, Huo Z Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J Integr Agric, 2017, 16: 1018-1027.
[10] 从夕汉, 施伏芝, 阮新民, 罗玉祥, 马廷臣, 罗志祥. 氮肥水平对不同基因型水稻氮素利用率、产量和品质的影响. 应用生态学报, 2017, 28: 1219-1226.
doi: 10.13287/j.1001-9332.201704.010
Cong X H, Shi F Z, Ruan X M, Luo Y X, Ma T C, Luo Z X. Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties. Chin J Appl Ecol, 2017, 28: 1219-1226 (in Chinese with English abstract).
[11] 雍明玲, 叶苗, 张雨, 陶钰, 倪川, 康钰莹, 张祖建. 不同食味水稻品种稻米淀粉结构与理化特性及其对氮素响应的差异. 中国水稻科学, 2024, 38: 57-71.
doi: 10.16819/j.1001-7216.2024.230209
Yong M L, Ye M, Zhang Y, Tao Y, Ni C, Kang Y Y, Zhang Z J. Rice starch structure and physicochemical properties of good taste japonica rice varieties and their regulations by nitrogen. Chin J Rice Sci, 2024, 38: 57-71 (in Chinese with English abstract).
[12] 陆丹丹, 雍明玲, 陶钰, 叶苗, 张祖建. 优良食味水稻品种籽粒蛋白质积累特征及其对氮素水平的响应. 中国水稻科学, 2022, 36: 520-530.
doi: 10.16819/j.1001-7216.2022.220311
Lu D D, Yong M L, Tao Y, Ye M, Zhang Z J. Characteristics of grain protein accumulation and its response to nitrogen level in good taste rice varieties. Chin J Rice Sci, 2022, 36: 520-530 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.220311
[13] 宁慧峰. 氮素对稻米品质的影响及其理化基础研究. 南京农业大学博士学位论文, 江苏南京, 2011.
Ning H F. Effect of Nitrogen on Rice Quality and Its Physical and Chemical Basis. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2011 (in Chinese with English abstract).
[14] 李敏, 张洪程, 李国业, 马群, 杨雄, 魏海燕. 生育类型与施氮水平对粳稻淀粉RVA谱特性的影响. 作物学报, 2012, 38: 293-300.
doi: 10.3724/SP.J.1006.2012.00293
Li M, Zhang H C, Li G Y, Ma Q, Yang X, Wei H Y. Effects of growth-period type and nitrogen application level on the RVA profile characteristics for japonica rice genotypes. Acta Agron Sin, 2012, 38: 293-300 (in Chinese with English abstract).
[15] 陆丹丹. 优良食味水稻品种籽粒蛋白质合成与累积特征及其对氮素和光照条件的响应. 扬州大学硕士学位论文, 江苏扬州, 2022.
Lu D D. Characteristics of Protein Synthesis and Accumulation in Grains of Excellent Tasty Rice Varieties and Its Response to Nitrogen and Light Conditions. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2022 (in Chinese with English abstract).
[16] 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质. 中国水稻科学, 2023, 37: 628-641.
doi: 10.16819/j.1001-7216.2023.230403
Wu Y H, Li Y H, Wang L, Qin Y H, Li S S, Hao X S, Zhang Q L, Cui Y Z, Xiao F. Improvement of yield and quality of rice by combining returning of green manure (Astragalus smicus L.) and rice straw with reduced application of nitrogen fertilizer in southern Shaanxi province. Chin J Rice Sci, 2023, 37: 628-641 (in Chinese with English abstract).
[17] 钱春荣, 冯延江, 杨静, 刘海英, 金正勋. 水稻籽粒蛋白质含量选择对杂种早代蒸煮食味品质的影响. 中国水稻科学, 2007, 21: 323-326.
Qian C R, Feng Y J, Yang J, Liu H Y, Jin Z X. Effects of protein content selection on cooking and eating properties of rice in early-generation of crosses. Chin J Rice Sci, 2007, 21: 323-326 (in Chinese with English abstract).
[18] 邱琛. 碾米工艺对米粉品质的影响. 上海交通大学硕士学位论文, 上海, 2019.
Qiu C. Effect of Rice Milling Technology on the Quality of Rice Flour. MS Thesis of Shanghai Jiao Tong University, Shanghai, China, 2019 (in Chinese with English abstract).
[19] 张超, 吴焱, 魏海燕, 刘国栋, 张洪程. 半糯性粳稻的淀粉精细结构及其米粉/饭功能特性研究. 中国粮油学报, 2021, 36: 1-7.
Zhang C, Wu Y, Wei H Y, Liu G D, Zhang H C. Starch fine structure and functionality of semi-waxy japonica rice flour/cooked rice. J Chin Cereals Oils Assoc, 2021, 36: 1-7 (in Chinese with English abstract).
[20] 中国国家标准化管理委员会. 优质稻谷. GB/T 17891-2017, 2017.
Standardization Administration of the People’s Republic of China. Hig h Quality of Rice Grain. GB/T 17891-2017, 2017 (in Chinese).
[21] Syahariza Z A, Li E P, Hasjim J. Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohydr Polym, 2010, 82: 14-20.
[22] Wu A C, Li E P, Gilbert R G. Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydr Polym, 2014, 114: 36-42.
[23] 杨静, 罗秋香, 钱春荣, 刘海英, 金正勋. 氮素对稻米蛋白质组分含量及蒸煮食味品质的影响. 东北农业大学学报, 2006, 37: 145-150.
Yang J, Luo Q X, Qian C R, Liu H Y, Jin Z X. Effect of nitrogen on the protein fractions content and cooking and eating quality of rice grain. J Northeast Agric Univ, 2006, 37: 145-150 (in Chinese with English abstract).
[24] 吴昊, 张瑛, 王琛, 顾汉柱, 周天阳, 张伟杨, 顾骏飞, 刘立军, 杨建昌, 张耗. 栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响. 作物学报, 2024, 50: 478-492.
doi: 10.3724/SP.J.1006.2024.32011
Wu H, Zhang Y, Wang C, Gu H Z, Zhou T Y, Zhang W Y, Gu J F, Liu L J, Yang J C, Zhang H. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River. Acta Agron Sin, 2024, 50: 478-492 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.32011
[25] 武云霞, 郭长春, 孙永健, 刘芳艳, 杨志远, 孙园园, 王明田, 马均. 水氮互作下直播稻结实期冠层小气候与米质的关系. 中国水稻科学, 2021, 35: 269-278.
doi: 10.16819/j.1001-7216.2021.0314
Wu Y X, Guo C C, Sun Y J, Liu F Y, Yang Z Y, Sun Y Y, Wang M T, Ma J. Relationship between canopy microclimate at grain filling stage and rice quality of directly seeded rice under water and nitrogen interaction. Chin J Rice Sci, 2021, 35: 269-278 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2021.0314
[26] 张军倩, 董玉兵, 焦颖, 王冰雪, 王琛源, 宋梦馨, 熊正琴. 氮肥调控对紫云英-水稻轮作系统结瘤固氮特征及生产力的影响. 植物营养与肥料学报, 2024, 30: 1-11.
Zhang J Q, Dong Y B, Jiao Y, Wang B X, Wang C Y, Song M X, Xiong Z Q. Nitrogen management regulates nitrogen fixation efficiency of milk vetch and rice productivity under milk vetch-rice rotation system. J Plant Nutr Fert, 2024, 30: 1-11 (in Chinese with English abstract).
[27] 钟旭华, 梁开明, 潘俊峰, 傅友强, 胡香玉, 黄农荣, 刘彦卓, 胡锐, 李妹娟, 王昕钰, 叶群欢, 尹媛红. 华南双季稻低碳高产栽培技术研究进展. 华南农业大学学报, 2023, 44: 867-874.
Zhong X H, Liang K M, Pan J F, Fu Y Q, Hu X Y, Huang N R, Liu Y Z, Hu R, Li M J, Wang X Y, Ye Q H, Yin Y H. Research progress on low-carbon and high-yield cultivation technology for double-cropping rice in South China. J South China Agric Univ, 2023, 44: 867-874 (in Chinese with English abstract).
[28] 陈悦琪. 施氮量和移栽方式对不同粳稻品种产量及稻米品质的影响. 扬州大学硕士学位论文, 江苏扬州, 2023.
Chen Y Q. Effects of Nitrogen Application Rate and Transplanting Methods on Yield and Rice Quality of Different Japonica Rice Varieties. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2023 (in Chinese with English abstract).
[29] Xiong Q Q, Sun C H, Shi H, Cai S, Xie H W, Liu F P, Zhu J Y. Analysis of related metabolites affecting taste values in rice under different nitrogen fertilizer amounts and planting densities. Foods, 2022, 11: 1508.
[30] Ma Z H, Zhu Z Y, Song W W, Luo D, Cheng H T, Wang X J, Lyu W Y. Effects of nitrogen fertilizer on the endosperm composition and eating quality of rice varieties with different protein components. Agronomy, 2024, 14: 469.
[31] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38: 657-663.
Sui J M, Li X, Yan S, Yan C J, Zhang R, Tang S Z, Lu J F, Chen Z X, Gu M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Sci Agric Sin, 2005, 38: 657-663 (in Chinese with English abstract).
[32] Zhu Y, Xu D, Ma Z T, Chen X Y, Zhang M Y, Zhang C, Liu G D, Wei H Y, Zhang H C. Differences in eating quality attributes between japonica rice from the northeast region and semiglutinous japonica rice from the Yangtze River Delta of China. Foods, 2021, 10: 2770.
[33] Shi S J, Wang E T, Li C X, Cai M L, Cheng B, Cao C G, Jiang Y. Use of protein content, amylose content, and RVA parameters to evaluate the taste quality of rice. Front Nutr, 2022, 8: 758547.
[34] 卢毅, 路兴花, 张青峰, 余建国, 肖雄雄, 庞林江, 成纪予. 稻米直链淀粉与米饭物性及食味品质的关联特征研究. 食品科技, 2018, 43(10): 219-223.
Lu Y, Lu X H, Zhang Q F, Yu J G, Xiao X X, Pang L J, Cheng J Y. Correlation of rice amylose with physical properties and taste quality of rice. Food Sci Technol, 2018, 43(10): 219-223 (in Chinese with English abstract).
[35] 杨标, 雍明玲, 赵步洪, 陈前, 叶苗, 张祖建. 氮肥减施对粳稻稻米淀粉结构与食味品质的效应. 扬州大学学报(农业与生命科学版), 2022, 43(5): 37-46.
Yang B, Yong M L, Zhao B H, Chen Q, Ye M, Zhang Z J. Effects of reducing fertilization on the starch structure and the eating quality of japonica rice grain. J Yangzhou Univ (Agric Life Sci Edn), 2022, 43(5): 37-46 (in Chinese with English abstract).
[36] Yin X T, Chen X Y, Hu J L, Zhu L, Zhang H, Hong Y. Effects of distribution, structure and interactions of starch, protein and cell walls on textural formation of cooked rice: a review. Int J Biol Macromol, 2023, 253: 127403.
[37] Shi S J, Ma Y Y, Zhao D, Li L N, Cao C G, Jiang Y. The differences in metabolites, starch structure, and physicochemical properties of rice were related to the decrease in taste quality under high nitrogen fertilizer application. Int J Biol Macromol, 2023, 253: 126546.
[38] 朱大伟, 李敏, 郭保卫, 张洪程. 氮肥水平对优质粳稻蒸煮食味品质与质构特性的影响. 贵州农业科学, 2018, 46(3): 62-66.
Zhu D W, Li M, Guo B W, Zhang H C. Effects of nitrogen fertilizer application level on eating and textural characteristics of high quality japonica rice. Guizhou Agric Sci, 2018, 46(3): 62-66 (in Chinese with English abstract).
[39] Xiong R Y, Tan X M, Yang T T, Pan X H, Zeng Y J, Huang S, Shang Q Y, Zhang J, Zeng Y H. Relation of cooked rice texture to starch structure and physicochemical properties under different nitrogen managements. Carbohydr Polym, 2022, 295: 119882.
[40] Zhan Q, Ye X T, Zhang Y, Kong X L, Bao J S, Corke H, Sui Z Q. Starch granule-associated proteins affect the physicochemical properties of rice starch. Food Hydrocoll, 2020, 101: 105504.
[41] Luo Z, Wang Z Z. The role of starch granule-associated proteins in enhancing the strength of indica rice starch gels. Food Hydrocoll, 2022, 131: 107826.
[42] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响. 作物学报, 2021, 47: 1540-1550.
doi: 10.3724/SP.J.1006.2021.02069
Chen Y, Liu K, Zhang H L, Li S Y, Zhang Y J, Wei J L, Zhang H, Gu J F, Liu L J, Yang J C. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars. Acta Agron Sin, 2021, 47: 1540-1550 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02069
[43] Zhu D W, Zheng X, Yu J, Chen M X, Li M, Shao Y F. Effects of starch molecular structure and physicochemical properties on eating quality of indica rice with similar apparent amylose and protein contents. Foods, 2023, 12: 3535.
[44] Kakar K, Nitta Y, Asagi N, Komatsuzaki M, Shiotsu F, Kokubo T, Xuan T D. Morphological analysis on comparison of organic and chemical fertilizers on grain quality of rice at different planting densities. Plant Prod Sci, 2019, 22: 510-518.
[45] 朱大伟, 郑欣, 余静, 牟仁祥, 陈铭学, 邵雅芳, 章林平. 中国高食味北方粳稻与南方半糯粳稻品种理化特性及食味品质的差异分析. 中国农业科学, 2024, 57: 469-483.
doi: 10.3864/j.issn.0578-1752.2024.03.004
Zhu D W, Zheng X, Yu J, Mou R X, Chen M X, Shao Y F, Zhang L P. Differences in physicochemical characteristics and eating quality between high taste northern japonica rice and southern semi-glutinous japonica rice varieties in China. Sci Agric Sin, 2024, 57: 469-483 (in Chinese with English abstract).
[46] 杨春娇, 肖富彤, 李俏, 赵天怡, 张智慧, 除多, 张玉红, 潘志芬. 3个青稞品种不同粒度面粉和面条的品质差异. 应用与环境生物学报, 网络首发[2024-04-15], https://doi.org/10.19675/j.cnki.1006-687x.2024.01042.
Yang C J, Xiao F T, Li Q, Zhao T Y, Zhang Z H, Chu D, Zhang Y H, Pan Z F. The differences of flour and noodles quality with different particle sizes for three highland barley varieties. J Appl Environ Biol, Published online [2024-04-15], https://doi.org/10. 19675/j.cnki.1006-687x.2024.01042 (in Chinese with English abstract).
[47] 冯世德, 孙太凡. 玉米粉对小麦面团和馒头质构特性的影响. 食品科学, 2013, 34: 101-104.
Feng S D, Sun T F. Effect of corn flour on textural properties of wheat dough and Chinese steamed bread. Food Sci, 2013, 34: 101-104 (in Chinese with English abstract).
[1] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[2] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[3] 郝琪, 陈天陆, 王富贵, 王振, 白岚方, 王永强, 王志刚. 基于无人机多光谱数据和氮素空间分异的玉米冠层氮浓度估算[J]. 作物学报, 2025, 51(1): 189-206.
[4] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[5] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[6] 付景, 马梦娟, 张骐飞, 段居琦, 王越涛, 王付华, 王生轩, 白涛, 尹海庆, 王亚. 干湿交替灌溉和施氮量对粳稻光合特性和氮素吸收利用的影响[J]. 作物学报, 2024, 50(7): 1787-1804.
[7] 徐泽, 吴莘玲, 刘震宇, 李涵佳, 冷鑫华, 吴天凡, 陈媛, 张祥, 陈德华. 密度与氮素对夏播棉氮素吸收利用的影响[J]. 作物学报, 2024, 50(6): 1584-1596.
[8] 胡明明, 丁峰, 彭志芸, 向开宏, 李郁, 张宇杰, 杨志远, 孙永健, 马均. 多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J]. 作物学报, 2024, 50(5): 1236-1252.
[9] 刘成敏, 门雅琦, 秦都林, 闫晓宇, 张乐, 孟浩, 苏寻雅, 孙学振, 宋宪亮, 毛丽丽. 长期秸秆还田下施氮量对棉花产量和氮素利用的影响[J]. 作物学报, 2024, 50(4): 1043-1052.
[10] 王吕, 吴玉红, 秦宇航, 淡亚彬, 陈浩, 郝兴顺, 田霄鸿. 紫云英稻秸秆协同还田与氮肥减量配施对水稻干物质积累、氮素转运及产量的影响[J]. 作物学报, 2024, 50(3): 756-770.
[11] 肖正午, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 方升亮, 曹放波, 陈佳娜, 黄敏. 米粉稻早季与晚季种植品质差异研究[J]. 作物学报, 2024, 50(2): 451-463.
[12] 谢炜, 贺鹏, 马宏亮, 雷芳, 黄秀兰, 樊高琼, 杨洪坤. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440-450.
[13] 韦金贵, 毛守发, 江俞欣, 樊志龙, 胡发龙, 柴强, 殷文. 绿肥对减量施氮小麦籽粒产量和氮素利用的补偿机制[J]. 作物学报, 2024, 50(12): 3129-3143.
[14] 江达仁, 熊若愚, 吴家青, 毛付琴, 冯俊杰, 陶磊, 谢小兵, 潘晓华, 曾勇军, 王亚梁, 曾研华. 精准条播育秧机插下侧深施肥对优质早籼稻产量、品质形成及氮素吸收的影响[J]. 作物学报, 2024, 50(12): 3096-3106.
[15] 亢秀丽, 马爱平, 靖华, 赵玉坤, 崔欢虎, 席吉龙, 黄学芳. 微喷限水灌溉对冬小麦产量及水氮利用效率的影响[J]. 作物学报, 2024, 50(12): 3107-3117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .