欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 516-525.doi: 10.3724/SP.J.1006.2025.44074

• 耕作栽培·生理生化 • 上一篇    下一篇

气候变暖对冬油菜产量、品质及重要农艺性状的影响

陈于婷1,丁晓雨2,许本波1,张学昆1,徐劲松1,*,殷艳1,*   

  1. 1长江大学农学院 / 农业农村部长江中游作物绿色高效生产重点实验室(部省共建) / 湿地生态与农业利用教育部工程研究中心,湖北荆州434025; 2中国农业科学院油料作物研究所 / 农业农村部油料作物生物学综合性实验室,湖北武汉430062
  • 收稿日期:2024-05-04 修回日期:2024-09-18 接受日期:2024-09-18 出版日期:2025-02-12 网络出版日期:2024-09-30
  • 通讯作者: 徐劲松, E-mail: xujinsong@yangtzeu.edu.cn; 殷艳, E-mail: yinyan2@126.com
  • 基金资助:
    本研究由农业农村部“适应气候变化油菜种植区划、病虫害气象灾害发生情况及防灾减灾品种技术监测调查”项目(152303046),农业农村部长江中游油菜单产提升技术集成示范基金项目(152304045)和湖北省“515”行动(协同推广)油菜新技术示范科技服务油菜产业链项目资助。

Effects of climate warming on yield, quality-related and agronomic traits of winter rapeseed (Brassica napus L.)

CHEN Yu-Ting1,DING Xiao-Yu2,XU Ben-Bo1,ZHANG Xue-Kun1,XU Jin-Song1,*,YIN Yan1,*   

  1. 1College of Agronomy, Yangtze University / Key Laboratory of Green and Efficient Crop Production in the Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Wetland Ecology and Agricultural Use, Ministry of Education, Jingzhou 434025, Hubei, China; 2Institute of Oil Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Oil Crop Biology, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2024-05-04 Revised:2024-09-18 Accepted:2024-09-18 Published:2025-02-12 Published online:2024-09-30
  • Supported by:
    This study was supported by the Ministry of Agriculture and Rural Affairs: Planting Zoning of Rapeseed, Occurrence of Pests and Diseases and Technical Monitoring and Investigation of Disaster Resistant Varieties and Technology (152303046), the Ministry of Agriculture and Rural Affairs: Improving Rapeseed Yield Potential Ability in the Middle Reaches of the Yangtze River (152304045), and the Hubei Province Agriculture Extension Fund: Rapeseed Production Chain Technology Extenstion and Service.

摘要:

长江中游流域是我国最重要的油菜主产区,为探明气候变暖下降雨和气温时空变化对我国油菜生产的影响规律,本研究利用油菜主栽品种华油杂12 (国家油菜区试长江中游组对照品种),在长江中游6个主产区开展10年定点试验,同时记录试验点的气象数据,并在此基础上分析了重要生育时期降雨量、气温等气象变化与产量等性状的关系。结果表明,近10年来,长江流域降雨时空分布发生明显变化,全年平均降雨量显著减少。其中播种期降雨增加且波动较大,苗期、花期和成熟期降雨减少趋势明显,角果期降雨较稳定。近10年来长江流域气温发生明显变化,6个油菜主产区的全年平均气温显著上升,播种期和冬季苗期气温下降约2,抽薹期和成熟期气温年度间波动剧烈,花期气温上升2℃以上。多元回归分析发现,播种期、花期和角果期降雨量与产量呈显著负相关,10年间导致油菜出现3次显著减产,分别减产达9.6%12.8%6.7%。典型相关分析发现,播种期降雨量和苗期平均气温与单株角果数呈显著负相关,与每角粒数、千粒重呈显著正相关;播种期和角果期降雨量,播种期、苗期、抽薹期、花期和角果期平均气温与菌核病发病率呈显著正相关。针对降雨和气温时空变化趋势,建议生产上提高品种耐渍性和耐迟播能力,改善农田排灌能力,强化菌核病等次生灾害防控,最大程度降低渍涝影响,保障油菜高产稳产。

关键词: 油菜, 产量, 降雨量, 渍害, 气温, 农艺性状, 气候变暖

Abstract:

The Middle Yangtze River basin is the most important region for rapeseed production in China. To investigate the impact of spatiotemporal changes in rainfall and temperature on rapeseed production in this region, we conducted a study using the elite rapeseed variety Huayouza 12, the control variety for the Middle Yangtze River group in the national rapeseed regional trial. The variety was planted at six test sites from 2013 to 2023, during which we recorded yield, quality-related traits, and other agronomic characteristics. Simultaneously, we collected meteorological data from each test site. We then analyzed the relationships between climate variables, such as rainfall and temperature during critical growth stages, and agronomic traits, including yield. The results showed that over the past decade, annual average rainfall significantly decreased. Rainfall during the sowing stage increased significantly and exhibited considerable fluctuations, while it decreased markedly during the seedling, flowering, and maturation stages, with relatively stable levels during the silique-developing stage. Additionally, the annual average temperature across the six sites increased significantly. Temperatures during the sowing and seedling stages decreased by approximately 2°C, fluctuated dramatically during bolting and maturation stages each year, and increased by more than 2°C during the flowering stage. Multiple regression analysis revealed a significant correlation between increased precipitation during key growth periods and reduced yield, leading to rapeseed production decreases of 9.6%, 12.8%, and 6.7% in three separate years, respectively. Canonical correlation analysis indicated that rainfall during the sowing stage and average temperature during the seedling stage were negatively correlated with the number of siliques per plant but positively correlated with the number of seeds per silique and 1000-seed weight. Furthermore, there was a positive correlation between rainfall during the sowing and silique-developing stages, as well as average temperatures during the sowing, seedling, bolting, flowering, and silique-developing stages, and the incidence of Sclerotinia disease. Given the observed spatiotemporal trends in rainfall and temperature, we suggest that special attention should be given to waterlogging in rapeseed cultivation. This includes breeding varieties with improved waterlogging tolerance, enhancing drainage and irrigation capacity in paddy fields, and strengthening the prevention and control of secondary disasters such as Sclerotinia disease to minimize waterlogging damage and ensure high and stable seed yields in rapeseed.

Key words: rapeseed, yield, rainfall, waterlogging, temperature, agronomic traits, climate warming

[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613–617.

Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613–617 (in Chinese with English abstract).

[2] 王瑞元. 2022年我国粮油产销和进出口情况. 中国油脂, 2023, 48(6): 1–7.

Wang R Y. Production, marketing, import and export of grain and oil in China in 2022. China Oils Fats, 2023, 48(6): 1–7 (in Chinese).

[3] 殷艳, 尹亮, 张学昆, 郭静利, 王积军. 我国油菜产业高质量发展现状和对策. 中国农业科技导报, 2021, 23(8): 1–7.

Yin Y, Yin L, Zhang X K, Guo J L, Wang J J. Status and countermeasure of the high-quality development of rapeseed industry in China. J Agric Sci Technol, 2021, 23(8): 1–7 (in Chinese with English abstract).

[4] 王汉中. 入世后的中国油菜产业. 中国油料作物学报, 2002, 24(2): 82–86.

Wang H Z. Rapeseed of China after its entrance into WTO. Chin J Oil Crop Sci, 2002, 24(2): 82–86 (in Chinese with English abstract).

[5] Deng Z F, Wu X S, Villarini G, Wang Z L, Zeng Z Y, Lai C G. Stronger exacerbation of extreme rainfall at the hourly than daily scale by urbanization in a warming climate. J Hydrol, 2024, 633: 131025.

[6] Du J, Yu X J, Zhou L, Li X D, Ao T Q. Less concentrated precipitation and more extreme events over the Three River Headwaters region of the Tibetan Plateau in a warming climate. Atmos Res, 2024, 303: 107311.

[7] 舒章康, 李文鑫, 张建云, 金君良, 薛晴, 王银堂, 王国庆. 中国极端降水和高温历史变化及未来趋势. 中国工程科学, 2022, 24(5): 116–125.

Shu Z K, Li W X, Zhang J Y, Jin J L, Xue Q, Wang Y T, Wang G Q. Historical changes and future trends of extreme precipitation and high temperature in China. Strateg Study CAE, 2022, 24(5): 116–125 (in Chinese with English abstract).

[8] Sasidharan R, Bailey-Serres J, Ashikari M, Atwell B J, Colmer T D, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup K H, Hill R D, Holdsworth M J, Ismail A M, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih M C, Sorrell B K, Striker G G, van Dongen J T, Whelan J, Xiao S, Visser E J W, Voesenek L A C J. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol, 2017, 214: 1403–1407.

[9] 赵国良, 高强, 姚小英, 温宏昌, 强玉柱, 王娟. 气候变暖对天水市作物生长的影响: 以冬油菜为例. 干旱地区农业研究, 2012, 30(6): 261–266.

Zhao G L, Gao Q, Yao X Y, Wen H C, Qiang Y Z, Wang J. Impact of climate warming on crop in Tianshui City—an example based on winter rape. Agric Res Arid Areas, 2012, 30(6): 261–266 (in Chinese with English abstract).

[10] 蒲金涌, 姚小英, 邓振镛, 姚玉璧, 王位泰, 张谋草. 气候变暖对甘肃冬油菜(Brassica compestris L.)种植的影响. 作物学报, 2006, 32: 1397–1401.

Pu J Y, Yao X Y, Deng Z Y, Yao Y B, Wang W T, Zhang M C. Impact of climate warming on winter rape planting in Gansu Province. Acta Agron Sin, 2006, 32: 1397–1401 (in Chinese with English abstract).

[11] 韩沁哲, 罗伯良, 周伟, 黄晚华, 陆魁东. 湖南省油菜生长期连阴雨气象灾害发生强度的时空特征. 湖南农业科学, 2012, (19): 93–96.

Han Q Z, Luo B L, Zhou W, Huang W H, Lu K D. Analysis of spatial-temporal features of occurring intensity of continuous rain in growth period of rape in Hunan Province. Hunan Agric Sci, 2012, (19): 93–96 (in Chinese with English abstract).

[12] 程伦国, 刘德福, 郭显平, 吴立仁. 油菜受渍抑制天数指标试验研究. 中国农村水利水电, 2009, (7): 4–8.

Cheng L G, Liu D F, Guo X P, Wu L R. Experimental research on stress day index of rape suffering from continuous subsurface waterlogging. China Rural Water Hydropower, 2009, (7): 4–82 (in Chinese with English abstract).

[13] 汤畅, 吴小飞, 毛江玉, 张冠舜. 2014年夏季长江流域降水季节内振荡的环流分析. 高原山地气象研究, 2021, 41(2) 10–22.

Tang C, Wu X F, Mao J Y, Zhang G S. Circulation analysis of intraseasonal oscillation of precipitation in the Yangtze River valley in the summer of 2014. Plateau Mount Meteorol Res, 2021, 41(2): 10–22 (in Chinese with English abstract).

[14] 中国人民共和国农业农村部. NY/T 415-2000低芥酸低硫苷油菜籽. 北京: 中国农业出版社, 2000.

Ministry of Agriculture and Rural Affairs, the People’s Republic of China. NY/T 415-2000 Low eruic acid low glucosinolate rapeseed. Beijing: China Agriculture Press, 2000 (in Chinese).

[15] 中华人民共和国农业农村. 油菜品种菌核病抗性鉴定技术规程. 北京: 中国农业出版社, 2017. pp 3–7.

Ministry of Agriculture and Rural Affairs, the People’s Republic of China. Code of practice for identification of resistance to Sclerotinia sclerotiorum in oilseed rape. Beijing: China Agriculture Press, 2017. pp 3–7(in Chinese).

[16] 戴清明, 吕爱钦, 何维君, 谢年保, 陈欣, 张志远, 匡朝凌, 瞿科. 洞庭湖区油菜主要气象灾害发生规律与减灾避灾对策. 作物研究, 2006, 20(1): 60–63.

Dai Q M, Lyu A Q, He W J, Xie N B, Chen X, Zhang Z Y, Kuang Z L, Qu K. The rule of principle weather disaster for rape planting in Dongting Lake region and the countermeasures to relief and avoid the disaster. Crop Res, 2006, 20(1): 60–63 (in Chinese).

[17] 唐海明, 帅细强, 肖小平, 殷玉梁, 黄桂林, 杨光立, 汤文光. 2010年湖南省农业气象灾害分析及减灾对策. 中国农学通报, 2012, 28(12): 284–290.

Tang H M, Shuai X Q, Xiao X P, Yin Y L, Huang G L, Yang G L, Tang W G. Analysis and countermeasures on the agro-meteorological disasters of Hunan Province in 2010. Chin Agric Sci Bull, 2012, 28(12): 284–290 (in Chinese with English abstract).

[18] Liu W W, Chen Y Y, Sun W W, Huang R, Huang J F. Mapping waterlogging damage to winter wheat yield using downscaling–merging satellite daily precipitation in the middle and lower reaches of the Yangtze River. Remote Sens, 2023, 15: 2573.

[19] 吴贤云, 丁一汇, 王琪, 叶成志. 40年长江中游地区旱涝特点分析. 应用气象学报, 2006, 17: 19–28.

Wu X Y, Ding Y H, Wang Q, Ye C Z. Characteristics of the recent 40-year flood/drought over the middle reaches of the Yangtze. J Appl Meteor Sci, 2006, 17: 19–28 (in Chinese with English abstract).

[20] 陈鹏运. 湖南油菜生产主要气象灾害与应对措施. 农业科技通讯, 2021, (10): 216–220.

Chen P Y. Main meteorological disasters in rape production in Hunan province and countermeasures. Bull Agric Sci Technol, 2021, (10): 216–220 (in Chinese with).

[21] 何泽威, 丁晓雨, 徐劲松, 叶鹏, 贺继奎, 程勇, 许本波, 张学昆. 播种期降水偏多对油菜重要农艺性状和产量的影响. 中国油料作物学报, 2024, 46: 92–101.

He Z W, Ding X Y, Xu J S, Ye P, He J K, Cheng Y, Xu B B, Zhang X K. Effect of autumn continuously rainy weather which cause waterlogging in rapeseed(Brassica napus L.)traits and yield. Chin J Oil Crop Sci, 2024, 46: 92–101 (in Chinese with English abstract).

[22] 刘秋霞, 任涛, 韩上, 李小坤, 丛日环, 武际, 鲁剑巍. 苗期渍水对直播冬油菜产量和农学利用率的影响及油菜在不同氮肥施用下的响应. 中国油料作物学报, 2020, 42: 594–602.

Liu Q X, Ren T, Han S, Li X K, Cong R H, Wu J, Lu J W. Effects of waterlogging at seedling stage on yield and agronomy efficency of direct-sown winter rapeseed and its response to nitrogen application. Chin J Oil Crop Sci, 2020, 42: 594–602 (in Chinese with English abstract).

[23] 刘波, 魏全全, 鲁剑巍, 李小坤, 丛日环, 吴礼树, 徐维明, 杨运清, 任涛. 苗期渍水和氮肥用量对直播冬油菜产量及氮肥利用率的影响. 植物营养与肥料学报, 2017, 23: 144–153.

Liu B, Wei Q Q, Lu J W, Li X K, Cong R H, Wu L S, Xu W M, Yang Y Q, Ren T. Effects of waterlogging at the seedling stage and nitrogen application on seed yields and nitrogen use efficiency of direct-sown winter rapeseed (Brassica napus L.). J Plant Nutr Fert, 2017, 23: 144–153 (in Chinese with English abstract).

[24] Li L L, Zhang L, Tang J W, Xing H C, Zhao L, Jie H D, Jie Y C. Waterlogging increases greenhouse gas release and decreases yield in winter rapeseed (Brassica napus L.) seedlings. Sci Rep, 2023, 13: 18673.

[25] 高华东, 晏军, 苏荣瑞, 刘凯文, 周守华. 渍水对油菜抽薹期叶片光合参数及产量的影响. 湖北农业科学, 2018, 57(10): 39–44.

Gao H D, Yan J, Su R R, Liu K W, Zhou S H. Effects of waterlogging on leaf photosynthetic parameters and yields of oilseed rape at the bolting stage. Hubei Agric Sci, 2018, 57(10): 39–44 (in Chinese with English abstract).

[26] 杨奕涵, 马玉申, 揭红东, 赵龙, 揭雨成. 不同生育期渍水对油菜农艺性状和产量的影响. 安徽农业科学, 2022, 50(16): 20–22.

Yang Y H, Ma Y S, Jie H D, Zhao L, Jie Y C. Effects of waterlogging at different growth stages on agronomic characters and yield of rapeseed. J Anhui Agric Sci, 2022, 50(16): 20–22 (in Chinese with English abstract).

[27] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894–903.

Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894–903 (in Chinese with English abstract).

[28] 宋楚崴, 曹宏鑫, 张文宇, 张伟欣, 陈魏涛, 冯春焕, 葛思俊. 施肥和花期渍水胁迫对油菜产量及其形成影响的模型研究. 中国农业科学, 2018, 51: 662–674.

Song C W, Cao H X, Zhang W Y, Zhang W X, Chen W T, Feng C H, Ge S J. Modeling the effects of post-anthesis waterlogging stress under different fertilizer levels on rapeseed yield and its formation. Sci Agric Sin, 2018, 51: 662–674 (in Chinese with English abstract).

[29] Sophie Heading, Saadia Zahidi. Global risks report 2023. Geneva, Switzerland: The World Economic Forum, 2023 [2024-03-17]. https://www.weforum.org/reports.

[30] 蔡琳, 陶丽, 赵久伟, 张梦. 全球变暖、AMOIPO对全球陆地降水变化的相对贡献. 大气科学学报, 2022, 45: 755–767.

Cai L, Tao L, Zhao J W, Zhang M. Relative contributions of global warming, AMO and IPO to the changes of land precipitation. Trans Atmos Sci, 2022, 45: 755–767 (in Chinese with English abstract).

[31] Namazkar S, Stockmarr A, Frenck G, Egsgaard H, Terkelsen T, Mikkelsen T, Ingvordsen C H, Jørgensen R B. Concurrent elevation of CO2, O3 and temperature severely affects oil quality and quantity in rapeseed. J Exp Bot, 2016, 67: 4117–4125.

[32] Tian Z, Ji Y H, Sun L X, Xu X L, Fan D L, Zhong H L, Liang Z R, Gunther F. Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change: a multi-model ensemble approach. J Geogr Sci, 2018, 28: 1700–1714.

[33] 张学昆, 陈洁, 王汉中, 李加纳, 邹崇顺. 甘蓝型油菜耐湿性的遗传差异鉴定. 中国油料作物学报, 2007, 29: 204–208.

Zhang X K, Chen J, Wang H Z, Li J N, Zou C S. Genetic difference of waterlogging tolarance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci, 2007, 29: 204–208 (in Chinese with English abstract).

[34] 杨海云, 艾雪莹, Batool Maria, 刘芳, 蒯婕, 王晶, 汪波, 周广生. 油菜响应水分胁迫的生理机制及栽培调控措施研究进展. 华中农业大学学报, 2021, 40(2): 6–16.

Yang H Y, Ai X Y, Maria B, Liu F, Kuai J, Wang J, Wang B, Zhou G S. Progress on physiological mechanisms of response to water stress and measures of cultivation controlling in rapeseed. J Huazhong Agric Univ, 2021, 40(2): 6–16 (in Chinese with English abstract).

[35] Wang Z Y, Han Y L, Luo S, Rong X M, Song H X, Jiang N, Li C W, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. Front Plant Sci, 2022, 13: 1048227.

[36] Hussain M A, Naeem A, Pitann B, Mühling K H. High sulfur (S) supplementation imparts waterlogging tolerance to oilseed rape (Brassica napus L.) through upregulating S metabolism and antioxidant pathways. J Plant Growth Regul, 2023, 42: 7591–7605.

[1] 谢伶俐, 李永铃, 许本波, 张学昆. 油菜耐渍机理解析及遗传改良研究进展[J]. 作物学报, 2025, 51(2): 287-300.
[2] 苏晴芳, 孙小钊, 林杨, 付艳苹, 程家森, 谢甲涛, 姜道宏, 陈桃. 嗜线虫沙雷氏菌Serratia nematodiphila TG10增强油菜耐盐碱能力[J]. 作物学报, 2025, 51(2): 358-369.
[3] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[4] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[5] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[6] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性[J]. 作物学报, 2025, 51(2): 459-469.
[7] 覃金华, 洪卫源, 冯向前, 李子秋, 周子榆, 王爱冬, 李瑞杰, 王丹英, 张运波, 陈松. 基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析[J]. 作物学报, 2025, 51(2): 485-502.
[8] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[9] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[10] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
[11] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[12] 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232.
[13] 李嘉欣, 黄莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究[J]. 作物学报, 2025, 51(1): 44-57.
[14] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[15] 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!