欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 526-533.doi: 10.3724/SP.J.1006.2025.43024

所属专题: 玉米遗传育种/种质资源/分子遗传学 玉米耕作栽培·生理生化

• 研究简报 • 上一篇    下一篇

不同玉米自交系的单倍体育种性能研究

陈琛1(), 付修义1, 陈传永1, 吴珊珊1, 张华生1, 张春原1, 陈绍江2, 赵久然1, 王元东1,*()   

  1. 1北京市农林科学院玉米研究所, 北京 100097
    2中国农业大学农学院国家玉米改良中心, 北京 100193
  • 收稿日期:2024-06-13 接受日期:2024-09-18 出版日期:2025-02-12 网络出版日期:2024-10-10
  • 通讯作者: 王元东, E-mail: wyuandong@126.com
  • 作者简介:E-mail: chenc71@163.com
  • 基金资助:
    北京市农林科学院青年科研基金(QNJJ202430);北京市农林科学院科技创新能力建设专项(KJCX20230103);北京市农林科学院科技创新能力建设专项(KJCX20230433);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-11)

Study on the haploid breeding performance of maize inbred lines

CHEN Chen1(), FU Xiu-Yi1, CHEN Chuan-Yong1, WU Shan-Shan1, ZHANG Hua-Sheng1, ZHANG Chun-Yuan1, CHEN Shao-Jiang2, ZHAO Jiu-Ran1, WANG Yuan-Dong1,*()   

  1. 1Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    2National Maize Improvement Center of China, College of Agronomy, China Agricultural University, Beijing 100193, China
  • Received:2024-06-13 Accepted:2024-09-18 Published:2025-02-12 Published online:2024-10-10
  • Contact: E-mail: wyuandong@126.com
  • Supported by:
    BAAFS Youth Research Fund(QNJJ202430);BAAFS Science and Technology Innovation Capability Improvement Project(KJCX20230103);BAAFS Science and Technology Innovation Capability Improvement Project(KJCX20230433);China Agriculture Research System of MOF and MARA(CARS-02-11)

摘要: 单倍体育种技术在玉米商业化育种中得到广泛应用, 对亲本自交系的单倍体育种性能评价是提升单倍体育种效率的重要手段之一。本研究对来源于不同杂种优势群的17个自交系的单倍体诱导、鉴别与加倍性能进行系统评价。结果表明, 瑞德种质在单倍体诱导和鉴别方面均具有明显优势, 其平均单倍体诱导率和鉴别准确率分别可达12.23%~15.31%和95.27%~96.37%。不同自交系间平均单倍体诱导率与平均单穗单倍体数差异显著, 平均单倍体诱导率变异范围为9.68%~17.51%, 平均单穗单倍体数变异范围为8.44~23.66粒。郑58和B73的单倍体化学加倍性能较高, 郑58的DH生产效率高达74.36%, 而B73的单倍体平均结实数最高, 为53.80粒。综合单倍体诱导、鉴别和加倍性能进行聚类分析发现, 郑58、京1110、京724和JG296在单倍体育种性能方面均处于较高水平, Mo17、4F1和齐319则均处于较低水平。相关结果有助于单倍体育种流程设计, 并为提升单倍体育种效率奠定基础。

关键词: 单倍体, 诱导, 鉴别, 染色体加倍, 玉米

Abstract:

Doubled haploid (DH) technology is widely applied in commercial maize breeding, and the efficiency of haploid breeding can be improved by evaluating the haploid breeding performance of common germplasm. In this study, 17 genotypes were used to assess haploid breeding performance through haploid induction, identification, and chromosomal doubling. The results showed that the Reid germplasm exhibited a significant advantage in haploid induction and identification, with the mean haploid induction rate (HIR) ranging from 12.23% to 15.31% and the accuracy of haploid selection ranging from 95.27% to 96.37%. Substantial differences were observed among the inbred lines in terms of HIR and the number of haploids per ear (HPE), with HIR ranging from 9.68% to 17.51% and HPE ranging from 8.44 to 23.66. Zheng 58 and B73 showed significant advantages in haploid chromosome doubling, with DH productivity in Zheng 58 reaching 74.36% and B73 achieving the highest average seed set per haploid at 53.80. Cluster analysis revealed that Zheng 58, Jing 1110, Jing 724, and JG296 were more suitable for haploid breeding, whereas Mo17, 4F1, and Qi 319 were less efficient. These findings will aid in the planning of haploid breeding programs and provide a foundation for enhancing the efficiency of DH technology.

Key words: haploid, induction, identification, chromosomal doubling, maize

表1

不同类群种质单倍体的诱导与鉴别"

诱导系
Inducer
类群
Group
单倍体总粒数
Total of haploids
平均单穗结实数
Mean of SPE
平均单穗单倍体数
Mean of HPE
平均准确率
Mean of AR (%)
平均诱导率
Mean of HIR (%)
CAU5 瑞德 Reid 181 143.96±14.29 ab 17.96±0.71 a 96.21±2.01 ab 12.23±1.90 ab
兰卡斯特 LAN 260 120.14±27.19 b 14.81±2.86 ab 96.86±1.19 ab 12.43±1.92 a
黄改系 HIL 151 117.42±12.31 b 12.19±1.38 ab 95.44±1.22 b 9.96±0.45 b
改良瑞德 IR 255 105.69±11.35 b 12.14±1.73 b 98.89±0.62 a 11.48±0.83 ab
X群 X 265 156.52±19.79 a 17.33±2.30 a 95.43±1.38 b 10.64±0.39 b
P群 P 209 123.55±14.45 ab 15.33±0.93 ab 95.81±3.50 ab 11.81±1.09 ab
CAU6 瑞德 Reid 141 123.42±7.08 ab 20.00±1.00 a 95.27±1.22 ab 15.31±0.36 a
兰卡斯特 LAN 199 119.92±32.65 ab 17.08±5.65 ab 95.52±0.74 a 12.85±2.48 ab
黄改系 HIL 174 154.47±7.94 a 17.72±2.66 ab 93.96±1.35 ab 10.74±1.62 b
改良瑞德 IR 225 92.36±17.31 b 12.10±1.79 b 96.65±1.25 a 12.94±0.52 ab
X群 X 288 139.64±15.76 a 17.21±2.92 ab 92.92±1.70 b 11.43±0.85 b
P群 P 208 99.65±13.02 b 15.06±1.44 ab 93.53±4.64 ab 13.73±0.96 ab
CS2 瑞德Reid 95 103.67±19.67 c 15.83±3.83 ab 96.37±1.93 b 14.34±1.13 a
兰卡斯特 LAN 137 113.42±24.13 bc 14.03±2.53 ab 96.96±0.85 b 12.23±0.70 ab
黄改系 HIL 514 149.23±23.47 a 18.03±3.91 a 97.85±0.07 ab 11.57±0.89 ab
改良瑞德 IR 548 106.78±23.97 bc 12.16±4.15 b 98.52±0.74 a 10.71±1.25 b
X群 X 256 136.17±24.57 b 16.04±3.72 a 97.41±0.77 ab 11.26±1.34 ab
P群 P 72 105.33±23.00 bc 12.00±1.67 b 96.34±3.66 b 11.16±1.30 ab
CHOI4 瑞德Reid 170 128.58±2.75 ab 20.25±4.08 ab 96.22±2.41 b 15.28±3.02 ab
兰卡斯特 LAN 295 104.31±36.34 b 17.25±4.76 ab 98.17±0.73 a 17.24±3.09 a
黄改系 HIL 259 149.72±12.72 a 23.22±4.07 a 98.81±0.15 a 15.10±1.36 ab
改良瑞德 IR 261 113.82±6.50 ab 16.82±0.94 ab 97.78±1.12 a 14.41±0.46 ab
X群 X 297 127.98±17.31 ab 17.78±2.94 ab 97.65±0.69 ab 13.55±0.68 ab
P群 P 100 98.53±16.28 b 10.85±2.35 b 97.73±2.27 ab 10.67±0.60 b

图1

不同自交系的单倍体诱导率与单穗单倍体数 HIR: 诱导率; HPE: 单穗单倍体数; C7-2: 昌7-2; Qi319: 齐319; S3336: 沈3336; Z58: 郑58; J2416K: 京2416K; J724: 京724; J92GH: 京92GH; J1110: 京1110; JJ2418: 京J2418; JMC01: 京MC01。不同字母代表组内差异显著, P < 0.05 (采用Tukey HSD法)。"

表2

不同自交系单倍体自然加倍与人工加倍效率"

材料
Line
处理
Treatment
总株数
Total number
露药率
AER (%)
散粉率
PPR (%)
结实率
SSR (%)
平均结实数
Mean of seeds
DH生产率
DH productivity (%)
京2416K J2416K SD 123 23.58 18.70 30.43 4.86 5.69
AD 89 75.28 75.28 50.75 13.79 38.20
昌7-2 C7-2 SD 88 19.32 12.50 27.27 2.67 3.41
AD 60 55.00 55.00 75.76 5.20 41.67
京92GH J92GH SD 130 22.31 16.92 40.91 6.78 6.92
AD 74 64.86 59.46 63.64 22.39 37.84
京1110 J1110 SD 122 21.31 18.03 54.55 11.25 9.84
AD 77 79.22 71.43 74.55 28.17 53.25
京724 J724 SD 86 26.74 20.93 44.44 8.50 9.30
AD 92 81.52 78.26 59.72 37.65 46.74
JG296 SD 101 29.70 25.74 42.31 7.82 10.89
AD 101 64.36 64.36 64.62 35.79 41.58
京MC01 JMC01 SD 77 22.08 19.48 40.00 9.33 7.79
AD 96 73.96 69.79 52.24 25.71 36.46
PH4CV SD 81 33.33 22.22 55.56 9.30 12.35
AD 71 49.30 45.07 62.50 23.90 28.17
PH6WC SD 99 25.25 19.19 36.84 6.57 7.07
AD 81 59.26 51.85 69.05 18.62 35.80
京J2418 JJ2418 SD 82 24.39 15.85 38.46 4.20 6.10
AD 71 71.83 63.38 68.89 16.81 43.66
B73 SD 67 32.84 32.84 72.73 32.25 23.88
AD 98 83.67 80.61 77.22 53.80 62.24
C229 SD 137 16.79 10.95 46.67 3.29 5.11
AD 68 83.82 63.24 62.79 16.41 39.71
郑58 Z58 SD 232 14.66 12.07 32.14 2.33 3.88
AD 117 92.31 90.60 82.08 25.33 74.36
4F1 SD 73 27.40 21.92 56.25 3.11 12.33
AD 77 92.21 83.12 62.50 15.33 23.38
Mo17 SD 88 15.91 9.09 25.00 5.00 2.27
AD 97 57.73 46.39 40.00 16.50 18.56
齐319 Qi319 SD 92 18.48 5.43 40.00 1.50 2.17
AD 87 82.76 79.31 60.87 13.90 48.28
沈3336 S3336 SD 68 7.35 7.35 80.00 8.00 5.88
AD 89 84.27 71.91 79.69 19.75 57.30

表3

各类群内自交系单倍体诱导与鉴别性能的均值和变异范围"

聚类
Cluster
自交系个数
Number of lines
平均单倍体诱导率
Mean of HIR (%)
平均单穗单倍体数
Mean of HPE
平均准确率
Mean of AR (%)
均值Mean 变异范围Range 均值Mean 变异范围Range 均值Mean 变异范围Range
1 3 13.01 12.08-13.81 22.51 21.19-23.66 97.14 96.04-97.76
2 5 13.94 11.49-17.51 18.11 16.53-20.42 98.02 97.10-99.78
3 5 11.17 9.69-12.68 14.22 12.08-16.60 94.19 92.33-96.39
4 4 12.08 11.47-12.53 10.89 8.43-12.04 97.19 95.29-99.37

图2

单倍体育种性能聚类图 A: 单倍体诱导与鉴别性能聚类图; B: 单倍体加倍性能聚类图。缩写同图1。"

表4

各类群内自交系单倍体人工加倍性能的均值和变异范围"

聚类
Cluster
自交系个数
Number of lines
散粉率
PPR (%)
结实率
SSR (%)
平均结实数
Mean of seeds
DH生产效率
DH productivity (%)
均值
Mean
变异范围
Range
均值
Mean
变异范围
Range
均值
Mean
变异范围
Range
均值
Mean
变异范围
Range
1 2 85.61 80.61-90.60 79.65 77.22-82.08 39.57 25.33-53.80 68.30 62.24-74.36
2 4 71.49 64.36-78.26 69.64 59.72-79.69 30.34 19.75-35.79 49.72 41.58-57.30
3 5 58.59 51.85-63.38 68.02 62.79-75.76 15.89 5.20-22.39 39.73 35.80-43.66
4 4 76.87 69.79-83.12 56.59 50.75-62.50 17.18 13.79-25.71 36.58 23.38-48.28
5 2 45.73 45.06-46.39 51.25 40.00-62.50 20.20 16.50-23.90 23.36 18.56-28.17
[1] 陈绍江, 黎亮, 李浩川, 徐小炜。 玉米单倍体育种技术(第2版). 北京: 中国农业大学出版社, 2012. pp 92-94.
Chen S J, Li L, Li H C, Xu X W. Maize Doubled Haploid Technology, 2nd edn. Beijing: China Agricultural University Press, 2012. pp 92-94 (in Chinese).
[2] Chaikam V, Molenaar W, Melchinger A E, Boddupalli P M. Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet, 2019, 132: 3227-3243.
doi: 10.1007/s00122-019-03433-x pmid: 31555890
[3] 刘志增, 宋同明. 玉米孤雌生殖诱导系Stock6的表现及其遗传改良初报. 中国农业大学学报, 1998, (增刊3): 6-10.
Liu Z Z, Song T M. The performance and improvement of corn gynogenesis-inducer Stock6. J China Agric Univ, 1998, (S3): 6-10 (in Chinese with English abstract).
[4] 李浩川, 曲彦志, 杨继伟, 陈琼, 刘宗华. 玉米生物诱导孤雌生殖单倍体影响因素研究进展. 中国农学通报, 2015, 31: 239-243.
doi: 10.11924/j.issn.1000-6850.2014-1890
Li H C, Qu Y Z, Yang J W, Chen Q, Liu Z H. Research progress on influence factors of in vivo maternal haploid induction in maize. Chin Agric Sci Bull, 2015, 31: 239-243 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb15060155
[5] 黎亮, 李浩川, 徐小炜, 陈绍江. 玉米孤雌生殖单倍体诱导效率优化方法研究. 中国农业大学学报, 2012, 17(1): 9-13.
Li L, Li H C, Xu X W, Chen S J. Preliminary optimization of in vivo haploid induction in maize. J China Agric Univ, 2012, 17(1): 9-13 (in Chinese with English abstract).
[6] Eder J Chalyk S. In vivo haploid induction in maize. Theor Appl Genet, 2002, 104: 703-708.
doi: 10.1007/s00122-001-0773-4 pmid: 12582677
[7] Liu C X, Li J L, Chen M, Li W, Zhong Y, Dong X, Xu X W, Chen C, Tian X L, Chen S J. Development of high-oil maize haploid inducer with a novel phenotyping strategy. Crop J, 2022, 10: 524-531.
doi: 10.1016/j.cj.2021.07.009
[8] Chen C, Xiao Z J, Zhang J W, Li W, Li J L, Liu C X, Chen S J. Development of in vivo haploid inducer lines for screening haploid immature embryos in maize. Plants (Basel), 2020, 9: 739.
[9] 才卓, 徐国良, 刘向辉, 董亚琳, 代玉仙, 李淑华. 玉米高频率单倍生殖诱导系吉高诱系3号的选育. 玉米科学, 2007, 15(1): 1-4.
Cai Z, Xu G L, Liu X H, Dong Y L, Dai Y X, Li S H. The breeding of JAAS3-haploid inducer with high frequency parthenogenesis in maize. J Maize Sci, 2007, 15(1): 1-4 (in Chinese with English abstract).
[10] Wu P H, Li H C, Ren J J, Chen S J. Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica, 2014, 196: 413-421.
[11] Nanda D K, Chase S S. An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Sci, 1966, 6: 213-215.
[12] Meng Y J, Li J H, Liu J J, Hu H X, Li W, Liu W X, Chen S J. Ploidy effect and genetic architecture exploration of stalk traits using DH and its corresponding haploid populations in maize. BMC Plant Biol, 2016, 16: 50.
[13] Chaikam V, Nair S K, Babu R, Martinez L, Tejomurtula J, Boddupalli P M. Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet, 2015, 128: 159-171.
doi: 10.1007/s00122-014-2419-3 pmid: 25385333
[14] Ren J J, Wu P H, Trampe B, Tian X L, Lübberstedt T, Chen S J. Novel technologies in doubled haploid line development. Plant Biotechnol J, 2017, 15: 1361-1370.
doi: 10.1111/pbi.12805 pmid: 28796421
[15] Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult, 2011, 104: 359-373.
[16] Melchinger A E, Molenaar W S, Mirdita V, Schipprack W. Colchicine alternatives for chromosome doubling in maize haploids for doubled-haploid production. Crop Sci, 2016, 56: 559-569.
[17] 陈宝建, 刘丽威, 徐丽, 孟玉杰, 桂光菊, 徐小炜, 金危危, 陈绍江. 玉米单倍体幼胚加倍效果观察. 中国农业大学学报, 2016, 21(5): 10-16.
Chen B J, Liu L W, Xu L, Meng Y J, Gui G J, Xu X W, Jin W W, Chen S J. Observation on doubling effects of immature haploid embryo in maize. J China Agric Univ, 2016, 21(5): 10-16 (in Chinese with English abstract).
[18] Lashermes P, Beckert M. Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet, 1988, 76: 405-410.
doi: 10.1007/BF00265341 pmid: 24232205
[19] Prigge V, Xu X W, Li L, Babu R, Chen S J, Atlin G N, Melchinger A E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics, 2012, 190: 781-793.
[20] Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio M L, Green J, Chen Z Y, Mccuiston J, Wang W L, Liebler T, Bullock P, Martin B. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature, 2017, 542: 105-109.
[21] Liu C X, Li X, Meng D X, Zhong Y, Chen C, Dong X, Xu X W, Chen B J, Li W, Li L, Tian X L, Zhao H M, Song W B, Luo H S, Zhang Q H, Lai J S, Jin W W, Yan J B, Chen S J. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize. Mol Plant, 2017, 10: 520-522.
[22] Gilles L M, Khaled A, Laffaire J B, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J P, Rogowsky P M, Widiez T. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J, 2017, 36: 707-717.
doi: 10.15252/embj.201796603 pmid: 28228439
[23] Zhong Y, Liu C X, Qi X L, Jiao Y Y, Wang D, Wang Y W, Liu Z K, Chen C, Chen B J, Tian X L, Li J L, Chen M, Dong X, Xu X W, Li L, Li W, Liu W X, Jin W W, Lai J S, Chen S J. Mutation of ZmDMP enhances haploid induction in maize. Nat Plants, 2019, 5: 575-580.
doi: 10.1038/s41477-019-0443-7 pmid: 31182848
[24] Li Y, Lin Z, Yue Y, Zhao H M, Fei X H, Li Z E, Liu C X, Chen S J, Lai J S, Song W B. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nat Plants, 2021, 7: 1579-1588.
[25] Jiang C L, Sun J, Li R, Yan S J, Chen W, Guo L, Qin G C, Wang P C, Luo C, Huang W J, Zhang Q H, Fernie A R, Jackson D, Li X, Yan J B. A reactive oxygen species burst causes haploid induction in maize. Mol Plant, 2022, 15: 943-955.
doi: 10.1016/j.molp.2022.04.001 pmid: 35395409
[26] Coe E H Jr. A line of maize with high haploid frequency. Am Nat, 1959, 93: 381-382.
[27] 苏娟娟, 景希强. 玉米单倍体诱导系对不同母本资源诱导效果的比较. 玉米科学, 2015, 23(2): 25-27.
Su J J, Jing X Q. Induction effects of haploid inducer lines on different maize materials. J Maize Sci, 2015, 23(2): 25-27 (in Chinese with English abstract).
[28] 李国良, 苏俊, 李春霞, 龚士琛, 宋锡章, 阎淑琴, 扈光辉, 王明泉. 农大高诱1号对玉米不同种质和世代单倍体诱导频率的研究. 玉米科学, 2008, 16(5): 3-6.
Li G L, Su J, Li C X, Gong S C, Song X Z, Yan S Q, Hu G H, Wang M Q. Research on haploids frequency of different germplasm and generations in maize by Cauho Inducer 1. J Maize Sci 2008, 16(5): 3-6 (in Chinese with English abstract).
[29] De La Fuente G N, Frei U K, Trampe B, Ren J J, Bohn M, Yana N, Verzegnazzi A, Murray S C, Lübberstedt T. A diallel analysis of a maize donor population response to in vivo maternal haploid induction: II. Haploid male fertility. Crop Sci, 2020, 60: 873-882.
[30] 魏俊杰, 陈梅香. 玉米单倍体育性自然恢复的初步研究. 玉米科学, 2006, 14(2): 24-26.
Wei J J, Chen M X. Primary study on the natural fertility of maize haploid. J Maize Sci, 2006, 14(2): 24-26 (in Chinese with English abstract).
[31] Wu P H, Ren J J, Tian X L, Lübberstedt T, Li W, Li G L, Li X L, Chen S J. New insights into the genetics of haploid male fertility in maize. Crop Sci, 2017, 57: 637-647.
[32] 蔡泉, 曹靖生, 史桂荣, 郭晓明, 张建国, 赵伟, 李树军, 殷跃. 几个不同来源玉米单倍体诱导系诱导效果的研究. 玉米科学, 2012, 20(4): 19-21.
Cai Q, Cao J S, Shi G R, Guo X M, Zhang J G, Zhao W, Li S J, Yin Y. Induction effect of the haploid inducers from different sources. J Maize Sci, 2012, 20(4): 19-21 (in Chinese with English abstract).
[33] 王元东, 赵久然, 冯培煜, 段民孝, 张华生, 王荣焕, 陈传永. 京科968等系列玉米品种“易制种”性状选育与高产高效制种关键技术研究. 玉米科学, 2016, 24(2): 11-14.
Wang Y D, Zhao J R, Feng P Y, Duan M X, Zhang H S, Wang R H, Chen C Y. Characteristics related to ‘Easy Seed Production’ and the key technology of high yield and high efficiency seed production of commercial hybrids Jingke 968 et al. J Maize Sci, 2016, 24(2): 11-14 (in Chinese with English abstract).
[34] 段民孝, 刘新香, 张华生, 宋伟, 王元东, 邢锦丰, 张雪原, 张春原, 赵久然. 我国玉米地方种质的单倍体诱导和加倍特性研究. 种子, 2017, 36(6): 30-34.
Duan M X, Liu X X, Zhang H S, Song W, Wang Y D, Xing J F, Zhang X Y, Zhang C Y, Zhao J R. Study on the induced and doubled properties of maize landraces in China. Seed, 2017, 36(6): 30-34 (in Chinese with English abstract).
[35] Fu J J, Hao Y F, Li H H, Reif J C, Chen S J, Huang C L, Wang G Y, Li X H, Xu Y B, Li L. Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Mol Plant, 2022, 15: 577-580.
[1] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[2] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[3] 苏晴芳, 孙小钊, 林杨, 付艳苹, 程家森, 谢甲涛, 姜道宏, 陈桃. 嗜线虫沙雷氏菌Serratia nematodiphila TG10增强油菜耐盐碱能力[J]. 作物学报, 2025, 51(2): 358-369.
[4] 辛雨宁, 任昊, 王洪章, 梁明磊, 于涛, 刘鹏. 喷施6-苄氨基腺嘌呤(6-BA)对授粉后高温胁迫下夏玉米籽粒灌浆及产量的影响[J]. 作物学报, 2025, 51(2): 418-431.
[5] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284.
[6] 郝琪, 陈天陆, 王富贵, 王振, 白岚方, 王永强, 王志刚. 基于无人机多光谱数据和氮素空间分异的玉米冠层氮浓度估算[J]. 作物学报, 2025, 51(1): 189-206.
[7] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[8] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[9] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[10] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[11] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[12] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[13] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[14] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[15] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .