欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 485-502.doi: 10.3724/SP.J.1006.2025.42024

• 耕作栽培·生理生化 • 上一篇    下一篇

基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析

覃金华1,2(), 洪卫源2(), 冯向前1,2, 李子秋2, 周子榆2, 王爱冬2, 李瑞杰1,2, 王丹英2, 张运波1,*(), 陈松2,*()   

  1. 1长江大学农学院, 湖北荆州 434025
    2中国水稻研究所 / 水稻生物育种全国重点实验室, 浙江杭州 311400
  • 收稿日期:2024-05-10 接受日期:2024-10-25 出版日期:2025-02-12 网络出版日期:2024-11-19
  • 通讯作者: 张运波, E-mail: yunbo1022@126.com;陈松, E-mail: chensong02@caas.cn
  • 作者简介:覃金华, E-mail: 2022710803@yangtzeu.edu.cn;
    洪卫源, E-mail: 1193952013@qq.com第一联系人:**同等贡献
  • 基金资助:
    国家重点研发计划项目(2022YFD2300700);中国农业科学院科技创新工程重大科研任务(CAAS-ZDRW202001);基于高通量表型检测平台的水稻个体表型鉴定技术研究(2023ZZKT20402);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-01)

Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management

QIN Jin-Hua1,2(), HONG Wei-Yuan2(), FENG Xiang-Qian1,2, LI Zi-Qiu2, ZHOU Zi-Yu2, WANG Ai-Dong2, LI Rui-Jie1,2, WANG Dan-Ying2, ZHANG Yun-Bo1,*(), CHEN Song2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2China National Rice Research Institute / National Key Laboratory of Rice Biotechnology and Breeding, Hangzhou 311400, Zhejiang, China
  • Received:2024-05-10 Accepted:2024-10-25 Published:2025-02-12 Published online:2024-11-19
  • Contact: E-mail: yunbo1022@126.com; E-mail: chensong02@caas.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program(2022YFD2300700);Major Research Tasks of the China Academy of Agricultural Sciences Science and Technology Innovation Project(CAAS-ZDRW202001);Research on Rice Individual Phenotype Identification Technology Based on High-Throughput Phenotype Detection Platform(2023ZZKT20402);China Agriculture Research System of MOF and MARA(CARS-01)

摘要: 提升水稻产量与品质的协同效应是当前水稻生产面临的重大挑战。深入剖析并清晰界定影响产量与品质协同提升的关键水稻群体特征, 对于指导水稻品种的改良和栽培技术的优化具有至关重要的意义。本研究以秀水134 (XS134)和黄华占(HHZ)为材料, 分别设置常规固定施氮模式(N0、N1、N2、N3)和基于SPAD阈值的动态施氮模式(RTNM、S34、S37、S40)。通过在水稻关键生育期采集静态与动态农艺生理指标, 以及产量和稻米品质数据, 采用不同多目标回归预测模型, 以深入解析水稻关键农艺生理指标对产量和稻米品质的响应。结果表明: (1) 总体上水稻产量与稻米综合指标(GQI)呈互斥关系。随着施氮量的增加, 产量逐渐提高, 而GQI则呈降低趋势, 尤其在固定施氮模式下, 这种负相关性更为明显。然而, 与固定施氮模式(N2)相比, 动态施氮(RTNM)在施氮量减少了32.01%~58.02%的同时, 能够稳定水稻产量并提升了GQI 3.10%~38.34% (除2022年XS134外), 这凸显了动态施氮模式在缓解水稻产量与品质互斥性, 并推动两者协同提升方面的潜力。(2) 相关性分析表明, 50个静态农艺指标中, 有28个指标与水稻产量和GQI均呈显著相关性, 占比56.00%。3种“量质”回归模型对水稻产量(R2: 0.74~0.83; RMSE: 0.40~0.49)和GQI (R2: 0.81~0.90; RMSE: 0.63~0.88)的预测能力表现出不同程度的准确性。特征重要性解析表明分蘖期的群体生物量是对产量和品质的预测均为正效应(0.09~6.37), 而株高、叶面积指数和叶重等在预测产量和品质时出现互斥, 这表明在构建水稻产量与品质协同提升的分蘖期群体时, 需要在确保群体生物量的基础上, 对“量质互斥指标”开展适宜度评估与优化。同时, 穗发育期的群体净同化率(NAR)对水稻产量和GQI均呈现出不同程度的正效应值(0.06~1.00), 暗示了穗发育阶段水稻的单位叶片光合效率可能是实现二者协同提升的重要群体特征。综上, 相较于常规固定施氮模式, 基于SPAD阈值的动态施氮策略可在一定程度上实现水稻产量与品质的协同提升; 分蘖期干物重和穗发育期NAR可以作为实现这一协同效应的重要参考指标。

关键词: 氮肥, 农艺生理指标, 产量, 品质

Abstract:

Achieving a synergistic improvement in both rice yield and quality remains a major challenge in rice production. A thorough analysis and clear identification of key population traits that influence the coordinated enhancement of yield and quality are crucial for guiding rice variety improvement and optimizing cultivation techniques. In this study, two rice varieties, Xiushui 134 (XS134) and Huanghuazhan (HHZ), were used to evaluate different nitrogen management strategies, including conventional fixed nitrogen applications (N0, N1, N2, N3) and dynamic nitrogen applications based on SPAD thresholds (RTNM, S34, S37, S40). Key agronomic and physiological indicators were collected at critical growth stages, along with yield and grain quality data. Multi-objective regression models were employed to analyze how key agronomic and physiological traits influence rice yield and grain quality. The results showed as follows: (1) A trade-off generally exists between rice yield and grain quality index (GQI); as nitrogen application increased, yield improved, but GQI tended to decrease, especially under fixed nitrogen application. However, compared to N2, the RTNM treatment reduced nitrogen application by 32.01% to 58.02%, while maintaining stable yields and improving GQI by 3.10% to 38.34% (with the exception of XS134 in 2022). This suggests that dynamic nitrogen management can alleviate the yield-quality trade-off, promoting yield-quality synergy. (2) Correlation analysis indicated that 28 out of 50 static agronomic traits were significantly correlated with both yield and GQI (56.00%). The three “yield-quality” regression models demonstrated varying degrees of predictive accuracy for rice yield (R2: 0.74-0.83; RMSE: 0.40-0.49) and GQI (R2: 0.81-0.90; RMSE: 0.63-0.88). Feature importance analysis highlighted that population biomass during the tillering stage positively influenced both yield and quality (0.09-6.37). Conversely, plant height, leaf area index, and leaf weight exhibited trade-offs in predicting yield and quality, suggesting that careful evaluation and optimization of these “mutually exclusive” indicators are necessary, particularly when ensuring sufficient population biomass. Furthermore, the population net assimilation rate (NAR) during ear development showed a positive impact on both yield and GQI (0.06-1.00), indicating that the photosynthetic efficiency per unit leaf during this stage may be a key trait for achieving coordinated improvements in yield and quality. In summary, compared to conventional fixed nitrogen application, a dynamic nitrogen management strategy based on SPAD thresholds can achieve a certain level of synergy between rice yield and quality. Population biomass during the tillering stage and NAR during the ear development stage may serve as important reference indicators for achieving this synergy.

Key words: nitrogen fertilization, agronomic traits, rice yield, grain quality

图1

试验地概况 该图基于国家地理信息公共服务平台下载的审图号为GS (2024) 0650号标准地图制作, 底图边界无修改。"

表1

2021-2022年不同氮肥运筹对应施肥量"

处理
Treatment
基肥
Base fertilizer
分蘖肥(移栽-幼穗分化)
Tillering fertilizer (transplanting to booting stage)
穗肥(幼穗分化-灌浆)
Panicle fertilizer (booting stage to grain filling)
N0 0 0 0
N1 27 20.25 20.25
N2 54 40.50 40.50
N3 81 60.75 60.75
S34 50 45.00 (SPAD ≤ 34) 30.00 (SPAD ≤ 34)
S37 50 40.00 (SPAD ≤ 37) 25.00 (SPAD ≤ 37)
S40 50 30.00 (SPAD ≤ 40) 20.00 (SPAD ≤ 40)
RTNM 50 30.00 (SPAD ≤ 34) 20.00 (SPAD ≤ 34)
20.00 (34 ≤ SPAD <37) 15.00 (34 ≤ SPAD < 37)
10.00 (37 ≤ SPAD ≤ 40) 10.00 (37 ≤ SPAD < 40)

附表1

2021-2022年不同类型水稻供试品种取样日期"

年份
Year
品种
Variety
移栽期
Transplanting period
分蘖期
Tillering stage
幼穗分化期
Panicle initiation stage
齐穗期
Full heading stage
灌浆中期
Mid-grain filling stage
成熟期
Maturation stage
2021 黄华占HHZ 06/14 07/05 07/21 08/19 08/26 09/23
秀水134 XS134 06/14 07/05 08/19 09/02 09/17 10/18
2022 黄华占HHZ 06/14 07/13 07/28 08/19 09/02 09/20
秀水134 XS134 06/27 08/03 08/19 09/13 09/28 11/07

附表2

水稻产量、稻米综合指标和各稻米品质的方差分析"

项目
Item
产量
Yield
稻米综合指标
Grain quality index
食味值
Taste value
直链淀粉含量
Amylose content
糙米率
Brown rice rate
精米率
Milled rice rate
整精米率
Head rice rate
垩白粒率
Chalky rice rate
垩白度
Chalkiness degree
年份Year (Y) ** ** ns ** ** ** ** ** **
品种Varity (V) ** ** ** ** ** ** ** ** **
氮肥Nitrogen (N) ** * ** ** ns ns ns ** *
Y×V ** ** ** ** ** ** ** ** **
Y×N ns ns ns ns ns ns * ns ns
V×N ns ns ** ns ns ns ns ns ns
Y×V×N ns ns ** ns ns ns ns ns ns

图2

2021-2022年不同氮肥运筹下施氮量积分图 A代表2021-2022年水稻XS134、HHZ的固定施氮N1、N2、N3处理的施氮累积动态, B、C、D、E分别代表2021-2022年水稻XS134和HHZ动态施氮RTNM、S34、S37、S40处理的施氮累积动态。21XS: 2021年秀水134; 21HHZ: 2021年黄华占; 22XS: 2022年秀水134; 22HHZ: 2022年黄华占。处理及缩写同表1。"

图3

2021-2022年氮肥处理对不同类型水稻产量的影响 A、B分别代表2021-2022年氮肥运筹对水稻XS134产量的影响; C、D分别代表2021-2022年氮肥运筹对水稻HHZ产量的影响。图中误差棒表示标准误, 不同小写字母表示不同氮肥处理间差异显著(P < 0.05, LSD)。处理及缩写同表1。"

附表3

2021年不同氮肥运筹下不同类型水稻的稻米品质"

品种
Cultivar
处理
Treatment
加工品质Milling quality 外观品质 Appearance quality 食味品质Tasted quality
糙米率Bown rice rate (%) 精米率Milled rice rate (%) 整精米率Head rice rate (%) 垩白粒率Chalky rice rate (%) 垩白度Chalkiness degree (%) 食味值
Taste value
直链淀粉含量Amylose content (%)
黄华占HHZ N0 74.98 c 63.18 a 21.53 ab 21.10 a 5.97 a 79.50 a 16.40 a
N1 76.26 ab 64.99 a 26.35 ab 16.18 b 4.81 b 79.00 a 16.17 ab
N2 76.44 ab 64.30 a 24.86 ab 17.43 ab 5.13 ab 77.50 a 15.70 ab
N3 76.79 a 64.25 a 19.37 ab 19.29 ab 4.94 ab 73.50 a 15.47 ab
RTNM 76.18 ab 63.88 a 23.36 ab 19.66 ab 5.30 ab 77.67 a 15.98 ab
S34 75.72 abc 62.81 a 15.47 b 16.81 ab 4.76 b 78.50 a 16.10 ab
S37 75.54 bc 64.91 a 19.88 ab 17.78 ab 4.76 b 78.00 a 15.93 ab
S40 76.82 a 66.39 a 30.31 ab 20.47 ab 5.00 ab 74.50 a 14.97 b
秀水134
XS134
N0 80.67 b 70.28 a 63.25 ab 27.19 ab 7.98 ab 84.00 abc 16.10 a
N1 81.18 ab 70.85 a 64.56 ab 26.44 ab 7.85 ab 83.67 abc 16.00 a
N2 81.72 ab 69.30 a 59.89 ab 25.74 ab 7.32 ab 82.33 bc 15.87 a
N3 81.94 a 71.70 a 65.46 a 24.26 b 8.74 ab 81.33 c 15.63 a
RTNM 81.38 ab 69.90 a 62.53 ab 28.08 ab 8.51 ab 83.33 abc 15.88 a
S34 81.09 ab 69.70 a 62.81 ab 23.99 b 6.21 b 85.67 a 15.77 a
S37 80.55 b 67.61 a 57.81 b 26.00 ab 8.92 ab 85.00 ab 15.87 a
S40 80.59 b 69.36 a 62.23 ab 31.63 a 10.08 a 82.33 bc 15.63 a

附表4

2022年不同氮肥运筹下不同类型水稻的稻米品质"

品种
Cultivar
处理
Treatment
加工品质Milling quality 外观品质Appearance quality 食味品质Tasted quality
糙米率Brown rice rate (%) 精米率Milled rice rate (%) 整精米率Head rice rate (%) 垩白粒率Chalky rice rate (%) 垩白度Chalkiness degree (%) 食味值
Taste value
直链淀粉含量Amylose content (%)
黄华占HHZ N0 69.58 a 62.75 a 42.01 a 21.06 a 5.47 a 83.00 ab 15.93 ab
N1 68.86 a 62.28 a 41.01 a 18.75 abc 4.92 ab 81.50 abc 15.47 ab
N2 70.29 a 63.42 a 44.89 a 16.19 c 4.09 b 76.50 c 14.80 ab
N3 70.85 a 63.53 a 42.49 a 18.11 abc 4.93 ab 77.00 bc 15.30 ab
RTNM 68.81 a 62.18 a 44.12 a 19.84 ab 5.49 a 82.00 abc 15.33 ab
S34 68.38 a 61.21 a 43.03 a 17.47 bc 4.54 ab 85.50 a 16.30 a
S37 71.51 a 64.62 a 46.10 a 15.68 c 3.92 b 77.50 bc 14.73 ab
S40 67.82 a 61.61 a 41.18 a 19.70 ab 5.36 a 77.50 bc 14.37 b
秀水134
XS134

秀水134
XS134
N0 76.66 a 65.47 a 60.73 ab 20.64 ab 5.68 ab 83.00 a 18.30 a
N1 77.82 a 65.63 a 60.39 ab 20.39 ab 5.15 b 82.67 a 17.90 a
N2 76.66 a 64.22 a 58.52 b 22.77 b 5.95 ab 81.00 a 17.70 a
N3 76.43 a 63.91 a 58.93 ab 20.35 ab 6.72 a 81.33 a 17.77 a
RTNM 76.26 a 64.51 a 59.94 ab 18.88 b 5.38 b 82.33 a 17.87 a
S34 76.54 a 65.65 a 61.51 a 18.73 b 5.14 b 81.67 a 18.00 a
S37 76.76 a 65.42 a 61.61 a 19.06 b 5.75 ab 82.00 a 18.20 a
S40 75.38 a 63.35 a 59.42 ab 19.10 b 5.81 ab 81.67 a 17.67 a

附图1

2021-2022年不同类型水稻氮肥处理下稻米品质的主成分分析 A、B、C分别代表了主成分PC1与PC2、PC1与PC3、PC2与PC3的载荷分布。PC1: 主成分1; PC2: 主成分2; PC3: 主成分3。BRR: 糙米率; MRR: 精米率; HRR: 整精米率; CGR: 垩白粒率; CD: 垩白度; PC: 蛋白质含量; AC: 直链淀粉含量; TV: 食味值。"

图4

2021-2022年氮肥运筹对不同类型水稻GQI的影响 A、B分别代表2021-2022年氮肥运筹对水稻XS134中GQI的影响; C、D分别代表2021-2022年氮肥运筹对水稻HHZ中GQI的影响。GQI: 稻米综合指标。图中误差棒表示标准误, 不同小写字母表示不同氮肥处理间差异显著(P < 0.05, LSD)。处理及缩写同表1。"

图5

水稻产量及GQI与各生育期的静态农艺指标的相关性图 A、B分别是水稻产量、GQI与各生育期静态农艺指标的相关性, 红色代表显著相关(P < 0.05), 蓝色代表不相关; C是各生育期里的静态农艺指标与水稻产量和GQI显著相关的数量及占比; D是各生育期里同时与水稻产量、GQI显著相关的静态农艺指标。MT: 分蘖期; PI: 幼穗分化期; FL: 齐穗期; MGF: 灌浆中期; FGP: 结实率; GW: 千粒重; PN: 有效穗数; GN: 每穗粒数; BIO: 生物量; LAI: 叶面积指数; SLA: 比叶面积; SNA: 茎鞘氮积累; LNA: 叶氮积累量; PNA: 穗氮积累量; SNC: 茎鞘氮浓度; LNC: 叶片氮浓度; PNC: 穗氮浓度; PH: 平均株高; TILL: 平均分蘖; SW: 单位面积茎鞘重; LW: 单位面积叶重; PW: 单位面积穗重; TW: 单位面积总重; TNA: 总氮积累量; TNC: 全株氮浓度; NI: 氮肥投入量; IEN: 氮素产谷利用率; RE: 氮吸收利用率; AE: 农学氮肥利用效率。"

图6

不同回归模型对水稻产量和GQI 的预测精确度(基于动态及静态农艺指标) A、C、E分别是线性回归、支持向量回归、岭回归模型对水稻产量的预测; B、D、F分别是线性回归、支持向量回归、岭回归模型对GQI的预测。Actual GY: 真实产量; Predict-lrGY: 线性回归模型预测产量; Predict-svrGY: 支持向量回归模型预测产量; Predict-ridgeGY: 岭回归模型预测产量; ActualGQI: 真实GQI; Predict-lrGQI: 线性回归模型预测GQI; Predict-svrGQI: 支持向量回归模型预测GQI; Predict-ridgeGQI: 岭回归模型预测GQI。"

附图2

不同回归模型对水稻产量和GQI的预测精确度(基于静态指标) A、C、E分别是线性回归、支持向量回归、岭回归模型对水稻产量的预测; B、D、F分别是线性回归、支持向量回归、岭回归模型对GQI的预测。缩写同图6。"

附图3

不同回归模型中静态指标对水稻产量和GQI的回归参数排序 A、C、E分别是线性回归、支持向量回归、岭回归模型中静态指标对水稻产量的回归参数排序; B、D、F分别是线性回归、支持向量回归、岭回归模型中静态指标对GQI的回归参数排序。缩写同图5。"

图7

不同回归模型中动态及静态农艺指标对水稻产量和GQI的回归参数排序 A、C、E分别是线性回归、支持向量回归、岭回归模型中动态及静态指标对水稻产量的相关参数排序; B、D、F分别是线性回归、支持向量回归、岭回归模型中动态及静态指标对GQI的相关系数排序。MT: 分蘖期; PI: 幼穗分化期; FL: 齐穗期; MGF: 灌浆中期; MS: 成熟期; CGR: 干重增率; CGRN: 氮积累增率; PBR: 孕穗至齐穗-穗干重增长占比; SBR: 孕穗至齐穗-茎秆干重增长占比; LBR: 孕穗至齐穗-叶干重增长占比; PNR: 孕穗至齐穗-穗氮积累增长占比; SNR: 孕穗至齐穗-茎秆氮积累增长占比; LNR: 孕穗至齐穗-叶氮积累增长占比; LAD: 光合势; NAR: 净同化率。"

表2

不同回归模型中响应水稻产量和GQI的动态及静态农艺生理指标类型"

指标
Indicator
量质协同 量质互斥 增产不降质 提质不减产
Yield and rice quality synergy Yield and rice quality
antagonism
Prioritizing yield
over rice quality
Emphasizing rice quality over yield
静态指标
Static indicator
TW-MT, TNC-PI,
PNC-FL
LAI-MT, PH-MT, SW-MT, PNA-FL, TILL-FL, TNA-FL LNC-MT, TILL-PI,
TNC-FL, LW-MGL
LNA-MT, SLA-MT,
LNA-PI, LNA-MGL
动态指标
Dynamic indicator
NAR-FL LAD-MT, LAD-PI,
CGR-FL, LBR,
PBR, SBR
CGRN-MS, NAR-MT,
CGR-PI, LAD-FL
CGR-MT, CGRN-FL,
CGRN-MS, CGR-MS,
LNR, PNR

图8

动态及静态农艺生理指标对水稻产量和稻米品质的响应 图中红字是“量质协同”类, 椭圆三角是“量质互斥”类, 椭圆是“非量质互斥”类。A是静态农艺生理指标, B是动态农艺生理指标。TP: 移栽期; 缩写同图5和图7。"

[1] 张凯, 陈明睿, 刘秋员. 减氮增密对籼粳杂交稻产量和稻米品质的影响. 河南农业科学, 2023, 52(10): 14-21.
Zhang K, Chen M R, Liu Q Y. Effects of nitrogen reduction and densification on yield and rice quality of indica-japonica hybrid rice. J Henan Agric Sci, 2023, 52(10): 14-21 (in Chinese with English abstract).
[2] 熊飞, 王忠, 顾蕴洁, 陈刚, 周鹏. 施氮时期对扬稻biao16号颖果发育及稻米品质的影响. 中国水稻科学, 2007, 21: 637-642.
Xiong F, Wang Z, Gu Y J, Chen G, Zhou P. Effects of nitrogen application time on caryopsis development and grain quality of rice variety Yangdao 6. Chin J Rice Sci 2007, 21: 637-642 (in Chinese with English abstract).
[3] 张耀鸿, 张亚丽, 黄启为, 徐阳春, 沈其荣. 不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较. 植物营养与肥料学报, 2006, 12: 616-621.
Zhang Y H, Zhang Y L, Huang Q W, Xu Y C, Shen Q R. Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars. Plant Nutr Fert Sci, 2006, 12: 616-621 (in Chinese with English abstract).
[4] 张继宁, 王乐惠, 孙会峰, 张鲜鲜, 王从, 高雅, 周胜. 稻田施氮量对水稻产量和稻米品质的影响. 土壤通报, 2024, 55: 130-139.
Zhang J N, Wang L H, Sun H F, Zhang X X, Wang C, Gao Y, Zhou S. Effect of nitrogen application rate on rice yield and quality in rice field. Chin J Soil Sci, 2024, 55: 130-139 (in Chinese with English abstract).
[5] 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展. 中国稻米, 2023, 29(4): 1-8.
doi: 10.3969/j.issn.1006-8082.2023.04.001
Wang Y, Wang W, Cai J X, Zeng X, Ni X H, Tian J, Tang C, Jing X, Zhou M, Wang J, Xu H, Hu Y J, Xing Z P, Guo B W, Xu K, Zhang H C. Research progress on the effect of nitrogen fertilizer on the structure and physical and chemical properties of rice starch. China Rice, 2023, 29(4): 1-8 (in Chinese with English abstract).
[6] 刘立军, 王志琴, 桑大志, 杨建昌. 氮肥运筹对水稻产量及稻米品质的影响. 扬州大学学报: 农业与生命科学版, 2002, 23(3): 46-50.
Liu L J, Wang Z Q, Sang D Z, Yang J C. Effect of nitrogen fertilizer application on rice yield and rice quality. J Yangzhou Univ (Agric Life Sci Edn), 2002, 23(3): 46-50 (in Chinese with English abstract).
[7] 贺帆, 黄见良, 崔克辉, 曾建敏, 徐波, 彭少兵, R J Buresh. 实时实地氮肥管理对水稻产量和稻米品质的影响. 中国农业科学, 2007, 40: 123-132.
He F, Huang J L, Cui K H, Zeng J M, Xu B, Peng S B, R J Buresh. Impact of real-time on-site nitrogen fertilizer management on rice yield and rice quality. Sci Agric Sin, 2007, 40: 123-132 (in Chinese with English abstract).
[8] 刘立军, 吴长付, 张耗, 杨建昌, 赵步洪. 实地氮肥管理对稻米品质的影响. 中国水稻科学, 2007, 21: 625-630.
Liu L J, Wu C F, Zhang H, Yang J C, Zhao B H. Effect of site-specific nitrogen management on rice quality. Chin J Rice Sci, 2007, 21: 625-630 (in Chinese with English abstract).
[9] 姜龙. 实地氮肥管理对氮肥利用率及稻米品质的影响. 北方水稻, 2010, 40(5): 13-18.
Jiang L. Fertilizer-nitrogen use efficiency and its rice quality under site-specific nitrogen management in rice. North Rice, 2010, 40(5): 13-18 (in Chinese with English abstract).
[10] 王绍华, 刘胜环, 王强盛, 丁艳锋, 黄丕生, 凌启鸿. 水稻产量形成与叶片含氮量及叶色的关系. 南京农业大学学报, 2002, 25(4): 1-5.
Wang S H, Liu S H, Wang Q S, Ding Y F, Huang P S, Ling Q H. Relationship between yield formation and leaf nitrogen content and color in rice plant. J Nanjing Agric Univ, 2002, 25(4): 1-5 (in Chinese with English abstract).
[11] 潘胜才, 陈余波, 简叙, 卢沙沙, 秦建权. 光照、 氮素对杂交水稻干物质积累、分配和产量形成的影响. 作物研究, 2024, 38: 1-9.
Pan S C, Chen Y B, Jian X, Lu S S, Qin J Q. The effects of light and nitrogen on dry matter accumulation, distribution, and yield formation in hybrid rice. Crop Res, 2024, 38: 1-9 (in Chinese with English abstract).
[12] 朱莉, 李贵勇, 周伟, 朱世林, 李珍珍, 夏海晓, 陶有凤, 任万军, 胡剑锋. 不同生态条件下氮高效水稻品种干物质积累和产量特性. 植物营养与肥料学报, 2022, 28: 1015-1028.
Zhu l, Li G Y, Zhou W, Zhu S L, Li Z Z, Xia H X, Tao Y F, Ren W J, Hu J F. Dry matter accumulation and yield characteristics of nitrogen efficient rice varieties under different ecological conditions. J Plant Nutr Fert, 2022, 28: 1015-1028 (in Chinese with English abstract).
[13] 陈韦韦, 邓国富, 周维永, 李经成, 伍豪, 彭德, 马志广, 戴高兴. 优质超级杂交稻万太优美占在海南的高产制种技术. 杂交水稻, 2024, 39(3): 97-99.
Chen W W, Deng G F, Zhou W Y, Li J C, Wu H, Peng D, Ma Z G, Dai G X. High-yielding seed production techniques for high- quality super hybrid rice Wantai Youmei Zhan in Hainan. Hybrid Rice, 2024, 39(3): 97-99 (in Chinese with English abstract).
[14] 马亮, 董立强, 杨铁鑫, 李志强. 基于灌浆期籽粒代谢产物解析氮肥后移对优质粳稻产量和品质的影响. 江苏农业科学, 2024, 52(21), 70-77.
Ma L, Dong L Q, Yang T X, Li Z Q. Impact of post-heading nitrogen application on yield and quality of high-quality japonica rice based on grain metabolic products during grain filling stage. Jiangsu Agric Sci, 2024, 52(21), 70-77 (in Chinese with English abstract).
[15] 杨晓龙, 程建平, 汪本福, 李阳, 张枝盛, 李进兰, 李萍. 灌浆期干旱胁迫对水稻生理性状和产量的影响. 中国水稻科学, 2021, 35: 38-46.
doi: 10.16819/j.1001-7216.2021.0401
Yang X L, Cheng J P, Wang B F, Li Y, Zhang Z S, Li J L, Li P. Effects of drought stress at grain filling stage on rice physiological characteristics and yield. Chin J Rice Sci, 2021, 35: 38-46 (in Chinese with English abstract).
[16] 展明飞. 栽培方式对水稻农艺生理性状与养分利用效率的影响. 扬州大学硕士学位论文, 江苏扬州, 2019.
Zhan M F. Effects of Cultivation Methods on Agronomic and Physiological Characteristics and Nutrient Utilization Efficiency of Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2019 (in Chinese with English abstract).
[17] 汪静. 水稻栽培技术措施对稻米品质的影响. 种子科技, 2023, 41(1): 139-141.
Wang J. Effects of rice cultivation techniques and measures on rice quality. Seed Sci Technol, 2023, 41(1): 139-141 (in Chinese).
[18] 刘芳艳, 武云霞, 孙永健, 郭长春, 张桥, 马均. 氮肥运筹对杂交籼稻食味差异品种产量及米质的影响. 湖南农业大学学报(自然科学版), 2021, 47: 487-494.
Liu F Y, Wu Y X, Sun Y J, Guo C C, Zhang Q, Ma J. Effects of nitrogen fertilizer application on yield and rice quality of hybrid indica rice varieties with different taste differences. J Hunan Agric Univ (Nat Sci), 2021, 47: 487-494 (in Chinese with English abstract).
[19] 汪本福, 余振渊, 程建平, 李阳, 张枝盛, 杨晓龙. 氮素对水稻产量和品质形成的影响研究进展. 华中农业大学学报, 2022, 41(1): 76-83.
Wang B F, Yu Z Y, Cheng J P, Li Y, Zhang Z S, Yang X L. Research progress on the effects of nitrogen on rice yield and quality formation. J Huazhong Agric Univ, 2022, 41(1): 76-83 (in Chinese with English abstract).
[20] 邹小园, 郭金润, 梁耀明. 农户化肥减施意愿与行为研究进展. 广东农业科学, 2021, 48(5): 149-157.
Zou X Y, Guo J R, Liang Y M. Research progress on farmers’ willingness and behavior to reduce fertilizer application. Guangdong Agric Sci, 2021, 48(5): 149-157 (in Chinese with English abstract).
[21] 陶进, 钱希旸, 剧成欣, 刘立军, 张耗, 顾骏飞, 王志琴, 杨建昌. 不同年代中籼水稻品种的米质及其对氮肥的响应. 作物学报, 2016, 42: 1352-1362.
doi: 10.3724/SP.J.1006.2016.01352
Tao J, Qian X Y, Ju C X, Liu L J, Zhang H, Gu J F, Wang Z Q, Yang J C. Grain quality and its response to nitrogen fertilizer in mid-season indica rice varieties planted in different decades from 1950s to 2010s. Acta Agron Sin, 2016, 42: 1352-1362 (in Chinese with English abstract).
[22] 王小卉, 李绪孟, 唐启源, 邹丹, 罗友谊, 李可夫, 彭剑, 李灿, 曹乐平. 水稻群体分蘖动态模型构建与应用. 农业工程学报, 2024, 40(10): 213-221.
Wang X H, Li X M, Tang Q Y, Zou D, Luo Y Y, Li K F, Peng J, Li C, Cao L P. Construction and application of a dynamic model for rice population tillering. Trans CSAE, 2024, 40(10): 213-221 (in Chinese with English abstract).
[23] 张米欢, 胡东坡, 张德春. 水稻分蘖的分子机理研究进展. 生物资源, 2022, 44: 26-35.
Zhang M H, Hu D P, Zhang D C. Advances in molecular mechanism of rice tillering. Biotic Resour, 2022, 44: 26-35 (in Chinese with English abstract).
[24] 余恩唯, 蔡沁, 徐益, 丛舒敏, 陈京都, 胡雅杰. 分蘖期弱光胁迫对水稻产量和品质的影响及其氮肥调控效应. 作物研究, 2023, 37: 443-447.
Yu E W, Cai Q, Xu Y, Cong S M, Chen J D, Hu Y J. Effects of weak light stress at tillering stage on rice yield and quality and its nitrogen regulation effect. Crop Res, 2023, 37: 443-447 (in Chinese with English abstract).
[25] 沙之敏, 陈侠桦, 赵峥, 史超超, 袁永坤, 曹林奎. 施肥方式对水稻‘花优14’干物质积累、产量及肥料利用率的影响. 中国生态农业学报, 2018, 26: 815-823.
Sha Z M, Chen X H, Zhao Z, Shi C C, Yuan Y K, Cao L K. Effect of fertilizer management on dry matter accumulation, yield and fertilizer use efficiency of rice cultivar ‘Huayou-14’. Chin J Eco-Agric, 2018, 26: 815-823 (in Chinese with English abstract).
[26] 蒋彭炎. 水稻分蘖的发生、控制与茎蘖成穗率的提高. 中国稻米, 1999, 5(4): 7-9.
Jiang P Y. Occurrence and control of rice tillering and improvement of tillers’ anicle formation rate. China Rice, 1999, 5(4): 7-9 (in Chinese).
[27] 田广丽, 周毅, 孙博, 张瑞卿, 周新国, 郭世伟. 氮素及栽培密度影响水稻分蘖动态的机制. 植物营养与肥料学报, 2018, 24: 896-904.
Tian G L, Zhou Y, Sun B, Zhang R Q, Zhou X G, Guo S W. Effects of nitrogen and transplanting density on the mechanisms of tillering dynamic of rice. J Plant Nutr Fert, 2018, 24: 896-904 (in Chinese with English abstract).
[28] 何迷, 李小波, 黄静, 黄光福. 水稻叶面积指数与产量关系研究进展. 农学学报, 2022, 12(8): 1-5.
doi: 10.11923/j.issn.2095-4050.cjas2020-0269
He M, Li X B, Huang J, Huang G F. The relationship between leaf area index and yield of rice: research progress. J Agric, 2022, 12(8): 1-5 (in Chinese with English abstract).
doi: 10.11923/j.issn.2095-4050.cjas2020-0269
[29] 张培江, 付强, 占新春, 吴爽. 超高产杂交粳稻育种研究与实践. 中国农学通报, 2007, 23(10): 124-130.
Zhang P J, Fu Q, Zhan X C, Wu S. The practice and studies on the breeding of japonica hybrid rice combination with the super- high yield. Chin Agric Sci Bull, 2007, 23(10): 124-130 (in Chinese with English abstract).
[30] 包灵丰, 林纲, 赵德明, 王丽, 贺兵, 江青山, 张杰. 不同播期与收获期对水稻灌浆期、产量及米质的影响. 华南农业大学学报, 2017, 38(2): 32-37.
Bao L F, Lin G, Zhao D M, Wang L, He B, Jiang Q S, Zhang J. Influence of different sowing date and harvest time on rice filling stage, yield and grain quality. J South China Agric Univ, 2017, 38(2): 32-37 (in Chinese with English abstract).
[31] Liao Z G, Yu H, Duan J B, Yuan K, Yu C J, Meng X B, Kou L Q, Chen M J, Jing Y H, Liu G F, Smith S M, Li J Y. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 2019, 10: 2738.
doi: 10.1038/s41467-019-10667-2 pmid: 31227696
[32] 闫霜, 张黎, 景元书, 何洪林, 于贵瑞. 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 2014, 38: 640-652.
doi: 10.3724/SP.J.1258.2014.00060
Yan S, Zhang L, Jing Y S, He H L, Yu G R. Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration. Chin J Plant Ecol, 2014, 38: 640-652 (in Chinese with English abstract).
doi: 10.3724/SP.J.1258.2014.00060
[33] Wei S B, Li X, Lu Z F, Zhang H, Ye X Y, Zhou Y J, Li J, Yan Y Y, Pei H C, Duan F Y, Wang D Y, Chen S, Wang P, Zhang C, Shang L G, Zhou Y, Yan P, Zhao M, Huang J R, Bock R, Qian Q, Zhou W B. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377: eabi8455.
[34] 徐玲玲, 李昊, 王建林, 王志伟. 河北固城夏玉米比叶面积对水分梯度的响应. 生态学报, 2017, 37: 8101-8106.
Xu L L, Li H, Wang J L, Wang Z W. Response of specific leaf area of summer maize to water gradient in Hebei Gucheng. Acta Ecol Sin, 2017, 37: 8101-8106 (in Chinese with English abstract).
[35] 宋开付, 张广斌, 徐华, 马静. 中国再生稻种植的影响因素及可持续性研究进展. 土壤学报, 2020, 57: 1365-1377.
Song K F, Zhang G B, Xu H, Ma J. A review of research on influencing factors and sustainability of ratoon rice cultivation in China. Acta Pedol Sin, 2020, 57: 1365-1377 (in Chinese with English abstract).
[36] 马群, 杨雄, 李敏, 李国业, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同氮肥群体最高生产力水稻品种的物质生产积累. 中国农业科学, 2011, 44: 4159-4169.
doi: 10.3864/j.issn.0578-1752.2011.20.004
Ma Q, Yang X, Li M, Li G Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin, 2011, 44: 4159-4169 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2011.20.004
[37] 王坤庭, 陶钰, 邢志鹏, 冯源, 郭力, 赵欣怡, 缪孙静, 陈慧敏, 胡雅杰. 穗肥施氮量和结实期遮光对水稻产量和干物质积累特征的影响. 江苏农业科学, 2022, 50(8): 105-110.
Wang K T, Tao Y, Xing Z P, Feng Y, Guo L, Zhao X Y, Miao S J, Chen H M, Hu Y J. Effects of nitrogen application rate at panicle stage and shading during grain setting period on rice yield and dry matter accumulation Characteristics. Jiangsu Agric Sci, 2022, 50(8): 105-110 (in Chinese).
[38] 杨东, 段留生, 谢华安, 李召虎, 黄庭旭. 花前光照亏缺对水稻物质积累及生理特性的影响. 中国生态农业学报, 2011, 19: 347-352.
Yang D, Duan L S, Xie H A, Li Z H, Huang T X. Effect of pre-flowering light deficiency on biomass accumulation and physiological characteristics of rice. Chin J Eco-Agric, 2011, 19: 347-352 (in Chinese with English abstract).
[39] 蒋伟勤, 胡群, 俞航, 马会珍, 任高磊, 马中涛, 朱盈, 魏海燕, 张洪程, 刘国栋, 胡雅杰, 郭保卫. 优质食味粳稻控混肥一次性基施效应. 中国农业科学, 2021, 54: 1382-1396.
doi: 10.3864/j.issn.0578-1752.2021.07.006
Jiang W Q, Hu Q, Yu H, Ma H Z, Ren G L, Ma Z T, Zhu Y, Wei H Y, Zhang H C, Liu G D, Hu Y J, Guo B W. Effect of one-time basal application of the mixed controlled-release nitrogen fertilizer in japonica rice with good taste quality. Sci Agric Sin, 2021, 54: 1382-1396 (in Chinese with English abstract).
[40] 唐树鹏, 刘洋, 简超群, 徐云姬, 张伟杨, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量、水氮利用效率和稻米品质影响的研究进展. 华中农业大学学报, 2022, 41(4): 184-192.
Tang S P, Liu Y, Jian C Q, Xu Y J, Zhang W Y, Wang Z Q, Yang J C. Progress on effects of alternating wet and dry irrigation on use efficiency of water and nitrogen, yield and quality of rice. J Huazhong Agric Univ, 2022, 41(4): 184-192 (in Chinese with English abstract).
[41] 吴桂成, 张洪程, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 徐宗进, 钱宗华, 孙菊英. 南方粳型超级稻物质生产积累及超高产特征的研究. 作物学报, 2010, 36: 1921-1930.
doi: 10.3724/SP.J.1006.2010.01921
Wu G C, Zhang H C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Sha A Q, Xu Z J, Qian Z H, Sun J Y. Characteristics of dry matter production and accumulation and super-high yield of japonica super rice in south China. Acta Agron Sin, 2010, 36: 1921-1930 (in Chinese with English abstract).
[42] 高光杰. 施用有机肥条件下不同粳稻品种产量和品质特性的研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2017.
Gao G J. Study on Yield and Quality Characteristics of Different Japonica Rice Cultivars through Application of Organic Fertilizer. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2017 (in Chinese with English abstract).
[43] 车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异. 作物学报, 2021, 47: 1953-1965.
doi: 10.3724/SP.J.1006.2021.02068
Che Y, Cheng S, Tian J Y, Tao Y, Liu Q Y, Xing Z P, Zhang H C. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields. Acta Agron Sin, 2021, 47: 1953-1965 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02068
[44] 任万军.始穗后弱光对水稻籽粒生长及稻米品质的影响. 四川农业大学硕士学位论文, 四川雅安, 2001.
Ren W J. Effects of Low-Light Stress on Rice Grain Growth and Grain Quality after Heading. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2001 (in Chinese with English abstract).
[45] 高佩文, 王伯伦, 董克, 邹邦基. 辽粳5号水稻高产生理生态的研究. 辽宁农业科学, 1988, (2): 6-11.
Gao P W, Wang B L, Dong K, Zou B J. Studies on the physiological ecology of high-yield rice variety Liaojing 5. Liaoning Agric Sci 1988, (2): 6-11 (in Chinese with English abstract).
[1] 杨翠华, 李诗豪, 易徐徐, 郑飞雄, 杜雪竹, 盛锋. 聚-γ-谷氨酸对水稻产量、品质和养分吸收的影响[J]. 作物学报, 2025, 51(3): 785-796.
[2] 刘亚龙, 王鹏飞, 于爱忠, 王玉珑, 尚永盼, 杨学慧, 尹波, 张冬玲, 王凤. 绿肥还田条件下减氮对河西绿洲灌区玉米产量及N2O排放的影响[J]. 作物学报, 2025, 51(3): 771-784.
[3] 王岩, 白春生, 李波, 范虹, 何蔚, 杨莉莉, 曹悦, 赵财. 覆膜免耕和灌水量对西北绿洲灌区玉米产量及光合特性的影响[J]. 作物学报, 2025, 51(3): 755-770.
[4] 阳新月, 肖人滈, 张林茜, 唐铭均, 孙光燕, 杜康, 吕长文, 唐道彬, 王季春. 不同生育期涝渍对甘薯抗逆生理特性及产量形成的影响[J]. 作物学报, 2025, 51(3): 744-754.
[5] 熊强强, 孙长辉, 顾雯霏, 陆彦尧, 周年兵, 郭保卫, 刘国栋, 魏海燕, 朱金燕, 张洪程. 基于生育期、产量和品质对70份粳糯品种(系)的综合评价[J]. 作物学报, 2025, 51(3): 728-743.
[6] 苏明, 吴佳瑞, 洪自强, 李翻过, 周甜, 吴宏亮, 康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应[J]. 作物学报, 2025, 51(3): 713-727.
[7] 李翔宇, 季欣杰, 王雪莲, 龙安燃, 王峥宇, 杨子慧, 宫香伟, 姜英, 齐华. 秸秆还田配施氮肥对春玉米产量和籽粒品质的影响[J]. 作物学报, 2025, 51(3): 696-712.
[8] 闫秉春, 万雪, 钟敏, 刘宇奇, 赵艳泽, 姜红芳, 刘雅, 刘惠玲, 马沁春, 高继平, 张文忠. 氮素水平对北方优良食味粳米品质及精碾磨粉颗粒特性的影响[J]. 作物学报, 2025, 51(2): 503-515.
[9] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[10] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[11] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[12] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性[J]. 作物学报, 2025, 51(2): 459-469.
[13] 梁淼, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 土壤调理剂与缓释氮肥对小麦干物质积累及产量的影响[J]. 作物学报, 2025, 51(2): 470-484.
[14] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[15] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .