欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (2): 485-502.doi: 10.3724/SP.J.1006.2025.42024

• 耕作栽培·生理生化 • 上一篇    下一篇

基于氮肥运筹下水稻产量与品质协同的农艺生理指标解析

覃金华1,2,**,洪卫源2,**,冯向前1,2,李子秋2,周子榆2,王爱冬2,李瑞杰1,2,王丹英2,张运波1,*,陈松2,*   

  1. 1长江大学农学院, 湖北荆州434025; 2中国水稻研究所 / 水稻生物育种全国重点实验室, 浙江杭州3114001
  • 收稿日期:2024-05-10 修回日期:2024-10-25 接受日期:2024-10-25 出版日期:2025-02-12 网络出版日期:2024-11-19
  • 通讯作者: 张运波, E-mail: yunbo1022@126.com; 陈松, E-mail: chensong02@caas.cn
  • 基金资助:
    本研究由国家重点研发计划项目(2022YFD2300700), 中国农业科学院科技创新工程重大科研任务(CAAS-ZDRW202001), 基于高通量表型检测平台的水稻个体表型鉴定技术研究(2023ZZKT20402)和财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-01)资助。

Analysis of agronomic and physiological indicators of rice yield and grain quality under nitrogen fertilization management

QIN Jin-Hua1,2,**,HONG Wei-Yuan2,**,FENG Xiang-Qian1,2,LI Zi-Qiu2,ZHOU Zi-Yu2,WANG Ai-Dong2,LI Rui-Jie1,2,WANG Dan-Ying2,ZHANG Yun-Bo1,*,CHEN Song2,*   

  1. 1 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China; 2 China National Rice Research Institute / National Key Laboratory of Rice Biotechnology and Breeding, Hangzhou 311400, Zhejiang, China
  • Received:2024-05-10 Revised:2024-10-25 Accepted:2024-10-25 Published:2025-02-12 Published online:2024-11-19
  • Supported by:
    This study was supported by the National Key Research and Development Program (2022YFD2300700), the Major Research Tasks of the China Academy of Agricultural Sciences Science and Technology Innovation Project (CAAS-ZDRW202001), the Research on Rice Individual Phenotype Identification Technology Based on High-Throughput Phenotype Detection Platform (2023ZZKT20402), and the China Agriculture Research System of MOF and MARA (CARS-01).

摘要:

提升水稻产量与品质的协同效应是当前水稻生产面临的重大挑战。深入剖析并清晰界定影响产量与品质协同提升的关键水稻群体特征,对于指导水稻品种的改良和栽培技术的优化具有至关重要的意义。本研究以秀水134 (XS134)和黄华占(HHZ)为材料,分别设置常规固定施氮模式(N0N1N2N3)和基于SPAD阈值的动态施氮模式(RTNMS34S37S40)通过水稻关键生育期采集静态与动态农艺生理指标以及产量和稻米品质数据,采用不同多目标回归预测模型,以深入解析水稻关键农艺生理指标对产量和稻米品质的响应。结果表明:(1) 总体上水稻产量与稻米综合指标(GQI)呈互斥关系随着施氮量的增加,产量逐渐提高,而GQI则呈降低趋势,尤其在固定施氮模式下这种负相关性更明显。然而,固定施氮模式(N2处理)相比,动态施氮(RTNM处理)在施氮量减少了32.01%~58.02%的同时,能够定水稻产量并提升GQI的3.10%~38.34% (2022XS134),这凸显了动态施氮模式在缓解水稻产量与品质互斥并推动两者协同提升方面的潜力(2) 相关性分析表明,50个静态农艺指标中,有28个指标与水稻产量和GQI均呈显著相关,占56.00%3量质回归模型对水稻产量(R20.74~0.83RMSE0.40~0.49)GQI (R20.81~0.90RMSE0.63~0.88)的预测能力表现出不同程度的准确性。特征重要性解析表明分蘖期的群体生物量是对产量和品质的预测均为正效应(0.09~6.37),而株高、叶面积指数叶重等在预测产量和品质时出现互斥,这表明构建水稻产量与品质协同提升的分蘖期群体时,需要在确保群体生物量的基础上,对“量质互斥指标开展适宜度评估与优化。同时,穗发育期的群体净同化率(NAR)对水稻产量和GQI均呈现出不同程度的正效应值(0.06~1.00),暗示了穗发育阶段水稻的单位叶片光合效率可能是实现二者协同提升的重要群体特征。综上,相较于常规固定施氮模式,基于SPAD阈值的动态施氮策略可在一定程度上实现水稻产量与品质的协同提升分蘖期干物重和穗发育期NAR可以作为实现这一协同效应的重要参考指标。

关键词: 氮肥, 农艺生理指标, 产量, 品质

Abstract:

Achieving a synergistic improvement in both rice yield and quality remains a major challenge in rice production. A thorough analysis and clear identification of key population traits that influence the coordinated enhancement of yield and quality are crucial for guiding rice variety improvement and optimizing cultivation techniques. In this study, two rice varieties, Xiushui 134 (XS134) and Huanghuazhan (HHZ), were used to evaluate different nitrogen management strategies, including conventional fixed nitrogen applications (N0, N1, N2, N3) and dynamic nitrogen applications based on SPAD thresholds (RTNM, S34, S37, S40). Key agronomic and physiological indicators were collected at critical growth stages, along with yield and grain quality data. Multi-objective regression models were employed to analyze how key agronomic and physiological traits influence rice yield and grain quality. The results showed as follows: (1) A trade-off generally exists between rice yield and grain quality index (GQI); as nitrogen application increased, yield improved, but GQI tended to decrease, especially under fixed nitrogen application. However, compared to N2, the RTNM treatment reduced nitrogen application by 32.01% to 58.02%, while maintaining stable yields and improving GQI by 3.10% to 38.34% (with the exception of XS134 in 2022). This suggests that dynamic nitrogen management can alleviate the yield-quality trade-off, promoting yield-quality synergy. (2) Correlation analysis indicated that 28 out of 50 static agronomic traits were significantly correlated with both yield and GQI (56.00%). The three "yield-quality" regression models demonstrated varying degrees of predictive accuracy for rice yield (R2: 0.74–0.83; RMSE: 0.40–0.49) and GQI (R2: 0.81–0.90; RMSE: 0.63–0.88). Feature importance analysis highlighted that population biomass during the tillering stage positively influenced both yield and quality (0.09–6.37). Conversely, plant height, leaf area index, and leaf weight exhibited trade-offs in predicting yield and quality, suggesting that careful evaluation and optimization of these "mutually exclusiveindicators are necessary, particularly when ensuring sufficient population biomass. Furthermore, the population net assimilation rate (NAR) during ear development showed a positive impact on both yield and GQI (0.061.00), indicating that the photosynthetic efficiency per unit leaf during this stage may be a key trait for achieving coordinated improvements in yield and quality. In summary, compared to conventional fixed nitrogen application, a dynamic nitrogen management strategy based on SPAD thresholds can achieve a certain level of synergy between rice yield and quality. Population biomass during the tillering stage and NAR during the ear development stage may serve as important reference indicators for achieving this synergy.

Key words: nitrogen fertilization, agronomic traits, rice yield, grain quality

[1] 张凯, 陈明睿, 刘秋员. 减氮增密对籼粳杂交稻产量和稻米品质的影响. 河南农业科学, 2023, 52(10): 14–21.
Zhang K, Chen M R, Liu Q Y. Effects of nitrogen reduction and densification on yield and rice quality of indica-japonica hybrid riceJ Henan Agric Sci, 2023, 52(10): 14–21 (in Chinese with English abstract).

[2] 熊飞, 王忠, 顾蕴洁, 陈刚, 周鹏. 施氮时期对扬稻biao16号颖果发育及稻米品质的影响. 中国水稻科学, 2007, 21: 637–642.
Xiong F, Wang Z, Gu Y J, Chen G, Zhou P. Effects of nitrogen application time on caryopsis development and grain quality of rice variety Yangdao 6. Chin J Rice Sci, 2007, 21: 637642 (in Chinese with English abstract).

[3] 张耀鸿, 张亚丽, 黄启为, 徐阳春, 沈其荣. 不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较. 植物营养与肥料学报, 2006, 12: 616–621.
Zhang Y H, Zhang Y L, Huang Q W, Xu Y C, Shen Q R. Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars. Plant Nutr Fert Sci, 2006, 12: 616–621 (in Chinese with English abstract).

[4] 张继宁, 王乐惠, 孙会峰, 张鲜鲜, 王从, 高雅, 周胜. 稻田施氮量对水稻产量和稻米品质的影响. 土壤通报, 2024, 55: 130–139.
Zhang J N, Wang L H, Sun H F, Zhang X X, Wang C, Gao Y, Zhou S. Effect of nitrogen application rate on rice yield and quality in rice fieldChin J Soil Sci, 2024, 55: 130–139 (in Chinese with English abstract).

[5] 王岩, 王旺, 蔡嘉鑫, 曾鑫, 倪新华, 田洁, 唐闯, 景秀, 周苗, 王晶, 徐昊, 胡雅杰, 邢志鹏, 郭保卫, 许轲, 张洪程. 氮肥对稻米淀粉结构及理化性质影响的研究进展. 中国稻米, 2023, 29(4): 1–8.
Wang Y, Wang W, Cai J X, Zeng X, Ni X H, Tian J, Tang C, Jing X, Zhou M, Wang J, Xu H, Hu Y J, Xing Z P, Guo B W, Xu K, Zhang H C. Research progress on the effect of nitrogen fertilizer on the structure and physical and chemical properties of rice starch. China Rice, 2023, 29(4): 1–8 (in Chinese with English abstract).

[6] 刘立军, 王志琴, 桑大志, 杨建昌. 氮肥运筹对水稻产量及稻米品质的影响. 扬州大学学报: 农业与生命科学版, 2002, 23(3): 46–50.
Liu L J, Wang Z Q, Sang D Z, Yang J C. Effect of nitrogen fertilizer application on rice yield and rice quality. J Yangzhou Univ (Agric Life Sci Edn), 2002, 23(3): 46–50 (in Chinese with English abstract).

[7] 贺帆黄见良, 崔克辉, 曾建敏, 徐波, 彭少兵, R J Buresh. 实时实地氮肥管理对水稻产量和稻米品质的影响. 中国农业科学, 2007, 40: 123–132.
He F, Huang J L, Cui K H, Zeng J M, Xu B, Peng S B, R J Buresh. Impact of real-time on-site nitrogen fertilizer management on rice yield and rice quality. Sci Agric Sin, 2007, 40: 123–132 (in Chinese with English abstract).

[8] 刘立军, 吴长付, 张耗, 杨建昌, 赵步洪. 实地氮肥管理对稻米品质的影响. 中国水稻科学, 2007, 21: 625–630.
Liu L J, Wu C F, Zhang H, Yang J C, Zhao B H. Effect of site-specific nitrogen management on rice quality. Chin J Rice Sci, 2007, 21: 625–630 (in Chinese with English abstract).

[9] 姜龙. 实地氮肥管理对氮肥利用率及稻米品质的影响. 北方水稻, 2010, 40(5): 13–18.
Jiang L. Fertilizer-nitrogen use efficiency and its rice quality under site-specific nitrogen management in rice. North Rice, 2010, 40(5): 13–18 (in Chinese with English abstract).

[10] 王绍华, 刘胜环, 王强盛, 丁艳锋, 黄丕生, 凌启鸿. 水稻产量形成与叶片含氮量及叶色的关系. 南京农业大学学报, 2002, 25(4): 1–5.
Wang S H, Liu S H, Wang Q S, Ding Y F, Huang P S, Ling Q H. Relationship between yield formation and leaf nitrogen content and color in rice plant. J Nanjing Agric Univ, 2002, 25(4): 1–5 (in Chinese with English abstract).

[11] 潘胜才, 陈余波, 简叙, 卢沙沙, 秦建权. 光照、氮素对杂交水稻干物质积累、分配和产量形成的影响. 作物研究, 2024, 38: 1–9.
Pan S C, Chen Y B, Jian X, Lu S S, Qin J Q. The effects of light and nitrogen on dry matter accumulation, distribution, and yield formation in hybrid rice. Crop Res, 2024, 38: 1–9 (in Chinese with English abstract).

[12] 朱莉, 李贵勇, 周伟, 朱世林, 李珍珍, 夏海晓, 陶有凤, 任万军, 胡剑锋. 不同生态条件下氮高效水稻品种干物质积累和产量特性. 植物营养与肥料学报, 2022, 28: 1015–1028.
Zhu l, Li G Y, Zhou W, Zhu S L, Li Z Z, Xia H X, Tao Y F, Ren W J, Hu J F. Dry matter accumulation and yield characteristics of nitrogen efficient rice varieties under different ecological conditions. J Plant Nutr Fert, 2022, 28: 1015–1028 (in Chinese with English abstract).

[13] 陈韦韦, 邓国富, 周维永, 李经成, 伍豪, 彭德, 马志广, 戴高兴. 优质超级杂交稻万太优美占在海南的高产制种技术. 杂交水稻, 2024, 39(3): 9799.
Chen W W, Deng G F, Zhou W Y, Li J C, Wu H, Peng D, Ma Z G, Dai G X. High-yielding seed production techniques for high- quality super hybrid rice Wantai Youmei Zhan in Hainan. Hybrid Rice, 2024, 39(3): 9799 (in Chinese with English abstract).

[14] 马亮, 董立强, 杨铁鑫, 李志强. 基于灌浆期籽粒代谢产物解析氮肥后移对优质粳稻产量和品质的影响. 江苏农业科学, 2024, 52(21), 7077.
Ma L, Dong L Q, Yang T X, Li Z Q. Impact of post-heading nitrogen application on yield and quality of high-quality japonica rice based on grain metabolic products during grain filling stage. Jiangsu Agric Sci, 2024, 52(21), 7077 (in Chinese with English abstract).

[15] 杨晓龙, 程建平, 汪本福, 李阳, 张枝盛, 李进兰, 李萍. 灌浆期干旱胁迫对水稻生理性状和产量的影响. 中国水稻科学, 2021, 35: 38–46.
Yang X L, Cheng J P, Wang B F, Li Y, Zhang Z S, Li J L, Li P. Effects of drought stress at grain filling stage on rice physiological characteristics and yield. Chin J Rice Sci, 2021, 35: 38–46 (in Chinese with English abstract).

[16] 展明飞. 栽培方式对水稻农艺生理性状与养分利用效率的影响. 扬州大学硕士学位论文, 江苏扬州, 2019. 
Zhan M F. Effects of Cultivation Methods on Agronomic and Physiological Characteristics and Nutrient Utilization Efficiency of Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2019 (in Chinese with English abstract). 

[17] 汪静. 水稻栽培技术措施对稻米品质的影响. 种子科技, 2023, 41(1): 139–141.
Wang J. Effects of rice cultivation techniques and measures on rice quality. Seed Sci Technol, 2023, 41(1): 139–141 (in Chinese).

[18] 刘芳艳, 武云霞, 孙永健, 郭长春, 张桥, 马均. 氮肥运筹对杂交籼稻食味差异品种产量及质的影响. 湖南农业大学学报(自然科学版), 2021, 47: 487–494.
Liu F Y, Wu Y X, Sun Y J, Guo C C, Zhang Q, Ma J. Effects of nitrogen fertilizer application on yield and rice quality of hybrid indica rice varieties with different taste differences. J Hunan Agric Univ (Nat Sci), 2021, 47: 487–494 (in Chinese with English abstract).

[19] 汪本福, 余振渊, 程建平, 李阳, 张枝盛, 杨晓龙. 氮素对水稻产量和品质形成的影响研究进展. 华中农业大学学报, 2022, 41(1): 76–83.
Wang B F, Yu Z Y, Cheng J P, Li Y, Zhang Z S, Yang X L. Research progress on the effects of nitrogen on rice yield and quality formation. J Huazhong Agric Univ, 2022, 41(1): 76–83 (in Chinese with English abstract).

[20] 邹小园, 郭金润, 梁耀明. 农户化肥减施意愿与行为研究进展. 广东农业科学, 2021, 48(5): 149–157.
Zou X Y, Guo J R, Liang Y M. Research progress on farmers’ willingness and behavior to reduce fertilizer application. Guangdong Agric Sci, 2021, 48(5): 149–157 (in Chinese with English abstract).

[21] 陶进, 钱希旸, 剧成欣, 刘立军, 张耗, 顾骏飞, 王志琴, 杨建昌. 不同年代中籼水稻品种的米质及其对氮肥的响应. 作物学报, 2016, 42: 1352–1362.
Tao J, Qian X Y, Ju C X, Liu L J, Zhang H, Gu J F, Wang Z Q, Yang J C. Grain quality and its response to nitrogen fertilizer in mid-season indica rice varieties planted in different decades from 1950s to 2010s. Acta Agron Sin, 2016, 42: 1352–1362 (in Chinese with English abstract).

[22] 王小卉, 李绪孟, 唐启源, 邹丹, 罗友谊, 李可夫, 彭剑, 李灿, 曹乐平. 水稻群体分蘖动态模型构建与应用. 农业工程学报, 2024, 40(10): 213221.
Wang X H, Li X M, Tang Q Y, Zou D, Luo Y Y, Li K F, Peng J, Li C, Cao L P. Construction and application of a dynamic model for rice population tillering. Trans CSAE, 2024, 40(10): 213221 (in Chinese with English abstract).

[23] 张米欢, 胡东坡, 张德春. 水稻分蘖的分子机理研究进展. 生物资源, 2022, 44: 26–35.
Zhang M H, Hu D P, Zhang D C. Advances in molecular mechanism of rice tillering. Biotic Resour, 2022, 44: 26–35 (in Chinese with English abstract).

[24] 余恩唯, 蔡沁, 徐益, 丛舒敏, 陈京都, 胡雅杰. 分蘖期弱光胁迫对水稻产量和品质的影响及其氮肥调控效应. 作物研究, 2023, 37: 443–447.
Yu E W, Cai Q, Xu Y, Cong S M, Chen J D, Hu Y J. Effects of weak light stress at tillering stage on rice yield and quality and its nitrogen regulation effect. Crop Res, 2023, 37: 443–447 (in Chinese with English abstract).

[25] 沙之敏, 陈侠桦, 赵峥, 史超超, 袁永坤, 曹林奎. 施肥方式对水稻花优14’物质积累、产量及肥料利用率的影响. 中国生态农业学报, 2018, 26: 815–823.
Sha Z M, Chen X H, Zhao Z, Shi C C, Yuan Y K, Cao L K. Effect of fertilizer management on dry matter accumulation, yield and fertilizer use efficiency of rice cultivar ‘Huayou-14’. Chin J Eco-Agric, 2018, 26: 815–823 (in Chinese with English abstract).

[26] 蒋彭炎. 水稻分蘖的发生、控制与茎蘖成穗率的提高. 中国稻米, 1999, 5(4): 7–9.
Jiang P Y. Occurrence and control of rice tillering and improvement of tillers’ anicle formation rate. China Rice, 1999, 5(4): 7–9 (in Chinese).

[27] 田广丽, 周毅, 孙博, 张瑞卿, 周新国, 郭世伟. 氮素及栽培密度影响水稻分蘖动态的机制. 植物营养与肥料学报, 2018, 24: 896–904.
Tian G L, Zhou Y, Sun B, Zhang R Q, Zhou X G, Guo S W. Effects of nitrogen and transplanting density on the mechanisms of tillering dynamic of rice. J Plant Nutr Fert, 2018, 24: 896904 (in Chinese with English abstract).

[28] 何迷, 李小波, 黄静, 黄光福. 水稻叶面积指数与产量关系研究进展. 农学学报, 2022, 12(8): 1–5.
He M, Li X B, Huang J, Huang G F. The relationship between leaf area index and yield of rice: research progress. J Agric, 2022, 12(8): 1–5 (in Chinese with English abstract).

[29] 张培江, 付强, 占新春, 吴爽. 超高产杂交粳稻育种研究与实践. 中国农学通报, 2007, 23(10): 124–130.
Zhang P J, Fu Q, Zhan X C, Wu S. The practice and studies on the breeding of japonica hybrid rice combination with the super- high yield. Chin Agric Sci Bull, 2007, 23(10): 124–130 (in Chinese with English abstract).

[30] 包灵丰, 林纲, 赵德明, 王丽, 贺兵, 江青山, 张杰. 不同播期与收获期对水稻灌浆期、产量及质的影响. 华南农业大学学报, 2017, 38(2): 32–37.
Bao L F, Lin G, Zhao D M, Wang L, He B, Jiang Q S, Zhang J. Influence of different sowing date and harvest time on rice filling stage, yield and grain quality. J South China Agric Univ, 2017, 38(2): 32–37 (in Chinese with English abstract).

[31] Liao Z G, Yu H, Duan J B, Yuan K, Yu C J, Meng X B, Kou L Q, Chen M J, Jing Y H, Liu G F, Smith S M, Li J Y. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun, 2019, 10: 2738.

[32] 闫霜, 张黎, 景元书, 何洪林, 于贵瑞. 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 2014, 38: 640–652.
Yan S, Zhang L, Jing Y S, He H L, Yu G R. Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration. Chin J Plant Ecol, 2014, 38: 640–652 (in Chinese with English abstract).

[33] Wei S B, Li X, Lu Z F, Zhang H, Ye X Y, Zhou Y J, Li J, Yan Y Y, Pei H C, Duan F Y, Wang D Y, Chen S, Wang P, Zhang C, Shang L G, Zhou Y, Yan P, Zhao M, Huang J R, Bock R, Qian Q, Zhou W B. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377: eabi8455.

[34] 徐玲玲, 李昊, 王建林, 王志伟. 河北固城夏玉米比叶面积对水分梯度的响应. 生态学报, 2017, 37: 8101–8106.
Xu L L, Li H, Wang J L, Wang Z W. Response of specific leaf area of summer maize to water gradient in Hebei Gucheng. Acta Ecol Sin, 2017, 37: 8101–8106 (in Chinese with English abstract).

[35] 宋开付, 张广斌, 徐华, 马静. 中国再生稻种植的影响因素及可持续性研究进展. 土壤学报, 2020, 57: 1365–1377.
Song K F, Zhang G B, Xu H, Ma J. A review of research on influencing factors and sustainability of ratoon rice cultivation in China. Acta Pedol Sin, 2020, 57: 1365–1377 (in Chinese with English abstract).

[36] 马群, 杨雄, 李敏, 李国业, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 不同氮肥群体最高生产力水稻品种的物质生产积累. 中国农业科学, 2011, 44: 4159–4169.
Ma Q, Yang X, Li M, Li G Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Studies on the characteristics of dry matter production and accumulation of rice varieties with different productivity levels. Sci Agric Sin, 2011, 44: 4159–4169 (in Chinese with English abstract).

[37] 王坤庭, 陶钰, 邢志鹏, , 郭力, 赵欣怡, 缪孙静, 陈慧敏, 胡雅杰. 穗肥施氮量和结实期遮光对水稻产量和干物质积累特征的影响. 江苏农业科学, 2022, 50(8): 105–110.
Wang K T, Tao Y, Xing Z P, Feng Y, Guo L, Zhao X Y, Miao S J, Chen H M, Hu Y J. Effects of nitrogen application rate at panicle stage and shading during grain setting period on rice yield and dry matter accumulation Characteristics. Jiangsu Agric Sci, 2022, 50(8): 105–110 (in Chinese).

[38] 杨东, 段留生, 谢华安, 李召虎, 黄庭旭. 花前光照亏缺对水稻物质积累及生理特性的影响. 中国生态农业学报, 2011, 19: 347–352.
Yang D, Duan L S, Xie H A, Li Z H, Huang T X. Effect of pre-flowering light deficiency on biomass accumulation and physiological characteristics of rice. Chin J Eco-Agric, 2011, 19: 347–352 (in Chinese with English abstract).

[39] 蒋伟勤, 胡群, 俞航, 马会珍, 任高磊, 马中涛, 朱盈, 魏海燕, 张洪程, 刘国栋, 胡雅杰, 郭保卫. 优质食味粳稻控混肥一次性基施效应. 中国农业科学, 2021, 54: 1382–1396.
Jiang W Q, Hu Q, Yu H, Ma H Z, Ren G L, Ma Z T, Zhu Y, Wei H Y, Zhang H C, Liu G D, Hu Y J, Guo B W. Effect of one-time basal application of the mixed controlled-release nitrogen fertilizer in japonica rice with good taste quality. Sci Agric Sin, 2021, 54: 1382–1396 (in Chinese with English abstract).

[40] 唐树鹏, 刘洋, 简超群, 徐云姬, 张伟杨, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量、水氮利用效率和稻米品质影响的研究进展. 华中农业大学学报, 2022, 41(4): 184–192.
Tang S P, Liu Y, Jian C Q, Xu Y J, Zhang W Y, Wang Z Q, Yang J C. Progress on effects of alternating wet and dry irrigation on use efficiency of water and nitrogen, yield and quality of rice. J Huazhong Agric Univ, 2022, 41(4): 184–192 (in Chinese with English abstract).

[41] 吴桂成, 张洪程, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 徐宗进, 钱宗华, 孙菊英. 南方粳型超级稻物质生产积累及超高产特征的研究. 作物学报, 2010, 36: 1921–1930.
Wu G C, Zhang H C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Sha A Q, Xu Z J, Qian Z H, Sun J Y. Characteristics of dry matter production and accumulation and super-high yield of japonica super rice in south China. Acta Agron Sin, 2010, 36: 1921–1930 (in Chinese with English abstract).

[42] 高光杰. 施用有机肥条件下不同粳稻品种产量和品质特性的研究. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2017.
Gao G J. Study on Yield and Quality Characteristics of Different Japonica Rice Cultivars through Application of Organic Fertilizer. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2017 (in Chinese with English abstract).

[43] 车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异. 作物学报, 2021, 47: 1953–1965.
Che Y, Cheng S, Tian J Y, Tao Y, Liu Q Y, Xing Z P, Zhang H C. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields. Acta Agron Sin, 2021, 47: 1953–1965 (in Chinese with English abstract).

[44] 任万军. 始穗后弱光对水稻籽粒生长及稻米品质的影响. 四川农业大学硕士学位论文, 四川雅安, 2001.
Ren W J. Effects of Low-Light Stress on Rice Grain Growth and Grain Quality after Heading. MS Thesis of Sichuan Agricultural University, Yaan, Sichuan, China, 2001 (in Chinese with English abstract).

[45] 高佩文, 王伯伦, 董克, 邹邦基. 辽粳5号水稻高产生理生态的研究. 辽宁农业科学, 1988, (2): 6–11.
Gao P W, Wang B L, Dong K, Zou B J. Studies on the physiological ecology of high-yield rice variety Liaojing 5. Liaoning Agric Sci, 1988, (2): 6–11 (in Chinese with English abstract).

[1] 闫秉春, 万雪, 钟敏, 刘宇奇, 赵艳泽, 姜红芳, 刘雅, 刘惠玲, 马沁春, 高继平, 张文忠. 氮素水平对北方优良食味粳米品质及精碾磨粉颗粒特性的影响[J]. 作物学报, 2025, 51(2): 503-515.
[2] 胡雅杰, 郭靖豪, 丛舒敏, 蔡沁, 徐益, 孙亮, 郭保卫, 邢志鹏, 杨文飞, 张洪程. 灌浆前期低温弱光复合处理对水稻产量和品质的影响[J]. 作物学报, 2025, 51(2): 405-417.
[3] 秦梦倩, 黄威, 陈敏, 宁宁, 何德志, 胡兵, 夏起昕, 蒋博, 程泰, 常海滨, 王晶, 赵杰, 汪波, 蒯婕, 徐正华, 周广生. 氮肥运筹对迟播油菜产量及抗倒性的影响[J]. 作物学报, 2025, 51(2): 432-446.
[4] 王崇铭, 陆志峰, 闫金垚, 宋毅, 王昆昆, 方娅婷, 李小坤, 任涛, 丛日环, 鲁剑巍. 磷肥用量对油稻轮作系统作物产量与磷素吸收量及其稳定性的影响[J]. 作物学报, 2025, 51(2): 447-458.
[5] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性[J]. 作物学报, 2025, 51(2): 459-469.
[6] 梁淼, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 土壤调理剂与缓释氮肥对小麦干物质积累及产量的影响[J]. 作物学报, 2025, 51(2): 470-484.
[7] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[8] 王鹏博, 张冬霞, 乔唱唱, 黄明, 王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响[J]. 作物学报, 2025, 51(2): 534-547.
[9] 李超, 付小琼. 基于GYT双标图综合评价黄河流域中熟杂交棉花区域试验品种[J]. 作物学报, 2025, 51(1): 30-43.
[10] 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173.
[11] 张军, 胡川, 周起晖, 任开明, 董誓言, 刘傲寒, 吴金芝, 黄明, 李友军. 减氮及有机肥替代对旱地冬小麦干物质积累、转运、分配和产量的影响[J]. 作物学报, 2025, 51(1): 207-220.
[12] 赵黎明, 段绍彪, 项洪涛, 郑殿峰, 冯乃杰, 沈雪峰. 干湿交替灌溉与植物生长调节剂对水稻光合特性及内源激素的影响[J]. 作物学报, 2025, 51(1): 174-188.
[13] 王丽萍, 李盼, 赵连豪, 樊志龙, 胡发龙, 范虹, 何蔚, 柴强, 殷文. 西北绿洲灌区玉米叶片衰老特征对不同地膜覆盖利用方式的响应[J]. 作物学报, 2025, 51(1): 233-246.
[14] 王媛, 许佳茵, 董二伟, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 有机肥替代化肥氮对谷子氮素累积、产量及品质的影响[J]. 作物学报, 2025, 51(1): 149-160.
[15] 辛明华, 秘雅迪, 王国平, 李小飞, 李亚兵, 董合林, 韩迎春, 冯璐. 行距配置和种植密度对棉花干物质生产及产量的影响[J]. 作物学报, 2025, 51(1): 221-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!