作物学报 ›› 2025, Vol. 51 ›› Issue (4): 932-942.doi: 10.3724/SP.J.1006.2025.41042
程红娜1,2(), 秦丹丹2(
), 许甫超2, 徐晴2, 彭严春2, 孙龙清2, 徐乐1, 郭英2, 杨新泉3, 徐得泽2,*(
), 董静2,*(
)
CHENG Hong-Na1,2(), QIN Dan-Dan2(
), XU Fu-Chao2, XU Qing2, PENG Yan-Chun2, SUN Long-Qing2, XU Le1, GUO Ying2, YANG Xin-Quan3, XU De-Ze2,*(
), DONG Jing2,*(
)
摘要:
彩色青稞和彩色小麦是一类特殊的、珍贵的种质资源, 不同颜色籽粒中的营养物质成分和含量均不同。本研究基于LC-MS对2个彩色青稞品种鄂黑稞720135 (EH720135)、广州蓝稞(GZL)和2个彩色小麦品种中科紫麦(ZKZM)、农大4218紫(ND4218)授粉后不同天数的籽粒代谢组进行了分析和比较。 结果表明:在4个材料不同发育时期的籽粒中, 共检测到936种代谢物, 包含379种已知物质和557种未知物。聚类分析表明, 不同发育时期的籽粒中代谢物存在明显差异, 各种代谢物的动态积累模式也不尽相同。对4个材料成熟籽粒中代谢物进行比较分析, 在彩色青稞和彩色小麦之间共鉴定出687种差异代谢物, 其中, 206种在2个彩色青稞和2个彩色小麦之间均存在显著差异。此外, 还鉴定到308种和277种代谢物分别在2个彩色小麦之间和2个彩色青稞之间存在显著差异。进一步分析表明, 成熟青稞籽粒中的儿茶素、麦黄酮衍生物、金圣草黄素等黄酮类相关代谢物含量显著高于彩色小麦, 它们可能为青稞特异的功能性成分。本研究有助于全面了解彩色青稞和彩色小麦籽粒代谢物的差异, 并为彩色青稞和彩色小麦功能性食品研发提供理论依据。
[1] | 王明明. 浅谈黑大麦的开发利用. 甘肃科技纵横, 2010, 39(5): 60-61. |
Wang M M. On the development and utilization of black barley. Sci Tech Inf Gansu, 2010, 39(5): 60-61 (in Chinese). | |
[2] | 蔡岳, 宋昱, 李峰, 于章龙, 邱玉亮, 杨运良. 彩色小麦色素性状遗传机理研究进展. 麦类作物学报, 2025, 45: 360-365. |
Cai Y, Song Y, Li F, Yu Z L, Qiu Y L, Yang Y L. Research Progress of Genetic Mechanisms of Pigment Traits in Colored Wheat. J Triticeae Crops, 2025, 45: 360-365 (in Chinese with English abstract). | |
[3] | 李莉, 覃鹏. 彩色小麦的遗传与营养成分研究进展. 贵州农业科学, 2020, 48(1): 9-12. |
Li L, Qin P. Research progress in heredity and nutrition composition of colored wheat. Guizhou Agric Sci, 2020, 48(1): 9-12 (in Chinese with English abstract). | |
[4] | 邹红梅. 特殊粒色小麦种子籽粒营养成分分析与评价. 四川农业大学硕士学位论文, 四川雅安, 2015. |
Zou H M. Special Color Wheat Seeds, Kernel Nutrition Analysis. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2015 (in Chinese with English abstract). | |
[5] | Shen Y B, Zhang H, Cheng L L, Wang L, Qian H F, Qi X G. In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chem, 2016, 194: 1003-1012. |
[6] | Lin S, Guo H, Gong J D B, Lu M, Lu M Y, Wang L, Zhang Q, Qin W, Wu D T. Phenolic profiles, β-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. J Cereal Sci, 2018, 81: 69-75. |
[7] | 杜道坤, 贺娟, 孟利东, 康志钰. 黑青稞花色苷提取及抗氧化活性的分析. 江苏农业科学, 2017, 45(18): 173-179. |
Du D K, He J, Meng L D, Kang Z Y. Extraction of anthocyanin from black hulless barley and analysis of its antioxidant activity. Jiangsu Agric Sci, 2017, 45(18): 173-179 (in Chinese). | |
[8] |
罗静, 李玉锋, 胥霞. 青稞中的活性物质及功能研究进展. 食品与发酵工业, 2018, 44: 300-304.
doi: 10.13995/j.cnki.11-1802/ts.016130 |
Luo J, Li Y F, Xu X. Research progress of bioactive components in hulless barley. Food Ferment Ind, 2018, 44: 300-304 (in Chinese with English abstract). | |
[9] | Jin H M, Dang B, Zhang W G, Zheng W C, Yang X J. Polyphenol and anthocyanin composition and activity of highland barley with different colors. Molecules, 2022, 27: 3411. |
[10] | 杨希娟. 不同粒色青稞品质评价及酚类物质组成与生物活性研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2019. |
Yang X J. Quality Evaluation and Phenolic Composition of Colored Highland Barley and Its Biological Activity Research. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2019 (in Chinese with English abstract). | |
[11] | Yang Y, Fan B, Mu Y W, Li Y, Tong L T, Wang L L, Liu L Y, Li M M, Sun P P, Sun J, et al. A comparative metabolomics study of polyphenols in highland barley (Hordeum vulgare L.) grains with different colors. Food Res Int, 2023, 174: 113672. |
[12] | 王康君, 樊继伟, 张广旭, 郭明明, 谭一罗, 李晓峰, 陈凤, 孙中伟, 张梦涵. 不同粒色小麦籽粒色素与功能营养成分积累的分析. 江西农业学报, 2021, 33(4): 17-21. |
Wang K J, Fan J W, Zhang G X, Guo M M, Tan Y L, Li X F, Chen F, Sun Z W, Zhang M H. Dynamic accumulation of pigment and nutrients in wheat grains with different colors. Acta Agric Jiangxi, 2021, 33(4): 17-21 (in Chinese with English abstract). | |
[13] | 田鹏, 宋洁, 李霞, 王裕智, 武棒棒. 不同粒色小麦籽粒中叶酸及衍生物含量分析. 中国农业科技导报, 2024, 26(11): 56-65. |
Tian P, Song J, Li X, Wang Y Z, Wu B B. Analysis of folate content and its derivatives in grains of wheat with different grain colors. J Agric Sci Technol, 2024, 26(11): 56-65 (in Chinese with English abstract). | |
[14] | Guo Z F, Zhang Z B, Xu P, Guo Y N. Analysis of nutrient composition of purple wheat. Cereal Res Commun, 2013, 41: 293-303. |
[15] | 宗学凤, 闫荣, 李帮秀, 王三根. 蓝粒和紫粒小麦籽粒色素及相关酶的动态变化研究. 西南大学学报(自然科学版), 2017, 39(3): 1-7. |
Zong X F, Yan R, Li B X, Wang S G. Studies on the dynamic changes in seed pigments and related enzymes for blue and purple wheat. J Southwest Univ (Nat Sci Edn), 2017, 39(3): 1-7 (in Chinese with English abstract). | |
[16] | 叶琳. 彩色小麦营养成分及其色素基因表达模式的研究. 青海师范大学硕士学位论文, 青海西宁, 2018. |
Ye L. Study on Nutrient Components and Pigment Gene Expression Patterns of Color Wheat. MS Thesis of Qinghai Normal University, Xining, Qinghai, China, 2018 (in Chinese with English abstract). | |
[17] | 程云. 华矮11与华大麦6号灌浆期籽粒代谢物分析. 华中农业大学硕士学位论文, 湖北武汉, 2018. |
Cheng Y. Analysis of Metabolites in the Filling Stages of Grains in Barley Varieties, Hua’ai 11 and Huadamai 6. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract). | |
[18] | 黄海皎, 李杨, 高小丽, 拉巴扎西, 田朋佳, 尼玛央宗, 常子慧, 廖文华. 不同品质青稞种子的广泛靶向代谢组学研究. 干旱地区农业研究, 2024, 42(1): 43-53. |
Huang H J, Li Y, Gao X L, La B Z X, Tian P J, Ni M Z Y, Chang Z H, Liao W H. Broadly targeted metabolomics study of highland barley seeds of different qualities. Agric Res Arid Areas, 2024, 42(1): 43-53 (in Chinese with English abstract). | |
[19] |
杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位. 作物学报, 2020, 46: 52-61.
doi: 10.3724/SP.J.1006.2020.91024 |
Yang X M, Li X, Pu X Y, Du J, Ali M K, Yang J Z, Zeng Y W, Yang T. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population. Acta Agron Sin, 2020, 46: 52-61 (in Chinese with English abstract). | |
[20] | 魏玲玲, 旺姆, 曾兴权. 代谢组学解析西藏青稞白粉病分子机制. 高原农业, 2019, 3: 493-499. |
Wei L L, Wang M, Zeng X Q. Metabolomics analysis of molecular mechanism of powdery mildew in Tibetan hulless barley. J Plateau Agric, 2019, 3: 493-499 (in Chinese with English abstract). | |
[21] |
李洁, 付惠, 姚晓华, 吴昆仑. 不同耐旱性青稞叶片差异蛋白分析. 作物学报, 2021, 47: 1248-1258.
doi: 10.3724/SP.J.1006.2021.01062 |
Li J, Fu H, Yao X H, Wu K L. Differentially expressed protein analysis of different drought tolerance hulless barley leaves. Acta Agron Sin, 2021, 47: 1248-1258 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.01062 |
|
[22] |
Chen W, Gong L, Guo Z L, Wang W S, Zhang H Y, Liu X Q, Yu S B, Xiong L Z, Luo J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant, 2013, 6: 1769-1780.
doi: 10.1093/mp/sst080 pmid: 23702596 |
[23] | Shi T T, Zhu A T, Jia J Q, Hu X, Chen J, Liu W, Ren X F, Sun D F, Fernie A R, Cui F, et al. Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines. Plant J, 2020, 103: 279-292. |
[24] | Yin B, Jia J Q, Sun X, Hu X, Ao M, Liu W, Tian Z T, Liu H B, Li D Q, Tian W F, et al. Dynamic metabolite QTL analyses provide novel biochemical insights into kernel development and nutritional quality improvement in common wheat. Plant Commun, 2024, 5: 100792. |
[25] | Li L, Kong Z Y, Huan X J, Liu Y J, Liu Y J, Wang Q C, Liu J N, Zhang P, Guo Y R, Qin P. Transcriptomics integrated with widely targeted metabolomics reveals the mechanism underlying grain color formation in wheat at the grain-filling stage. Front Plant Sci, 2021, 12: 757750. |
[26] | Wang Z, Chen M X, Chen T L, Xuan L J, Li Z L, Du X, Zhou L H, Zhang G P, Jiang L X. TRANSPARENT TESTA2 regulates embryonic fatty acid biosynthesis by targeting FUSCA3 during the early developmental stage of Arabidopsis seeds. Plant J, 2014, 77: 757-769. |
[27] | Nesi N, Delourme R, Brégeon M, Falentin C, Renard M. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol, 2008, 331: 763-771. |
[28] |
Møller B L. Lysine catabolism in barley (Hordeum vulgare L.). Plant Physiol, 1976, 57: 687-692.
doi: 10.1104/pp.57.5.687 pmid: 16659552 |
[1] | 朱晓亚, 张强强, 赵鹏, 刘明, 王静, 靳容, 于永超, 唐忠厚. 叶面喷施丹参碳点缓解甘薯低磷胁迫的转录组与代谢组学分析[J]. 作物学报, 2024, 50(2): 383-393. |
[2] | 金欣欣, 苏俏, 宋亚辉, 杨永庆, 李玉荣, 王瑾. 花生种皮类黄酮物质的代谢组与转录组分析[J]. 作物学报, 2024, 50(12): 2950-2961. |
[3] | 王颖姮, 崔丽丽, 蔡秋华, 林强, 吴方喜, 陈飞鹤, 谢鸿光, 朱永生, 陈丽萍, 谢华安, 张建福. 代谢组和转录组分析籼稻福香占干旱胁迫的分子响应[J]. 作物学报, 2024, 50(12): 2998-3012. |
[4] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
[5] | 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114. |
[6] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[7] | 牛丽, 白文波, 李霞, 段凤莹, 侯鹏, 赵如浪, 王永宏, 赵明, 李少昆, 宋吉青, 周文彬. 地膜覆盖对黄土高原地区两种种植密度下玉米叶片代谢组的影响[J]. 作物学报, 2021, 47(8): 1551-1562. |
[8] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[9] | 姚晨涛,乔治华,宋雪慧,张风文,孙晓,李刚,李向东,张吉旺,姜兴印. 不同成膜剂对玉米噻虫啉悬浮种衣剂的持效性及安全性影响[J]. 作物学报, 2020, 46(02): 269-279. |
[10] | 王丽娜,王步军. 基于UPLC-QTOF/MS的小麦发芽代谢组学分析方法[J]. 作物学报, 2019, 45(12): 1899-1904. |
[11] | 黄玮,杨敏,秦保平,王振林,武玉国,孙兰珍,尹燕枰. 利用SSR分子标记分析彩色小麦的亲缘关系与遗传多样性[J]. 作物学报, 2012, 38(06): 1135-1139. |
|