欢迎访问作物学报,今天是

作物学报 ›› 2007, Vol. 33 ›› Issue (12): 2021-2027.

• 研究论文 • 上一篇    下一篇

花后高温和水分逆境对小麦籽粒蛋白质形成及其关键酶活性的影响

赵辉;荆奇;戴廷波*;姜东;曹卫星   

  1. 南京农业大学农业部作物生长调控重点开放实验室, 江苏南京210095
  • 收稿日期:2006-09-07 修回日期:1900-01-01 出版日期:2007-12-12 网络出版日期:2007-12-12
  • 通讯作者: 戴廷波

Effects of Post-Anthesis High Temperature and Water Stress on Activities of Key Regulatory Enzymes Involved in Protein Formation in Two Wheat Cultivars

ZHAO Hui,JING Qi,DAI Ting-Bo*,JIANG Dong,CAO Wei-Xing   

  1. Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2006-09-07 Revised:1900-01-01 Published:2007-12-12 Published online:2007-12-12
  • Contact: DAI Ting-Bo

摘要: 以2个蛋白质含量不同的小麦品种扬麦9号和豫麦34为材料,在人工气候室条件下研究了花后高温和水分逆境对小麦籽粒蛋白质合成关键酶活性及籽粒蛋白质组分含量的影响。结果表明,籽粒蛋白质及其组分含量显著受温度、水分和温度×水分互作的影响,且温度的影响大于水分及温度×水分的影响。高温提高了籽粒蛋白质含量,但降低了谷/醇比。无论高温或适温下,干旱胁迫均提高籽粒蛋白质含量。谷/醇比在适温干旱下升高,高温干旱下降低;渍水降低籽粒蛋白质含量和谷/醇比。籽粒蛋白质含量在高温干旱下最高,适温渍水下最低。在温度和水分逆境下,籽粒醇溶蛋白和谷蛋白的变化是导致蛋白质含量和谷/醇比差异的主要原因。高温和水分逆境均降低旗叶谷胺酰氨合成酶(GS)和籽粒谷-丙转氨酶(GPT)活性,不同温度条件下酶活性均表现为对照>干旱>渍水。高温和水分逆境对蛋白质合成关键酶活性的影响在不同品种间存在差异,适温下,豫麦34旗叶GS活性易受水分的抑制;扬麦9旗叶GS活性易受高温的抑制。高温下,豫麦34旗叶氮代谢受高温影响较大,而扬麦9则更易受水分胁迫影响。

关键词: 小麦, 高温, 水分逆境, 蛋白质积累, 酶活性

Abstract: Temperature and water are the main climatic factors affecting grain quality in wheat (Triticum aestivum). The growth-chamber experiments were carried out to investigate the effects of high temperature and water stress conditions during grain filling on the activities of key regulatory enzymes for protein accumulation and contents of protein components in wheat grains. Two wheat cultivars Yangmai 9 with low protein content and Yumai 34 with high protein content were grown under two day/night temperature regimes of 32℃/24℃ and 24℃/16℃, respectively. For each temperature regime, three soil water levels were established as moderate water status (soil relative water content, SRWC=75%–80%), drought (SRWC=45%–50%), and waterlogging. The results showed that protein and protein component contents in grains were affected significantly by high temperature, water, and temperature×water. High temperature enhanced protein content, but reduced glutenin /gliadin ratio. Under both optimum temperature and high temperature, drought enhanced protein content. Drought enhanced glutenin /gliadin ratio under optimum temperature, but reduced it under high temperature. Under both high and optimum temperatures, waterlogging reduced protein content and glutenin /gliadin ratio. Protein content was the highest at high temperature × drought, and the lowest at optimum temperature × waterlogging. Under high temperature and water stresses, differences in protein content and glutenin /gliadin ratio were caused mainly by changes in gliadin and glutenin contents. Both high temperature and water stress reduced glutamine synthase (GS) activity in flag leaves and glutamate pyruvic amino transferase (GPT) activity in grains, and both enzymes in the treatments were CK>drought>waterlogging. The responses of GS and GPT activities to high temperature and water stress differed between two cultivars with different grain protein contents. Under optimum temperature, GS activity in flag leaves was more affected by water stress for Yumai 34 and was more inhibited by high temperature for Yangmai 9. Opposite trend was found under high temperature.

Key words: Wheat, High temperature, Water stress, Protein accumulation, Enzyme activity

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!