欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 786-794.doi: 10.3724/SP.J.1006.2009.00786

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

白粉菌(Erysiphe graminis)侵染诱导表达的小麦糖苷水解酶基因TaGlc2的克隆与鉴定

Ramesh N PUDAKE**,辛明明**,尹玉静**,解超杰,倪中福,孙其信*   

  1. 中国农业大学农业生物技术国家重点实验室/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究及利用重点实验室,北京100193
  • 收稿日期:2008-10-07 修回日期:2009-02-17 出版日期:2009-05-12 网络出版日期:2009-03-20
  • 通讯作者: 孙其信

Cloning and Characterization of a Novel Wheat Glycoside Hydrolase Gene TaGlc2 Induced by Powdery Mildew Pathogen(Erysiphe graminis) Infection

Ramesh N PUDAKE**,XIN Ming-Ming**,YIN Yu-Jing1,XIE Chao-Jie,NI Zhong-Fu,SUN Qi-Xin*   

  1. State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization,Ministry of Education/Key Laboratory of Crop Genomics and Genetic Improvement,Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University,Beijing 100193,China
  • Received:2008-10-07 Revised:2009-02-17 Published:2009-05-12 Published online:2009-03-20
  • Contact: SUN Qi-Xin
  • Supported by:

    The work was supported by the National High Technology Research and Development Program of China(2006AA10A104),Fok Ying-Tung Education Foundation(94021),and Natural Science Foundation of Beijing, China(6061003 and 30871528)

摘要:

真菌病害是世界小麦生产中的最重要的病害之一。目前,在小麦中已经鉴定出一批小麦病菌侵染诱导基因,包括病程相关基因和抗真菌水解酶基因(葡聚糖酶基因和几丁质酶基因)。最近的研究表明,植物1,3-β-葡聚糖酶参与对真菌侵染的防卫。本研究从小麦cDNA文库中克隆出一个编码小麦1,3-β-葡聚糖酶的新基因,命名为 TaGlc2该基因编码的氨基酸序列与糖苷水解酶基因家族17高度同源。采用实时定量PCR分析方法对TaGlc2基因在白粉菌侵染(Erysiphe graminis)后小麦叶片中的表达模式进行研究,发现TaGlc2基因在白粉菌侵染6 h后表达明显增强,至24 h达到峰值,说明该基因受白粉菌侵染诱导表达。还获得了TaGlc2基因5'上游调控区序列,发现存在与病菌侵染响应有关的顺式元件。小麦TaGlc2基因在小麦白粉病抗性上可能具有重要作用。

关键词: 1,3-ß-葡聚糖酶, 白粉菌, 真菌侵染, 基因表达, 小麦

Abstract:

Fungal diseases cause serious yield losses of wheat worldwide. Up to date, numerous genes involved in the wheat-pathogen response have been identified. These include pathogenesis related (PR) genes and antifungal hydrolases such as glucanase and chitinase genes. Recently, there has been increasing number of studies providing evidence of the potential involvement of 1,3-β-glucanase in defense against fungal infection. In this study we identified a cDNA encoding a 1,3-β-glucanase, designated TaGlc2, from wheat cDNA library. The deduced peptide sequence of TaGlc2 is similar to a glycoside hydrolase family 17. Using real time PCR, the expression pattern of TaGlc2 in wheat seedlings inoculated with powdery mildew pathogen (Erysiphe graminis) was determined. The results showed that TaGlc2 is inducible in response to fungal infection. The 5' genomic region of TaGlc2 was isolated and it contains some cis-elements which are reported to be involved in pathogenesis response.

Key words: 1,3-ß-glucanase, Powdery mildew, Fungal inoculation, Gene expression, Wheat


[1] Wessels J G H, Sietsma J H. Fungal cell wall: a survey. Tanner W, Loewus F A, eds. Encyclopedia of plant physiology, new series, plant carbohydrates II, vol. 13B. Berlin: Springer, 1981. pp 352–394

[2] V?geli-Lange R, Fründt C, Hart C M, Beffa R, Nagy F, Meins F Jr. Evidence for a role of β-1,3-glucanase in dicot seed germination. Plant J, 1994, 5: 273–278

[3] Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell, 1992, 4: 759–771

[4] Ori N, Sessa G, Lotan T, Himmelhoch S, Fluhr R. A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related protein superclass. EMBO J, 1990, 9: 3429–3436

[5] Roulin S, Buchala A J. The induction of 1,3-β-glucanases and other enzymes in groundnut leaves infected with Cercospora arachidicola. Physiol Mol Plant Path, 1995, 46: 471–489

[6] Anguelova-merhar V S, Van der Westhuizen A J, Pretorius Z A. β-1,3-glucanase and chitinase activities and the resistance response of wheat to leaf rust. J Phytopath, 2001, 149: 381–384

[7] Cheong Y H, Kim C Y, Chun H J, Moon B C, Park H C, Kim K J, Lee S, Han C, Lee S Y, Cho M J. Molecular cloning of a soybean class III β-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci, 2000, 154: 71–81

[8] Shi Y, Zhang Y, Shih D S. Cloning and expression analysis of two β-1,3-glucanase genes from Strawberry. J Plant Physiol, 2006, 163: 956–967

[9] Zhao T J, Zhao S Y, Chen H M, Zhao Q Z, Hu Z M, Hou B K, Xia G M. Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep, 2006, 25: 1119–1204

[10] Mackintosh C A, Lewis J, Radmer L E, Shin S, Heinen S J, Smith L A, Wyckoff M N, Macky R D, Evans C K, Kravchenko S, Baldridge G D, Zeyen R J, Muehlbauer G J. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep, 2007, 26: 479–488

[11] Clarke B C, Moran L B, Appels R. DNA analyses in wheat breeding. Genome, 1989, 32: 334–339

[12] Bouzidi M F, Franchel J, Tao Q, Stormo K, Mraz A, Nicolas P, Mouzeyar S. A sunflower BAC library suitable for PCR screening and physical mapping of targeted genomic regions. Theor Appl Genet, 2006, 113: 81–89

[13] Altschul S F, Madden T L, Sch?ffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res, 1997, 25: 3389–3402

[14] Jeanmougin F, Thompson J D, Gouy M, Higgins D G, Gibson T J. Multiple sequence alignment with Clustal X. Trends Biochem Sci, 1998, 23: 403–405

[15] Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions- specific gap penalties and weight matrix choice. Nucl Acids Res, 1994, 22: 4673–4680

[16] Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle, 2005

[17] Marchler-Bauer A, Anderson J B, Cherukuri P F, DeWeese-Scott C, Geer L Y, Gwadz M, He S, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C J, Liebert C A, Liu C, Lu F, Marchler G H, Mullokandov M, Shoemaker B A, Simonyan V, Song J S, Thiessen P A, Yamashita R A, Yin J J, Bryant S H. CDD: a Conserved Domain Database for protein classification. Nucl Acids Res, 2005, 33(D): 192–196

[18] Nakai K, Horton P. PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci, 1999, 24: 34–35

[19] Bendtsen J D, Nielsen H, Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 2004, 340: 783–795

[20] Li W L, Faris J D, Muthukrishnan S, Liu D J, Chen P D, Gill B S. Isolation and characterization of novel cDNA clones of acidic chitinases and β-1,3-glucanases from wheat spikes infected by Fusarium graminearum. Theor Appl Genet, 2001, 102: 353–362

[21] Muradov A, Petrasovits L, Davidson A, Scott K J. A cDNA clone for a pathogenesis-related protein 1 from barley. Plant Mol Biol, 1993, 23: 439–442

[22] Higa-Nishiyama A, Ohsato S, Banno S, Woo S H, Fujimura M, Yamaguchi I, Kimura M. Cloning and characterization of six highly similar endo-1,3-β-glucanase genes in hexaploid wheat. Plant Physiol Biochem, 2006, 11: 1361–1368

[23] Lai D M, H?j P B, Fincher G B. Purification and characterization of (1→3, 1→4)-β-glucan endohydrolases from germinated wheat (Triticum aestivum). Plant Mol Biol, 1993, 22: 847–859

[24] Cruz-Ortega R, Cushman J C, Ownby J D. cDNA clones encoding 1,3-β-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol, 1997, 114: 1453–1460

[25] Henrissat B, Davies G J. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol, 2000, 124: 1515–1519

[26] Ray S, Anderson J M, Urmeev F I, Goodwin S B. Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol, 2003, 53: 741–754

[27] Cohen L, Eyal Z. The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici. Plant Path, 1993, 42: 737–743
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[5] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!