作物学报 ›› 2009, Vol. 35 ›› Issue (5): 786-794.doi: 10.3724/SP.J.1006.2009.00786
Ramesh N PUDAKE**,辛明明**,尹玉静**,解超杰,倪中福,孙其信*
Ramesh N PUDAKE**,XIN Ming-Ming**,YIN Yu-Jing1,XIE Chao-Jie,NI Zhong-Fu,SUN Qi-Xin*
摘要:
真菌病害是世界小麦生产中的最重要的病害之一。目前,在小麦中已经鉴定出一批小麦病菌侵染诱导基因,包括病程相关基因和抗真菌水解酶基因(葡聚糖酶基因和几丁质酶基因)。最近的研究表明,植物1,3-β-葡聚糖酶参与对真菌侵染的防卫。本研究从小麦cDNA文库中克隆出一个编码小麦1,3-β-葡聚糖酶的新基因,命名为 TaGlc2。该基因编码的氨基酸序列与糖苷水解酶基因家族17高度同源。采用实时定量PCR分析方法对TaGlc2基因在白粉菌侵染(Erysiphe graminis)后小麦叶片中的表达模式进行研究,发现TaGlc2基因在白粉菌侵染6 h后表达明显增强,至24 h达到峰值,说明该基因受白粉菌侵染诱导表达。还获得了TaGlc2基因5'上游调控区序列,发现存在与病菌侵染响应有关的顺式元件。小麦TaGlc2基因在小麦白粉病抗性上可能具有重要作用。
[1] Wessels J G H, Sietsma J H. Fungal cell wall: a survey. Tanner W, Loewus F A, eds. Encyclopedia of plant physiology, new series, plant carbohydrates II, vol. 13B. Berlin: Springer, 1981. pp 352–394 [2] V?geli-Lange R, Fründt C, Hart C M, Beffa R, Nagy F, Meins F Jr. Evidence for a role of β-1,3-glucanase in dicot seed germination. Plant J, 1994, 5: 273–278 [3] Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell, 1992, 4: 759–771 [4] Ori N, Sessa G, Lotan T, Himmelhoch S, Fluhr R. A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related protein superclass. EMBO J, 1990, 9: 3429–3436 [5] Roulin S, Buchala A J. The induction of 1,3-β-glucanases and other enzymes in groundnut leaves infected with Cercospora arachidicola. Physiol Mol Plant Path, 1995, 46: 471–489 [6] Anguelova-merhar V S, Van der Westhuizen A J, Pretorius Z A. β-1,3-glucanase and chitinase activities and the resistance response of wheat to leaf rust. J Phytopath, 2001, 149: 381–384 [7] Cheong Y H, Kim C Y, Chun H J, Moon B C, Park H C, Kim K J, Lee S, Han C, Lee S Y, Cho M J. Molecular cloning of a soybean class III β-1,3-glucanase gene that is regulated both developmentally and in response to pathogen infection. Plant Sci, 2000, 154: 71–81 [8] Shi Y, Zhang Y, Shih D S. Cloning and expression analysis of two β-1,3-glucanase genes from Strawberry. J Plant Physiol, 2006, 163: 956–967 [9] Zhao T J, Zhao S Y, Chen H M, Zhao Q Z, Hu Z M, Hou B K, Xia G M. Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling. Plant Cell Rep, 2006, 25: 1119–1204 [10] Mackintosh C A, Lewis J, Radmer L E, Shin S, Heinen S J, Smith L A, Wyckoff M N, Macky R D, Evans C K, Kravchenko S, Baldridge G D, Zeyen R J, Muehlbauer G J. Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep, 2007, 26: 479–488 [11] Clarke B C, Moran L B, Appels R. DNA analyses in wheat breeding. Genome, 1989, 32: 334–339 [12] Bouzidi M F, Franchel J, Tao Q, Stormo K, Mraz A, Nicolas P, Mouzeyar S. A sunflower BAC library suitable for PCR screening and physical mapping of targeted genomic regions. Theor Appl Genet, 2006, 113: 81–89 [13] Altschul S F, Madden T L, Sch?ffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res, 1997, 25: 3389–3402 [14] Jeanmougin F, Thompson J D, Gouy M, Higgins D G, Gibson T J. Multiple sequence alignment with Clustal X. Trends Biochem Sci, 1998, 23: 403–405 [15] Thompson J D, Higgins D G, Gibson T J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions- specific gap penalties and weight matrix choice. Nucl Acids Res, 1994, 22: 4673–4680 [16] Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle, 2005 [17] Marchler-Bauer A, Anderson J B, Cherukuri P F, DeWeese-Scott C, Geer L Y, Gwadz M, He S, Hurwitz D I, Jackson J D, Ke Z, Lanczycki C J, Liebert C A, Liu C, Lu F, Marchler G H, Mullokandov M, Shoemaker B A, Simonyan V, Song J S, Thiessen P A, Yamashita R A, Yin J J, Bryant S H. CDD: a Conserved Domain Database for protein classification. Nucl Acids Res, 2005, 33(D): 192–196 [18] Nakai K, Horton P. PSORT: a program for detecting the sorting signals of proteins and predicting their subcellular localization. Trends Biochem Sci, 1999, 24: 34–35 [19] Bendtsen J D, Nielsen H, Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol, 2004, 340: 783–795 [20] Li W L, Faris J D, Muthukrishnan S, Liu D J, Chen P D, Gill B S. Isolation and characterization of novel cDNA clones of acidic chitinases and β-1,3-glucanases from wheat spikes infected by Fusarium graminearum. Theor Appl Genet, 2001, 102: 353–362 [21] Muradov A, Petrasovits L, Davidson A, Scott K J. A cDNA clone for a pathogenesis-related protein 1 from barley. Plant Mol Biol, 1993, 23: 439–442 [22] Higa-Nishiyama A, Ohsato S, Banno S, Woo S H, Fujimura M, Yamaguchi I, Kimura M. Cloning and characterization of six highly similar endo-1,3-β-glucanase genes in hexaploid wheat. Plant Physiol Biochem, 2006, 11: 1361–1368 [23] Lai D M, H?j P B, Fincher G B. Purification and characterization of (1→3, 1→4)-β-glucan endohydrolases from germinated wheat (Triticum aestivum). Plant Mol Biol, 1993, 22: 847–859 [24] Cruz-Ortega R, Cushman J C, Ownby J D. cDNA clones encoding 1,3-β-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol, 1997, 114: 1453–1460 [25] Henrissat B, Davies G J. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol, 2000, 124: 1515–1519 [26] Ray S, Anderson J M, Urmeev F I, Goodwin S B. Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol, 2003, 53: 741–754 [27] Cohen L, Eyal Z. The histology of processes associated with the infection of resistant and susceptible wheat cultivars with Septoria tritici. Plant Path, 1993, 42: 737–743 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[7] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[8] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[9] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[12] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[13] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[14] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[15] | 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47. |
|