欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (5): 848-854.doi: 10.3724/SP.J.1006.2009.00848

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

郑麦9023春化基因VRN-1的组成及表达

袁秀云1,2,李永春1,**,孟凡荣3,闫延涛1,尹钧1,*   

  1. 1河南农业大学国家小麦工程技术研究中心,河南郑州450002;2郑州师范高等专科学校,河南郑州450044;3河南农业大学生命科学学院,河南郑州450002
  • 收稿日期:2008-09-11 修回日期:2009-02-14 出版日期:2009-05-12 网络出版日期:2009-03-23
  • 通讯作者: 尹均
  • 基金资助:

    本研究由国家自然科学基金(30671261),国家“十一五”科技支撑计划重大项目(2006BAD02A07-4)资助。

Allelic Composition and Expression of  Vernalization Gene Vrn-1 in Wheat Cultivar Zhengmai 9023

YUAN Xiu-Yun12,LI Yong-Chun1**,MENG Fan-Rong3,YAN Yan-Tao1,YIN Jun1*   

  1. 1National Engineering Research Center for Wheat,Henan Agricultural University,Zhengzhou 450002,China;2Zhengzhou Normal College,Zhengzhou 450044,China;3College of Life Science,Henan Agricultural University,Zhengzhou 450002,China
  • Received:2008-09-11 Revised:2009-02-14 Published:2009-05-12 Published online:2009-03-23
  • Contact: YIN Jun

摘要:

以郑麦9023叶片为材料,利用序列特异性PCR扩增技术克隆了春化基因VRN-1,并通过0~2℃冰箱模拟春化处理0102030 d,对该基因在一叶期至九叶期叶片中的表达进行了分析。PCR分析表明,VRN-1基因在郑麦9023AD基因组中均为隐性,在B基因组中为显性,基因等位类型为vrnA1VrnB1vrnD1。在克隆VRN-A1VRN-B1VRN-D1基因序列的基础上,设计了3个等位基因的特异引物,并利用该特异引物进行半定量RT-PCR分析。结果显示,在未经春化处理的条件下,一叶期VRN-A1VRN-D1均未检测到表达,而VRN-B1已有较低水平的表达;从三叶期开始,3个等位基因都有较高水平的表达,并一直持续至开花期。在春化处理102030 d条件下,VRN-13个等位基因在一叶期就出现较高水平的表达,并保持至开花期。

关键词: 郑麦9023, 春化基因vrn-1, 基因克隆, 半定量RT-PCR

Abstract:

Zhengmai 9023 is an elite winter wheat (Triticum aestivum L.) cultivar grown in a large scale in China, and often injured by coldness when it easily starts reproductive growth before winter because of its weak vernalization characteristic. Vernalization gene VRN-1 is one of the key genes controlling the conversion from vegetative growth to reproductive growth in wheat. To explore the regulation mechanism of vernalization in Zhengmai 9023, the VRN-1 gene was cloned from leaf tissues using gene-specific PCR amplification technique, and its expressions were analyzed under simulated vernalization at 0–2°C for 0, 10, 20, and 30 d. The gene-specific primers were designed for semiquantitative PCR analysis based on the sequences of the VRN-A1, VRN-B1, and VRN-D1, which were cloned from Zhengmai 9023. The results showed that the genotype of VRN-1 was vrnA1VrnB1vrnD1 with the unique dominant allele in B genome of Zhengmai 9023. Under the treatment of 0 d vernalization, the expressions of VRN-A1 and VRN-D1 were not detected at one-leaf stage, whereas VRN-B1 expressed at a low level and the expressions of the three VRN-1 alleles were all at relative high levels from three-leaf stage to flowering stage. However, under the treatments with 10 to 30 d vernalizaion, the three alleles of VRN-1 gene showed high-level expressions throughout the period from one-leaf to flowering stages.

Key words: Zhengmai 9023, Vernalization gene VRN-1;Gene cloning, Semiquantitative RT-PCR


[1] Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, D ubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263–6268

[2] Trevakis B, Bagnall D J, Ellis M H, Peacock W J, Dennis E S. MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA, 2003, 100: 13099–13104

[3] Law C N, Worland A J, Giorgi B. The genetic control of ear emergence time by chromosomes 5A and 5D of wheat. Heredity, 1976, 36: 49–58

[4] Nelson J C, Sorrells M E, Van Deynze A E, Lu Y H, Atkinson M, Bernard M, Leroy P, Faris J D, Anderson J A. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics, 1995, 141: 721–731

[5] Barrett B, Bayram M, Kidwell K. Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat (Triticum aestivum L.) using reciprocal mapping populations. Plant Breed, 2002, 121: 400–406

[6] Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K. Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 104: 571–576

[7] McIntosh R A, Yamazaki Y, Devos K M, Dubcovsky J, Rogers W J, Appels R. Catalogue of gene symbols for wheat. In: Pogna N E, Romano M, Pogna E, Galterio G eds. Proceedings of the 10th International Wheat Genetics Symposium. Instituto Sperimentale per la Cerealicoltura, Rome, 2003. pp 1–34

[8] Pugsley A T. A genetic analysis of the spring-winter habit of growth in wheat. Aust J Agric Res, 1971, 22: 21–31

[9] Loukoianov A, Yan L, Blech A, Sanchez A, Dubcovsky J. Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol, 2005, 138: 2364–2373

[10] Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet, 2004, 109: 1677–1686

[11] Fu D, Szücs P, Yan L, Helguera M, Skinner J S, Zitzewitz J V, Hayes P M, Dubcovsky J. Large deletions within the first intron in VRN1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics, 2005, 273: 54–65

[12] Yang Z-Q(杨宗渠), Yin J(尹钧), Zhou R(周冉), Li J-C(李金才). Study on vernalization character of different genotypes of wheat from Huanghuai wheat production area. J Triticeae Crops (麦类作物学报), 2006, 26(2): 82–85 (in Chinese with English abstract)

[13] Wang G-Y(王国英). Experimental Techniques for Gene Engineering (基因工程实验技术). Beijing: China Agriculture Science and Technology Press, 1997. pp 43-46(in Chinese)

[14] Wang S-Y(王士英). Relation between vernalization response and final leaf number in wheat. Acta Agron Sin (作物学报), 1997, 23(6): 746–752 (in Chinese with English abstract)

[15] Miao G-Y(苗果园), Zhang Y-T(张云亭), Hou Y-S(侯跃生), Yin J(尹钧), Wang S-Y(王士英). A study on the combined effects of temperature and light on the development of wheat cultivars: I. Analysis of maximum and minimum seedling-heading stages and sensitivity to temperature and light. Acta Agron Sin (作物学报), 1993, 19(6): 489–496 (in Chinese with English abstract)

[16] Zhang X-K(张晓科), Xia X-C(夏先春), He Z-H(何中虎), Zhou Y(周阳). Distribution of vernalization gene Vrn-A1 in Chinese wheat cultivars detected by STS marker. Acta Agron Sin (作物学报), 2007, 32(7): 1038–1043 (in Chinese with English abstract)

[17] Zhang X K, Xiao Y G, Zhang Y, Xia X C, Dubcovsky J, He Z H. Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci, 2008, 48: 458–470

[18] Zeng Q(曾群), Zhao Z-H(赵仲华), Zhao S-Q(赵淑清). Signal pathways of flowering time regulation in Plant. Hereditas (遗传), 2006, 28(8): 1031–1036(in Chinese with English abstract)

[19] Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mole Biol, 2006, 60: 469–480

[20] Yan L, Loukoianov A, Tranquilli G, Blechl A, A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640–1644

[21] Yan L, Fu D, Li C, Blechi A, Tranquilli G, Bonafede M, Sanchez A, Valarik M,Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581–19586

[22] Hemming M N, Peacock W J, Dennis E S, Trevaskis B. Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol, 2008, 147: 355–366
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[4] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[5] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[6] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[7] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[8] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[9] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[10] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[11] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[12] 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801.
[13] 马晨雨,詹为民,李文亮,张梦迪,席章营. 玉米ZmNAOD基因的克隆与功能分析[J]. 作物学报, 2018, 44(10): 1433-1441.
[14] 刘朝显, 王久光, 梅秀鹏, 余婷婷, 王国强, 周练, 蔡一林. 玉米胚乳母本印记基因ZmVIL1的克隆及印记特性分析[J]. 作物学报, 2018, 44(03): 376-384.
[15] 梁云飞, 张林成, 蒲全明, 雷镇泽, 施松梅, 姜宇鹏, 任雪松, 高启国. 甘蓝转录因子BoLH27的克隆与转基因甘蓝的表型分析[J]. 作物学报, 2018, 44(03): 397-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!