欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (7): 1290-1298.doi: 10.3724/SP.J.1006.2009.01290

• 耕作栽培·生理生化 • 上一篇    下一篇

棉籽蛋白质和油分形成的模拟模型

李文峰,周治国,许乃银,陈兵林,孟亚利*   

  1. 南京农业大学/农业部南方作物生理生态重点开放实验室/江苏省信息农业高技术研究重点实验室,江苏南京210095
  • 收稿日期:2008-12-22 修回日期:2009-03-20 出版日期:2009-07-12 网络出版日期:2009-05-19
  • 通讯作者: 孟亚利,E-mail: giscott@njau.edu.cn; Tel: 025-84396813
  • 作者简介:李文峰, E-mail: liwf83@126.com
  • 基金资助:

    本研究由高家自然科学基金项目(30771277,30771279)和公益性行业(农业)科研专项(nyhyzw07-005-18)资助。

Simulation Model of Cottonseed Protein and  Oil Formation

LI Wen-Feng,ZHOU Zhi-Guo,XU Nai-Yin,CHEN Bing-Lin,MENG Ya-Li*   

  1. Nanjing Agricultural University/Key Laboratory of Crop Physiology & Ecology in Southern China,Ministry of Agriculture/Hi-Tech Key Laboratory of Information Agriculture,Nanjing 210095,China
  • Received:2008-12-22 Revised:2009-03-20 Published:2009-07-12 Published online:2009-05-19
  • Contact: MENG Ya-Li,E-mail: giscott@njau.edu.cn; Tel: 025-84396813
  • About author:LI Wen-Feng, E-mail: liwf83@126.com

摘要:

基于不同熟性棉花品种的异地分期播种和施氮量试验,综合量化品种特性、主要气象条件(温度、太阳辐射)和栽培措施(施氮量)对棉籽蛋白质和油分的影响,基于棉籽素积累和油分合成的库限制假设,结合棉花铃期与棉籽干物质积累模型,建立基于过程的棉籽蛋白质和油分形成模拟模型。利用不同生态点不同品种、播期和施氮量的田间试验资料对模型进行检验的结果表明,供试品种科棉1号和美棉33B棉籽的蛋白质含量模拟值与实测值的根均方差(RMSE)分别为2.05%2.33%,其油分含量模拟值与实测值的RMSE分别为2.45%2.95%。模型以主要气象资料(日平均温度、日太阳辐射量)和栽培措施(施氮量)作为模型输入,以棉花铃期与棉籽干物质积累模拟模型为基础,实现了较广泛生态条件下对不同品种棉花棉籽蛋白质和油分形成过程的模拟及其含量的动态预测。模型预测精度高,广适性强。

关键词: 棉花, 棉籽, 蛋白质, 油分, 模拟模型

Abstract:

The simulation of cotton (Gossypium hirsutum L.) seed growth is an area of great uncertainty, especially in the process of cottonseed quality formation. To simulate the formation of cottonseed protein and oil under different environmental conditions, we developed a simple process-based model driven by the inputs of cultivar parameters, weather information, and crop management variable (precisely N supply). A set of field experiments were conducted with Kemian 1 and NuCOTN 33B in the lower reaches of Yangtze River Valley (Nanjing, Huai’an) and the Yellow River Valley (Xuzhou, Anyang) in 2005. Two sowing dates and three N rates were set in the trials. According to the data collected in Nanjing, the response functions of cottonseed protein and oil accumulation to weather conditions (temperature, solar radiation), crop management (variable N supply) and boll positions were all developed and involved in the model. The subtending leaf N concentration of cotton boll obtained from a semi-empirical equation was made as a direct indicator of the N nutrition affecting cottonseed quality formation. The model was based on the hypothesis that nitrogen accumulation and oil synthesis in cottonseed are mainly sink-determined, and was integrated with the cotton boll maturation period model and cottonseed biomass accumulation model. The parameters in the model were calibrated using the field data obtained in Nanjing. The model was tested using the field data obtained in Huaian, Xuzhou and Anyang. The root mean square error (RMSE) of the simulated and measured cottonseed protein contents was 2.05% for Kemian 1 and 2.33% for NuCOTN 33B. The RMSE of the simulated and measured cottonseed oil content was 2.45% for Kemian 1 and 2.95% for NuCOTN 33B. Driven by the inputs of data including weather conditions (daily maximum, minimum and average temperatures and daily solar radiation), management variable (precisely N supply), the present model accurately predicted cottonseed protein content and oil content under diverse environmental conditions. This model is a necessary component of cotton growth model, and provides a good platform for further study on modeling cottonseed protein and oil yield.

Key words: Cotton(Gossypium hirsutum L.), Cottonseed, Protein, Oil, Simulation model

[1] Duncan W G. SIMCOT: A simulator of cotton growth and yield. In: Murphy C M, Hesketh J D, eds. Workshop Modeling Tree Growth Dynamics and Modelling. Oak Ridge, TN: Oak Ridge National Laboratory, 1972. pp 115-118

[2] Boone M Y, Porter D O, Mckinion J M. Calibration of GOSSYM: Theory and practice. Comput Electron Agric, 1993, 9: 193-203

[3] Jackson B S, Arkin G F, A B H. The cotton simulation model “COTTAM”: Fruiting model calibration and testing. Trans ASAE, 1988, 31: 846-854

[4] Wells A T, Hearn A B. OZCOT: A cotton crop simulation model for management. Math Comput Simulat, 1992, 33: 433-438

[5] Larson J A, Mapp H P, Verhalen L M, Banks J C. Adapting a cotton model for decision analyses: A yield response evaluation. Agric Syst, 1996, 50: 145-167

[6] Pan X-B(潘学标), Han X-L(韩湘玲), Shi Y-C(石元春). A cotton growth and development simulation model for culture management—COTGROW. Sci Agric Sin (中国农业科学), 1996, 29(1): 94-96(in Chinese with English abstract)

[7] Zhang L-J(张丽娟), Meng Y-L(孟亚利), Xue X-P(薛晓萍), Chen B-L(陈兵林), Xiong Z-W(熊宗伟), Zhou Z-G(周治国). Establishing model of an integrated fiber-quality index. Sci Agric Sin (中国农业科学), 2006, 39(6): 1130-1137(in Chinese with English abstract)

[8] Zhang L-J(张丽娟), Meng Y-L(孟亚利), Chen B-L(陈兵林), Xiong Z-W(熊宗伟), Xue X-P(薛晓萍), Zhou Z-G(周治国). Study on an intergrated cotton fibger-quality index. Cotton Sci (棉花学报), 2005, 17(4): 217-221(in Chinese with English abstract)

[9] Sawan Z M, El-Farra A A, El-Latif S A. Cottonseed, protein and oil yields, and oil properties as affected by nitrogen and phosphorus fertilization and growth regulators. J Agron Crop Sci, 1988, 161: 50-56

[10] Ahmad S, Anwar F, Hussain A I, Ashraf M, Awan A R. Dose soil salinity affect yield and composition of cottonseed oil? J Am Oil Chem Soc, 2007, 84: 845-851

[11] Gotmare V, Singh P, Mayee C D, Deshpande V, Bhagat C. Genetic variability for seed oil content and seed index in some wild species and perennial races of cotton. Plant Breed, 2004, 123: 207-208

[12] Mert M, Aki Y, Gen O. Genotypic and phenotypic relationships of lint yield, fibre properties and seed content in a cross of two cotton genotypes. Acta Agric Scand (Sect B-Soil Pl), 2005, 55: 76-80

[13] King E E, Leffler H R. Nature and patterns of proteins during cotton seed development. Plant Physiol, 1979, 63: 260-263

[14] Egelkraut T M, Kissel D E, Cabrera M L, Gascho G J, Adkins W. Nitrogen concentration in cottonseed as an indicator of N availability. Nutr Cycl Agroecosyst, 2004, 68: 235-242

[15] Sawan Z M, Saeb A, Hafez A E B, Alkassas A R. Cottonseed, protein, oil yields and oil properties as affected by nitrogen fertilization and foliar application of potassium and a plant growth retardant. World J Agric Sci, 2006, 2: 56-65

[16] Sawan Z M, Hafez S A, Basyony A E, Alkassas A R. Nitrogen, potassium and plant growth retardant effects on oil content and quality of cotton seed. Grasas Aceites, 2007, 58: 243-251

[17] Malavolta E, Nogueira N G, Heinrichs R, Higashi E N, Rodr V, Guerra E, De O S, Cabral C P. Evaluation of nutritional status of the cotton plant with respect to nitrogen. Commun Soil Sci Plant Anal, 2004, 35: 1007-1019

[18] Xue X-P(薛晓萍), Chen B-L(陈兵林), Guo W-Q(郭文琦), Zhou Z-G(周治国), Zhang L-J(张丽娟), Wang Y-L(王以琳). Dynamic quantitative model of critical nitrogen demand of cotton. Chin J Appl Ecol (应用生态学报), 2006, 17(12): 2363-2370(in Chinese with English abstract)

[19] Xue X-P(薛晓萍), Wang J-G(王建国), Guo W-Q(郭文琦), Chen B-L(陈兵林), Wang Y-H(王友华), Zhang L-J(张丽娟), Zhou Z-G(周治国). Accumulation characters of biomass and nitrogen and critical nitrogen concentration dilution model of cotton fruit-branch leaf after flowering. Acta Agron Sin (作物学报), 2007, 33(4): 669-676(in Chinese with English abstract)

[20] Xue X-P(薛晓萍), Zhou Z-G(周治国), Zhang L-J(张丽娟), Wang Y-L(王以琳), Guo W-Q(郭文琦), Chen B-L(陈兵林). Development and application of critical nitrogen concentration dilution model for cotton after flowering. Acta Ecol Sin (生态学报), 2006, 26(6): 1781-1791(in Chinese with English abstract)

[21] De Castro M D L, Garcia-Ayuso L E. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta, 1998, 369: 1-10

[22] Feil B, Moser S B, Jampatong S, Stamp P. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci, 2005, 45: 516-523

[23] Li W-F(李文峰), Meng Y-L(孟亚利), Chen B-L(陈兵林), Xu N-Y(许乃银), Zhou Z-G(周治国). Modeling boll maturation period and cotton (Gossypium hirsutum L.) seed biomass accumulation. Chin J Appl Ecol (应用生态学报), 2009, 20(4):879-886(in Chinese with English abstract)

[24] Gao R-Q(高荣岐), Zhang C-Q(张春庆). Seed Biology(种子生物学). Beijing: China Science and Technology Press, 2002. pp 118-123(in Chinese)

[25] Chen B-L(陈兵林), Cao W-X(曹卫星), Zhou Z-G(周治国). Simulation and validation of dry matter accumulation and distribution of cotton boll at different flowering stages. Sci Agric Sin (中国农业科学), 2006, 39(3): 487-493(in Chinese with English abstract)

[26] Li W-G(李卫国), Wang J-H(王纪华), Zhao C-J(赵春江), Liu L-Y(刘良云), Song X-Y(宋晓宇), Tong Q-X(童庆禧). A model for predicting protein content in winter wheat grain based on land-sat TM image and nitrogen accumulation. J Remote Sens (遥感学报), 2008, 12(3): 506-514 (in Chinese with English abstract)

[27] Li W-G(李卫国), Zhu Y(朱艳), Jing Q(荆奇), Cao W-X(曹卫星). Modeling protein accumulation in rice grain. Sci Agric Sin (中国农业科学), 2006, 39(3): 544-551(in Chinese with English abstract)

[28] Pan J, Zhu Y, Jiang D, Dai T, Li Y, Cao W. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat. Field Crops Res, 2006, 97: 322-336

[29] Horrocks R D, Kerby T A, Buxton D R. Carbon source for developing bolls in normal and superokra leaf cotton. New Phytol, 1978, 80: 335-340

[30] Heuvelink E. Dry matter partitioning in Tomato: Validation of a dynamic simulation Model. Ann Bot, 1996, 77: 71-80

[31] Martre P, Jamieson P D, Semenov M A, Zyskowski R F, Porter J R, Triboi E. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. Eur J Agron, 2006, 25: 138-154

[32] Jamieson P D, Semenov M A. Modelling nitrogen uptake and redistribution in wheat. Field Crops Res, 2000, 68: 21-29

[33] Sawan Z M, El-kasaby A T, Sallouma B M. Effect of plant density, nitrogen fertilization and growth regulators on cottonseed yield and seedling vigour. Zeitschrift für Acker- und Pflanzenbau, 1985, 154: 120-128
[34] Sawan Z M, Hafez S A, Basyony A E. Effect of nitrogen fertilization and foliar application of plant growth retardants and zinc on cottonseed, protein and oil yields and oil properties of cotton. J Agron Crop Sci, 2001, 186: 183-191
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[5] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[13] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[14] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[15] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!