欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (9): 1715-1721.doi: 10.3724/SP.J.1006.2009.01715

• 耕作栽培·生理生化 • 上一篇    下一篇

不同绿豆品种花后干物质积累与转运特性

高小丽1,孙健敏2,高金锋1,冯佰利1,王鹏科1,柴岩1,*   

  1. 1西北农林科技大学农学院;2西北农林科技大学信息工程学院;陕西杨凌712100
  • 收稿日期:2008-12-22 修回日期:2009-04-25 出版日期:2009-09-12 网络出版日期:2009-07-04
  • 通讯作者: 柴岩, E-mail: chai.yan@163.com
  • 基金资助:

    本研究由国际科技支撑计划项目(2006BAD02B08 ),国家公益性行业(农业)科研专项项目(nyhyzx07-017),西北农林科技大学人才基金项目(食用杂豆品种改良及高效栽培技术体系研究)资助。

Accumulation and Transportation Characteristics of Dry Matter after Anthesis in Different Mung Bean Cultivars

GAO Xiao-Li1,SUN Jian-Min2,GAO Jin-Feng1,FENG Bai-Li1,WANG Peng-Ke1,CHAI Yan1*   

  1. 1 College of Agronomy, Northwest A&F University; 2 College of Information Engineering, Northwest A&F University, Yangling 712100, China
  • Received:2008-12-22 Revised:2009-04-25 Published:2009-09-12 Published online:2009-07-04
  • Contact: CAI Yan, E-mail: chai.yan@163.com

摘要:

以夏播区高产绿豆品种冀绿2号、安9910和低产品种赤峰绿豆、泰来绿豆为材料,对开花至成熟期间植株茎秆、叶片、豆荚、籽粒等地上部各器官的干物质积累、分配与转运规律进行了研究。结果表明,绿豆开花后,植株地上部总干物质积累和籽粒干物质积累均呈近S型增长趋势,花后16~31 d是生物产量和籽粒产量形成的关键时期;主茎开花节位叶片是籽粒充实的主要源器官,对籽粒产量的贡献率最大。不同绿豆品种间差异显著,高产品种冀绿2号和安9910各器官干物质积累和转运能力强,尤其是主茎开花节位叶片干物质合成和积累较多,具有较充足的源,加之其单株结荚数多,具有较大的库容,最终获得了较高的收获指数和籽粒产量。因此,绿豆生产中,选用库容大的多荚、大粒型品种,抓好花后田间管理,延缓主茎开花节位叶片衰老,同时采用去除无效分枝等措施增强源库间的物质运输与分配是提高籽粒产量的关键。

关键词: 绿豆, 干物质积累, 干物质转运

Abstract:

The dry matter accumulation is the basis for yield formation in crops, and its transportation determines the nutrient flow and seed yield. In order to find out the internal mechanisms of yield-formation of mung bean, investigated the accumulation, distribution and transportation characteristics of dry matter in the above-ground organs consisting of stalks, leaves, pod shells and seeds during flowering to maturing by using mung bean high-yielding cultivars Jilü 2 and An 9910, and low-yielding cultivars Chifeng and Tailai in the summer-sowing areas. The results showed that the change of dry matter accumulation in both of plant and seeds presented the “S” curves after anthesis, the key stage for yield formation of plant biomass and seeds was at 16–31 days after anthesis, the main source organ of grain-filling was the leaves at flowering nodes on the main stem with the biggest contribution to grain yield. Significant differences were observed between different genotypes, the accumulation and transportation capacities of the high-yielding cultivars (Jilü 2 and An 9910) were greater than those of the low-yielding cultivars, especially for the accumulation of dry matter in the leaves at the flowering node on the main stems, so higher yield and harvest index were achieved in the high-yielding cultivars. Therefore, the major practice to achive higher yield in the mung bean production should be to choose the cultivars with multi-pods and bigger grain, to enhance the field management after anthesis to maintain longer function duration of leaves at flowering nodes on the main stem, and to remove the invalid branches to improve the transportation and distribution of dry matter as well.

Key words: Mung bean, Accumulation of dry matter, Transportation of dry matter

[1] Kong L-H(孔丽红), Zhao Y-L(赵玉路), Zhou F-P(周福平). The relations of the high production and the wheat dry matter accumulation and the revolution. J Shanxi Agric Sci (山西农业科学), 2007, 35(8): 6-8 (in Chinese with English abstract)

[2] Zhang Y-S(张银锁), Yu Z-R(宇振荣), Driessen P M. Experimental study of assimilate production, partitioning and translocation among plant organs in summer maize (Zea mays) under various environmental and management conditions. Acta Agron Sin (作物学报), 2002, 28(1): 104-109 (in Chinese with English abstract)

[3] Liu W-D(刘万代), Yin J(尹钧), Zhu G-J(朱高纪). Effects of leaf removal on dry matter accumulation and grain yield in different spike-type wheat varieties. Sci Agric Sin (中国农业科学), 2007, 39(7): 1353-1360 (in Chinese with English abstract)

[4] Zhang L-Z(张立桢), Cao W-X(曹卫星), Zhang S-P(张思平). Dynamic simulation on dry matter partitioning and yield formation in cotton. Sci Agric Sin (中国农业科学), 2004, 37(11): 1621-1627 (in Chinese with English abstract)

[5] Tang L(汤亮), Zhu Y(朱艳), Sun X-F(孙小芳), Cao W-X(曹卫星). Dynamic simulation model for photosynthesis and dry matter accumulation in rapeseed. Acta Agron Sin (作物学报), 2007, 33(2): 189-195 (in Chinese with English abstract)

[6] Li D-H(李大恒), Tu N-M(屠乃美). Studies on the characters of dry matter production and transition in two-line hybrid rice. Chin Agric Sci Bull (中国农学通报), 2006, 22(1): 114-117 (in Chinese with English abstract)

[7] Liu J-F(刘建丰), Yuan L-P(袁隆平), Deng Q-Y(邓启云), Chen L-Y(陈立云), Cai Y-D(蔡义东). A study on characteristics of photosynthesis in super high-yielding hybrid rice. Sci Agric Sin (中国农业科学), 2005, 38(2): 258-264 (in Chinese with English abstract)

[8] Huang Z-H(黄智鸿), Wang S-Y(王思远), Bao Y(包岩), Liang X-H(梁煊赫), Sun G(孙刚), Shen L(申林), Cao Y(曹洋), Wu C-S(吴春胜). Studies on dry matter accumulation and distributive characteristic in super high-yield maize.J Maize Sci (玉米科学), 2007, 15(3): 95-98(in Chinese with English abstract)

[9] Gao X-L(高小丽), Sun J-M(孙健敏), Gao J-F(高金锋), Feng B-L(冯佰利), Chai Y(柴岩), Jia Z-K(贾志宽). Photosynthetic performance in the leaves of different mung bean genotypes.Acta Agron Sin (作物学报), 2007, 33(7): 1154-1161(in Chinese with English abstract)

[10] Gao Q-R(高庆荣), Sun L-Z(孙兰珍), Liu B-S(刘保申). Accumulation transportation and distribution of dry matter after anthesis in hybrid wheat. Acta Agron Sin (作物学报), 2000, 26(2): 163-170(in Chinese with English abstract)

[11] Shen X-S(沈学善), Zhu Y-J(朱云集), Guo T-C(郭天财), Li G-Q(李国强), Qu H-J(屈会娟). Effects of sulfur application on accumulation and transportation of photoassimilate of two winter wheat cultivars with different gluten.Plant Nutr Fertr Sci (植物营养与肥料学报), 2008, 14(1): 17-21 (in Chinese with English abstract)

[12] Hu X-P(胡小平), Wang C-F(王长发). SAS Basic and Statistical Example Course(SAS基础及统计实例教程). Xi’an: Xi’an Map Press, 2001. pp 73-85 (in Chinese)

[13] Zhou J-H(周均湖), Li S-Z(李素真), Wang Q-Y(王秋云), Sun L-M(孙雷鸣), Zhao K(赵凯). The dry matter accumulation of plant and grain in different super wheat genotypes. Shandong Agric Sci (山东农业科学), 2006, (4): 13-15(in Chinese with English abstract)

[14] Zou D-S(邹冬生), Zheng P-Y(郑呸尧). Studies on the relationship between photosynthetic capacities and formations of dry matter and seed yield in soybean plants. Soybean Sci (大豆科学), 1991, 10(3): 217-225(in Chinese with English abstract)

[15] Belikov I F, Pirskii L I. Violation of the local distribution of assimilates in soybean. Soviet Plant Physiol, 1966, 13: 361-364

[16] Hume D J, Criswell J G. Distribution and utilization of 14C-labelled assimilates in soybeans. Crop Sci, 1973, 13: 519-524

[17] Xia M-Z(夏明忠). Effects of broad bean leaves in different positions on the yield of plant and photosynthetic compensation after defoliation. Plant Physiol Commun (植物生理学通讯), 1987, (1): 12-17(in Chinese with English abstract)

[18] Lucas E O, Milbourn G M, Whitford P N. The translocation of 14C-photosynthate from leaves. Ann Appl Biol, 1976, 83: 285-290

[19] Waters L Jr, Breen P J, Mack H J. Translocation of 14C-photosynthate carbohydrate content and nitrogen fixation in Phaseolus vulgaris L. during reproductive development. J Am Soc Hort Sci, 1980, 105: 424-427

[20] Wien H C, Altschuler S L, Ozbun J L, Wallace D H. 14C-assimilate distribution in Phaseolus vulgaris L. During the reproductive period. J Am Soc Hort Sci, 1976, 101: 510-513

[21] Liu H-C(刘厚诚), Guan P-C(关佩聪), Chen R-Y(陈日远). Translocation and distribution of 14C-photosynthate in asparagus bean

[Vigna unguiculata W. ssp. sesquipedals (L.) Verd]. Acta Agric Nucl Sin (核农学报), 1996, 10(1): 30-34(in Chinese with English abstract)

[22] Zhan X-M(战秀梅), Han X-R(韩晓日), Yang J-F(杨劲峰), Liu X-H(刘小虎), Ma L-L(马玲玲). Dynamics changes of dry matter accumulation of maize as affected by different quantity of nitrogen and phosphorus and potassium. Chin J Soil Sci (土壤通报), 2007, 38(3): 495-499(in Chinese with English abstract)

[23] Wei J-J(魏建军), Liu J-G(刘建国), Dong Z-X(董志新), Lei Y-W(雷咏雯). Regulation of source and sink manipulation on photosynthesis and metabolism assimilates in soybean. Xinjiang Agri Sci (新疆农业科学), 2004, 41(2): 65-68 (in Chinese with English abstract)

[24] Gao X-L(高小丽), Sun J-M(孙健敏), Gao J-F(高金锋), Feng B-L(冯佰利), Chai Y(柴岩), Jia Z-K(贾志宽). Leaf aging and reactive oxygen metabolism in different genotypes of mung bean.Sci Agric Sin (中国农业科学), 2008, 41(9): 2873-2880 (in Chinese with English abstract)

[25] Kuo C G. Physiological basis on increasing mungbean yield. Rain Fed Crops (杂粮作物), 1985, (2): 39-41 (in Chinese)
[1] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[2] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[3] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[4] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[5] 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析[J]. 作物学报, 2021, 47(3): 546-555.
[6] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[7] 王飞, 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元, 付国占. 增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响[J]. 作物学报, 2021, 47(11): 2220-2231.
[8] 于宁宁,张吉旺,任佰朝,赵斌,刘鹏. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响[J]. 作物学报, 2020, 46(6): 960-967.
[9] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[10] 于奇,冯乃杰,王诗雅,左官强,郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响[J]. 作物学报, 2019, 45(7): 1080-1089.
[11] 陈四龙,程增书,宋亚辉,王瑾,刘义杰,张朋娟,李玉荣. 高产高油花生品种的光合与物质生产特征[J]. 作物学报, 2019, 45(2): 276-288.
[12] 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879.
[13] 王宏民,成小芳,樊艳平,郑海霞,张耀文,张仙红. 绿豆不同品种对绿豆象的抗性初探[J]. 作物学报, 2018, 44(8): 1136-1141.
[14] 樊艳平,成小芳,王宏民,张耀文,张仙红. 四个抗豆象绿豆品种的胰蛋白酶抑制剂稳定性[J]. 作物学报, 2018, 44(6): 867-875.
[15] 刘长友,苏秋竹,范保杰,曹志敏,张志肖,武晶,程须珍,田静. 栽培绿豆V1128抗豆象基因定位[J]. 作物学报, 2018, 44(12): 1875-1881.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!