欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1764-1770.doi: 10.3724/SP.J.1006.2009.01764

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦光周期基因Ppd-B1的选择性剪接分析

郭志爱1,2,赵光耀2,任正隆1,*,贾继增2,*   

  1. 1 四川农业大学农学院,四川雅安 625014;2中国农业科学院油料作物研究所/高家农作物基因资源与基因改良重大科学工程/农业部作物种质资源与生物技术重点开放实验室,北京100081
  • 收稿日期:2009-04-09 修回日期:2009-07-24 出版日期:2009-10-12 网络出版日期:2009-08-07
  • 通讯作者: 任正隆,E-mail:renzllab@sicau.edu.cn,Tel:0835-2883153;贾继增,E-mail:jzjia@mail.caas.net.cn,Tel:010-82105831
  • 基金资助:

    本研究国家重点基础研究发展计划(973计划)项目(2004CB117200)和农业部保种项目资助。

Alternative Splicing of Photoperiod Response Gene Ppd-B1 in Wheat

GUO Zhi-Ai12,ZHAO Guang-Yao2,REN Zheng-Long1*,Jia Ji-Zeng2*   

  1. 1College of Agriculture,Sichuan Agricultural University,Ya'an 625014,Sichuan,China;2National Key Facility for Crop Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm & Biotechnology,Ministry of Agriculture/Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2009-04-09 Revised:2009-07-24 Published:2009-10-12 Published online:2009-08-07
  • Contact: REN Zheng-Long,E-mail:renzllab@sicau.edu.cn,Tel: 0835-2883153;JIA Ji-Zeng,E-mail:jzjia@mail.caas.net.cn,Tel: 010-82105831

摘要:

为深入认识光周期基因Ppd-B1的功能,在转录水平上研究其表达特点,通过cDNA与基因组DNA序列对比,发现Ppd-B1 mRNA加工存在选择性剪接,3个可选择剪接位点分别以外显子增加、5'剪接位点改变和内含子保留形式分布在5'UTR、第5外显子和第6内含子,其中前两种方式不引起蛋白保守结构域的改变,后种方式却导致基因移码突变。Ppd-B1选择性剪接可产生8种不同形式的转录本,其中4种含有完整的编码序列,能够翻译成功能蛋白,另4种表达丰度较低,不翻译或翻译时被提前终止。Ppd-B1不同转录本的相对表达量不同,而且这种差异受材料光周期反应特性和外界光周期环境的影响。

关键词: 小麦, 光周期反应, Ppd-B1, 选择性剪接, 转录本

Abstract:

Alternative splicing creates multiple types of mRNA transcripts from a single gene, and can contribute to the regulation of gene function and protein diversity in eukaryotic cells. Photoperiod response plays a major role in controlling the heading time, yield, and adaptability in wheat (Triticum aestivum L.), and Ppd-B1 has been considered to have a potential effect on wheat responses to photoperiod changes. However, its alternative splicing has not been reported yet. In the present study, a photoperiod insensitive variety Chinese Spring carrying Ppd-B1 and another photoperiod sensitive variety Marquis carrying ppd-B1 were grown under four different photoperiod conditions. The cDNA and genomic DNA sequences of Ppd-B1 were isolated and characterized. The length of Ppd-B1 coding region was 3 053 bp with eight exons whose total size was 1 995 bp. The Ppd-B1 mRNA was alternatively spliced, producing multiple types of transcripts. There were three alternative splicing sites located in 5' UTR, exon 5, and intron 6, whose action led to exon increasing, alternative 5' end processing and intron retention. The alternative processing events that were augmented by the two former splicing sites remained the conserved Psedo-response regulator (PRR) domain in the deduced protein, whereas that directed by the third site resulted in frameshift mutation. Among the eight different types of Ppd-B1 transcripts produced by alternative splicing, four types (type a to d) expressed at relatively high levels with the frequency ranging from 32.6% (type d) to 13.0% (type b). They could be translated into full length proteins, and were likely to be functional. The remaining types (type e to h) expressed at very low levels with the frequency varying from 2.2% (type g) to 6.5% (type e). They gave rise to truncated peptides upon conceptual translation. The relative abundance of the different types of Ppd-B1 transcripts were changed by the photoperiod response characteristics of wheat varieties and the photoperiod conditions under which wheat plants were cultured. The data collected here paves the way for further studies to reveal the physiological function of Ppd-B1 alternative splicing in wheat.

Key words: Wheat, Photoperiod response, Ppd-B1, Alternative splicing, Transcripts

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!