欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 163-169.doi: 10.3724/SP.J.1006.2010.00163

• 耕作栽培·生理生化 • 上一篇    下一篇

固定道结合垄面覆盖种植模式对春小麦冠层结构特性的影响

杨荣1,2,黄高宝2   

  1. 1中国科学院寒区环境与工程研究所/临泽内陆河流域研究站,甘薯兰州730000;2甘肃农业大学,甘肃兰州730000
  • 收稿日期:2009-07-27 修回日期:2009-10-06 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 黄高宝, E-mail: huanggb@gsau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(40801014),国际科技支撑计划项目(2007BAD46B06)和甘肃省自然科学基金(310741B9)资助。

Canopy Architecture Characteristics of Spring Wheat under Controlled Traffic Tillage with Mulching in Ridge

YANG Rong1,2,HUANG Gao-Bao2   

  1. 1Linze Inland River Basin Research Station/Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou730000,China;2Gansu Agricultural University,Lanzhou 730000,China
  • Received:2009-07-27 Revised:2009-10-06 Published:2010-01-12 Published online:2009-11-17
  • Contact: HUANG Gao-Bao,E-mail: huanggb@gsau.edu.cn

摘要:

为了进一步丰富固定道耕作技术理论体系,2005年在河西走廊中部小麦种植区通过结合垄面覆盖试验,探讨了固定道耕作技术对春小麦株高、叶分布、叶面积指数、群体内光分布和光合速率等冠层结构特性的影响。结果表明,固定道结合垄面覆膜(CTP)、固定道结合垄面秸秆覆盖(CTS)、固定道无覆盖(CT)处理的小麦株高分别比平作(对照, LT)2.093.275.65 cmCTSCTP处理的旗叶与倒3叶间距、旗叶与倒2叶间距以及倒2叶与倒3叶间距的比值接近3:2:1,有利于光能在群体各个层次均匀分布。叶面积指数在625日后呈LT>CTP>CTS>CT的变化规律,3个固定道处理的叶面积指数都小于LT处理,而垄面覆盖可以减弱这种影响。LT处理入射光线的97.2%被小麦群体截获,其中77.3%在旗叶层被截获,旗叶光合速率较低,光能利用率不高;CTPCTS处理的群体内光分布较均匀,漏射损失的光线分别占入射光线的8.0%11.2%CT处理生长中期旗叶光合速率较高,但入射光线的透射损失率较高,占入射光线的23.7%,而且整个生育期叶面积指数偏低。总之,CTPCTS处理构建的松塔型结构有利于光能有效利用,增加作物产量;而LTCT处理则分别由于群体过于密闭遮蔽和稀疏导致光能反射和透射损失严重而降低了作物生产力。

关键词: 固定道耕作, 地膜覆盖, 秸秆覆盖, 冠层结构

Abstract:

In a field test on the experimental farm of Gansu Agricultural University in Zhangye, Northwest China, the characteristics of colony canopy architecture was investigated in spring wheat under the treatments of controlled traffic tillage with straw mulching in ridge (CTS), controlled traffic tillage without mulching in ridge (CT), controlled traffic tillage with film mulching in ridge (CTP), and conventional cultivation (LT, control). The plant height, leaf distribution, leaf area index, light intercept and capture ratio, and photosynthetic rate were measured at a thesis stage. Compared with LT, the plant height was 2.09, 3.27, and 5.65 cm lower in CTP, CTS, and CT, respectively, and there was a significant difference between CT and LT treatments. Under the treatments of CTP and CTS, an approximate ratio of 3:2:1 was observed in the relationship among the distance between flag leaf and the second leaf from top, and the distance between the second and the third leaf from top. Such ratio was optimal for the uniform distribution of light in the wheat colony. The leaf area index was in the order of LT>CTP>CTS>CT, especially from June 25 to July 15. Controlled traffic tillage reduced leaf area apparently, however, mulching in ridge alleviated such influence. In terms of the distribution of incident light within layers of wheat canopy, although wheat colony intercepted the most lights in treatment LT (97.2%), the light distribution varied sharply in the flag leaf layer (77.34%), the second leaf layer (12.17%), and the third leaf layer (7.17%), indicating an incompact colony canopy configuration and low photosynthetic rate. However, the light distribution in the three leaf layers was relatively well-proportioned in CTP and CTS, with only 8.03% and 11.23% of light penetration, respectively. The photosynthetic rate of flag leaf was higher in treatment CT than in other treatments at anthesis stage, but treatment CT had the highest penetration ratio of light and the smallest leaf area index among the four treatments. The results showed that treatments CTP and CTS were in favor of better colony architecture and solar energy use efficiency, resulting in yield promotion in spring wheat. In contrast, the colony configuration was too compact in treatment LT and too incompact in treatment CT to obtain high yield.

Key words: Controlled traffic tillage, Film mulching, Straw mulching, Canopy architecture


[1] Lü L-H(吕丽华), Tao H-B(陶洪斌), Xia L-K(夏来坤), Zhang Y-J(张雅杰), Zhao M(赵明), Zhao J-R(赵久然), Wang P(王璞). Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agron Sin (作物学报), 2008, 34(3): 447-455 (in Chinese with English abstract)

[2] Wang X-Q(王旭清), Wang F-H(王法宏), Ren D-C(任德昌), Cao H-X(曹宏鑫), Dong Y-H(董玉红). Micro-climatic effect of raised-bed planting of wheat and its influence on plant development and yield. Chin J Agrometeorol(中国农业气象), 2003, 24(2): 5-8 (in Chinese with English abstract)

[3] Reynolds M P, Van Ginkel M, Ribaut J M. Avenues for genetic modification of radiation use efficiency in wheat. J Exp Bot, 2000, 51: 459-473

[4] Li S-D(李升东), Wang F-H(王法宏), Si J-S(司纪升), Kong L-A(孔令安), Feng B(冯波), Zhang B(张宾), Liu J-J(刘建军), Qin X-S(秦晓胜). Light distribution in wheat population and its effect on leaf photosynthetic rate under raised-bed planting method. Chin J Eco-Agric (中国生态农业学报), 2009, 17(3): 465-468 (in Chinese with English abstract)

[5] Li S-D(李升东), Wang F-H(王法宏), Si J-S(司纪升), Feng B(冯波), Kong L-A(孔令安). Comparison on transpiration rate,photosynthetic rate and WUE of different winter wheat genotypes under two planting system. J Triticeae Crops (麦类作物学报), 2007, 27(3): 514-517 (in Chinese with English abstract)

[6] Tullberg J N, Ziebarth P J, Li Y X. Tillage and traffic effects on runoff. Aust J Soil Res, 2001, 39: 249-257

[7] Braunack M V, McGarry D. Traffic control and tillage strategies for harvesting and planting of sugarcane (Saccharum officinarum) in Australia. Soil Tillage Res, 2006, 89: 86-102

[8] Chen H(陈浩), Li H-W(李洪文), Gao H-W(高焕文), Wang X-Y(王晓燕), He J(何进), Li W-Y(李问盈), Wang Q-J(王庆杰). Effect of long-term controlled traffic conservation tillage on soil structure. Trans CSAE (农业工程学报), 2008, 24(11): 122-125 (in Chinese with English abstract)

[9] Huang H(黄虎), Wang X-Y(王晓燕), Li H-W(李洪文), Chen H(陈浩), Zhang X-M(张学敏). Experimental investigation on energy saving of controlled traffic conservation tillage. Trans CSAE(农业工程学报), 2007, 23(12): 140-143 (in Chinese with English abstract)

[10] Liu Z-Y(刘兆晔), Yu J-C(于经川), Mou C-S(牟春生), Lu W-Z(刘维正), Wang J-C(王江春), Chen Y-N(陈永娜). A study on the plant height component indexes of wheat. J Laiyang Agric Coll (莱阳农学院学报), 2000, 17(2): 120-123 (in Chinese with English abstract)

[11] Wang F-H(王法宏), Yang H-B(杨洪宾), Li S-D(李升东), Si J-S(司纪升). Effect of raised bed planting on plant morphological characters and grain yield of winter wheat. Acta Agron Sin (作物学报), 2007, 33(6): 1038-1040 (in Chinese with English abstract)

[12] Wang T-C(王同朝), Wang Y(王燕), Wei L(卫丽), Wang J-Z(王俊忠), Nie S-W(聂胜委), Liu S-W(刘书伟). Research progress on crop raised-bed planting in China. J Henan Agric Univ (河南农业大学学报), 2005, 39(4): 377-381 (in Chinese with English abstract)

[13] Maddonni G A. Leaf area, light interception and crop development in maize. Field Crop Res, 1996, 48: 81-87

[14] Yang H-B(杨洪宾), Xu C-Z(徐成忠), Lu C-J(鹿长金), Wang H-Y(王化岩), Wang F-H(王法宏), Feng B(冯波). Effect of raised bed planting on plant morphologies and characteristics related to grain yield of winter wheat. J Triticeae Crop (麦类作物学报), 2006, 26(4): 119-122 (in Chinese with English abstract)

[15] Li S-D(李升东), Wang F-H(王法宏), Si J-S(司纪升), Kong L-A(孔令安), Feng B(冯波), Zhang B(张宾). Study on wheat population characters under raised bed planting. J Triticeae Crop (麦类作物学报), 2008, 28(4): 638-643 (in Chinese with English abstract)

[16]Fan Z-X(范仲学), Wang P(王璞), Liang Z-X(梁振兴), Marion B Z, Wilhelm C. Effects of optimized irrigation and nitrogen fertilization on the canopy structure of winter wheat. Chin J Eco-Agric (中国生态农业学报), 2005, 13(3): 79-81 (in Chinese with English abstract)

[17] Hu Y-J(胡延吉), Lan J-H(兰进好), Zhao T-F(赵坦方), Gao F-Z(高法振). Canopy architecture and photosynthetic characteristics in two winter wheat cultivars with different spike type. Acta Agron Sin (作物学报), 2000, 26(6): 905-912 (in Chinese with English abstract)

[18] Dong S-T(董树亭), Hu C-H(胡昌浩), Yue S-S(岳寿松), Wang Q-Y(王群瑛), Gao R-Q(高荣岐), Pan Z-L(潘子龙). The characteristics of canopy photosynthesis of summer corn (Zea mays) and its relation with canopy structure and ecological conditions. Acta Phytoecol Geobot Sin (植物生态学与地植物学学报), 1992, 16(4): 372-379 (in Chinese with English abstract)


[19] Yang R(杨荣), Huang G-B(黄高宝), Yu A-Z(于爱忠). Effect of controlled traffic irrigation with ridge cover on temporal and spatial distribution of soil moisture and crop yield. Acta Agric Boreali-Occident Sin (西北农业学报), 2006, 15(4): 18-24 (in Chinese with English abstract)
[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响[J]. 作物学报, 2021, 47(9): 1654-1665.
[4] 牛丽, 白文波, 李霞, 段凤莹, 侯鹏, 赵如浪, 王永宏, 赵明, 李少昆, 宋吉青, 周文彬. 地膜覆盖对黄土高原地区两种种植密度下玉米叶片代谢组的影响[J]. 作物学报, 2021, 47(8): 1551-1562.
[5] 王奇, 扶亚芳, 司雷勇, 金岩, 夏镇卿, 路海东. 不同膜上遮挡措施对旱地玉米土壤理化性状及产量的影响[J]. 作物学报, 2021, 47(2): 359-367.
[6] 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879.
[7] 杨延龙,肖飞,徐守振,王宇轩,左文庆,梁福斌,张旺锋. 新疆早熟陆地棉品种更替产量提高过程中冠层结构特征的演变[J]. 作物学报, 2017, 43(10): 1518-1526.
[8] 吴晓丽,李朝苏,汤永禄,李俊,马孝玲,李式昭,黄明波. 四川盆地9000 kg hm-2产量潜力小麦品种的花后冠层结构、生理及同化物分配特性[J]. 作物学报, 2017, 43(07): 1043-1056.
[9] 高亮,张维宏*,杜雄,郭江,宋晋辉,王晓明,赵治海. 覆膜和补灌对杂交谷子产量形成与水分利用效率的影响[J]. 作物学报, 2017, 43(01): 122-132.
[10] 吴晓丽,汤永禄,李朝苏,吴春,黄钢. 秋季玉米秸秆覆盖对丘陵旱地小麦生理特性及水分利用效率的影响[J]. 作物学报, 2015, 41(06): 929-937.
[11] 于爱忠,柴强*. 供水与地膜覆盖对干旱灌区玉米产量的影响[J]. 作物学报, 2015, 41(05): 778-786.
[12] 柴守玺,杨长刚,张淑芳,陈恒洪,常磊. 不同覆膜方式对旱地冬小麦土壤水分和产量的影响[J]. 作物学报, 2015, 41(05): 787-796.
[13] 姜元华,许轲,赵可,孙建军,韦还和,许俊伟,魏海燕,郭保卫,霍中洋,戴其根,张洪程*. 甬优系列籼粳杂交稻的冠层结构与光合特性[J]. 作物学报, 2015, 41(02): 286-296.
[14] 李静静,李从锋,李连禄,丁在松,赵明. 苗带深松条件下秸秆覆盖对春玉米土壤水温及产量的影响[J]. 作物学报, 2014, 40(10): 1787-1796.
[15] 胡凝,吕川根,姚克敏,张晓翠. 利用鱼眼影像技术反演不同株型水稻的冠层结构参数[J]. 作物学报, 2014, 40(08): 1443-1451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!