欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 154-162.doi: 10.3724/SP.J.1006.2010.00154

• 耕作栽培·生理生化 • 上一篇    下一篇

在铀尾渣污染土中壤添加磷对植物生长及积累重金属的影响

向言词1, 2,官春云1,黄璜1,严明理2,彭秀花2   

  1. 1湖南农业大学油料作物研究所,湖南长沙410128;2湖南科技大学生命科学学院,湖南湘潭411201
  • 收稿日期:2009-06-23 修回日期:2009-09-30 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 基金资助:

    本研究由国家高技术研究发展计划项目(2005AA219040),湖南省自然科学市州联合基金重点项目(09JJ8003),湖南省科技计划项目(2007RS412),湖南省教育厅优秀青年项目(07B018),湖南科技大学教育科学研究项目(G30607)资助。

Effects of Phosphorus on Growth and Uptake of Heavy Metals in Plants Grown in the Soil Contaminated by uranium Tailing

XIANG Yan-Ci1,2,GUAN Chun-Yun1,HUANG Huang1,YAN Ming-Li2,PENG Xiu-Hua2   

  1. 1Institute of Oil Crops,Hunan Agricultural University,Changsha 410128,China;2School of Life Science,Hunan University of Science and Technology,Xiangtan 411201,China
  • Received:2009-06-23 Revised:2009-09-30 Published:2010-01-12 Published online:2009-11-17

摘要:

在重金属污染土壤中添加化学稳定剂,可降低重金属的生物有效性,阻控重金属进入食物链。设计盆栽试验,在铀尾渣污染土壤中添加不同浓度的磷肥(03060120240480 mg kg-1),调查磷对芥菜型油菜(Brassica juncea)和甘蓝型油菜(B. napus)的生长及植株积累重金属铀、镉、锌和铅含量的状况,分析添加磷肥前后植株内磷含量和土壤重金属DTPA提取态含量的变化。结果表明,添加磷肥前,铀尾渣污染土壤总氮、总磷、总钾和有机质的含量低,铀、镉、锌和铅的含量高,对两种油菜的生长有抑制作用;添加磷肥后,两种油菜体内磷含量增加,污染土壤中的铀、镉、锌和铅的DTPA提取态含量显著降低,其降幅分别为17.1%~70.5%24.0%~57.6%8.9%~32.4%8.6%~55.8%;大幅度降低两种油菜体内的铀、镉、锌和铅含量,其含量与土壤中这些重金属DTPA提取态含量显著正相关;显著增加两种油菜的干重、株高、根长和叶绿素含量,显著降低其体内的SOD活性和MDA含量。因此在铀尾渣污染土壤中添加磷可有效减少重金属在油菜体内积累,降低重金属沿食物链传递的风险。

关键词: 油菜, 积累, 铀尾渣, 重金属

Abstract:

The uranium tailing contains uranium and other heavy metals like lead, cadmium and zinc, which usually makes the surrounding soil and water bodies seriously polluted with contaminated rain and dust. There is a potential threat to human’s health because the heavy metals can be absorbed and accumulated by the crops grown in the polluted areas, and then possibly transferred to human body by an environment-crop-food chain. The development of an economical and effective remediation method for the heavy-metal contaminated soil is urgent to improve environmental quality and enhance the food safety. As one of the fast-developing technologies, chemical stabilization has been widely studied, and the study on inhibition of heavy metal contamination by adding phosphorus-containing material to soil is becoming an international hotspot. In this study, two species of oilseed rapes, B. junea and B. napus, grown in containers with the uranium-tailing contaminated soil, were used to investigate the effects of phosphorus fertilization on plant growth and accumulation of heavy metals (U, Cd, Zn, and Pb). Container soil was treated by adding a phosphorus fertilizer NaH2PO4 with a rate of 0, 30, 60, 120, 240, and 480 mg P kg-1, respectively. For the control soil (without adding phosphorus fertilization), there were a lower concentration of total nitrogen, phosphorus, potassium, and organic matter, and a higher concentration of U, Cd, Zn and Pb. Plant growth of both species was inhibited. Compared with the control group, the concentration of phosphorus significantly increased in plants grown in the P-fertilizer added soil. The DTPA-exactable concentrations of U, Cd, Zn, and Pb in this soil were decreased by 17.1–70.5%, 24.0–57.6%, 8.9–32.4%, and 8.6–55.8%, respectively. Also, addition of phosphorus in the uranium-tailing contaminated soil significantly decreased the contents of U, Cd, Zn, and Pb in plant organs. A significant positive correlation (P<0.01) was observed between the contents of U, Cd, Zn, and Pb in plant organs of both species and DTPA-exactable concentrations of these metals in the contaminated soil. Additionally, addition of phosphorus fertilization of 60-480 mg P kg-1 significantly increased dry weight, height, root length and chlorophyll content of plants. A significant decrease of SOD activity and MDA content occurred in both species grown in the P-fertilizer treated soil compared to the control. Therefore, application of phosphorus fertilizer to the uranium-tailing contaminated soil is a practical and effective approach to reduce accumulation of heavy metals in plant organs of oilseed rapes and the risk of these pollutants entering the food chain.

Key words: Oilseed rape, Phosphorus, Accumulation, Uranium tailing, Heavy metal

[1] Pan Y-J(潘英杰). Status of environmental treatment and countermeasures ought to be taken during installations decommissioning of uranium mining and metallurgy in China. Ura Min Metall (铀矿冶), 1997, 16(4): 227-236 (in Chinese with English abstract)
[2] Li M S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci Tot Environ, 2006, 357: 38-53
[3] Cui Y-J(崔玉静), Zhao Z-Q(赵中秋), Liu W-J(刘文菊), Chen S-B(陈世宝), Zhu Y-G(朱永官). Transfer of cadmium through soil-plant-human continuum and its affecting factors. Acta Ecol Sin (生态学报), 2003, 23(10): 2133-2143 (in Chinese with English abstract)

[4] Ownby D R, Galvan K A, Lydy M J. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils. Environ Poll, 2005, 136: 315-321

[5] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review. Waste Manage, 2008, 28: 215-225

[6] Raicevic S, Wright J V, Veljkovic V, Conca J L. Theoretical stability assessment of uranyl phosphates and apatites: Selection of amendments for in situ remediation of uranium. Sci Tot Environ, 2006, 355: 13-24

[7] Chen S B, Xu M G, Ma Y B, Yang J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotox Environ Saf, 2007, 67: 278-285

[8] Miretzky P, Fernandez-Cirelli A. Phosphates for Pb immobilization in soils: A review.Environ Chem Lett, 2008, 6: 121-133

[9] Bolan N S, Naidu R, Khan M A R, Tillman R W, Syers J K. The effects of anion sorption on sorption and leaching of cadmium. Austral J Soil Res, 1999, 37: 445-460
[10] Zhou S-W(周世伟), Xu M-G(徐明岗). The progress in phosphate remediation of heavy metal-contaminated soils. Acta Ecol Sin (生态学报), 2007, 27(7): 3043-3050 (in Chinese with English abstract)

[11] Zwonitzer J C, Pierzynsky G M, Hettiarachchi G M. Effects of phosphorus additions on lead, cadmium, and zinc bioavailability in metal-contaminated soil. Water, Air, Soil Poll, 2003, 143: 193-209

[12] Sanding A, Bruno J. The solubility of (UO2)3(PO4)2.4H2O and the formation of U(VI) phosphate complexes: Their influence in uranium speciation in natural waters. Geoch Cosmoch Acta, 1992, 56: 4135-4145
[13] Arey J S, Seaman J C, Bertsch P M. Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environ Sci Technol, 1999, 33: 337-342
[14] Jerden J L Jr, Sinha A K. Phosphate based immobilization of uranium in an oxidizing bedrock aquifer. Appl Geochem, 2003, 18: 823-843
[15] McGowen S L, Basta N T, Brown G O. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual, 2001, 30: 493-500
[16] Cao R X, Ma L Q, Chen M, Singh S P, Harris W G. Phosphate-induced metal immobilization in a contaminated site. Environ Poll, 2003, 122: 19-28
[17] Wang B-L(王碧玲), Xie Z-M(谢正苗), Sun Y-F(孙叶芳), Li J(李静), Tian Z-J(田兆君), Chen Y-X(陈英旭).Effects of phosphorus fertilizers on remediation of lead toxicity in a soil contaminated by lead and zinc mining. Acta Sci Circum (环境科学学报), 2005, 25(9): 1189-1194 (in Chinese with English abstract)
[18] Cao X D, Ma L Q, Singh S P, Zhou Q X. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environ Poll, 2008, 152: 184-192
[19] Xu Y, Schwartz F W, Tralna S J. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Tech, 1994, 28: 1472-1480
[20] Bolan N S, Adriano D C, Duraisamy P, Mani, P A. Immobilization and phytoavailability of cadmium in variable charge soils: I. Effect of phosphate addition. Plant Soil, 2003, 250: 83-94

[21] Chen X-T(陈晓婷), Wang G(王果), Liang Z-C(梁志超), Hua C-Z(华村章), Fang L(方玲). Effects of calcium magnesium phosphate and silicon fertilizer on the growth and element uptake of pakchoi in cadmium, lead and zinc contaminated soil. J Fujian Agric For Univ (Nat Sci Edn)(福建农林大学学报×自然科学版), 2002, 31(1): 109-112 (in Chinese with English abstract)

[22] Wang B-L(王碧玲), Xie Z-M(谢正苗). Effects of phosphorus application on translocation of lead, zinc and cadmium in the soil-plant system. Environ Sci (环境科学), 2008, 29(11): 3225-3229 (in Chinese with English abstract)
[23] Soares C R F S, Siqueira J O. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fert Soils, 2008, 44: 833-841
[24] Pigna M, Cozzolino V, Violante A, Meharg A A. Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water, Air, Soil Poll, 2009, 197: 371-380
[25] Paulose B, Datta S P, Rattan R K, Chhonkar P K. Effect of amendments on the extractability, retention and plant uptake of metals on a sewage-irrigated soil. Environ Poll, 2007, 146: 19-24
[26] Liu L(刘亮), Wang G-P(王桂萍), Shen Z-G(沈振国), Chen Y-H(陈亚华). Effects of phosphorus on the plant growth and cadmium absorption of mustard (B. juncea) under cadmium stress. Chin J Soil Sci (土壤通报), 2008, 39(6): 1429-1435 (in Chinese with English abstract)
[27] Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environ Int, 2004, 30: 351-356
[28]Zhang Z-L(张志良), Qu W-J(瞿伟菁). Experiment Guide for Plant Physiology (植物生理学实验指导) (3rd edn). Beijing: Higher Education Press, 2003 (in Chinese)
[29] Ao Z-Q(敖子强), Qu L-Y(瞿丽雅), Lin W-J(林文杰), Xing J(邢军), Xiao T-F(肖唐付). Control of heavy metals in the soil-Chinese cabbage system by using additives in the indigenous zinc smelting area. Earth Environ (地球与环境), 2007, 35(2): 111-116(in Chinese with English abstract)
[30] Tang S-R(唐世荣). The Theory and Method of Phytoremediation for Polluted Environment. Bejing: Science Press, 2006(in Chinese)
[31]Sun J(孙健), Tie B-Q(铁柏清), Zhou H(周浩), Qian Z(钱湛), Mao X-Q(毛晓茜), Aoyama I, Luo R(罗荣). Effect of different amendments on the growth and heavy metals accumulation of Juncus effuses grown on the soil polluted by lead/zinc mine tailings. J Agro-Environ Sci (农业环境科学学报), 2006, 25(3): 637-643 (in Chinese with English abstract)
[32] Basta N T, McGowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Poll, 2004, 127: 73-82
[33] Chen S-B(陈世宝), Zhu Y-G(朱永官). Effects of different phosphorus-compounds on Pb uptake by Brassica Oleracea.Acta Sci Circum(环境科学学报), 2004, 24(4): 707-712 (in Chinese with English abstract)
[34] Mkandawire M, Taubert B, Dudel E G. Limitations of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability.Ecotox Environ Saf, 2006, 65: 118-128
[35] Jiang H M, Yang J C, Zhang J F. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ Poll, 2007, 147: 750-756
[36] Brown S, Chaney R, Hallfrisch J, Ryan J A, Berti W R. In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc and cadmium. J Environ Qual, 2004, 33: 522-531

[37] Kucharski R, Sas-Nowosielska A, Ma?kowski E, Japenga J, Kuperberg J M, Pogrzeba M, Krzy?ak J. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil, 2005, 173: 291-305
[38] Mishra S, Srivastava S, Tripathi R D, Govindarajan R, Kuriakose S V, Prasad M N V. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem,2006, 44: 25-37
[39] Liu H-C(刘厚诚), Kuang Y-H(邝炎华), Chen R-Y(陈日远). Changes of lipid peroxidation and activities of protective enzymes in Asparagus bean seedlings under phosphorus deficiency stress. Acta Hort Sin (园艺学报), 2003, 30(2): 215-217 (in Chinese with English abstract)
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[6] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[10] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[11] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[12] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[13] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[14] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[15] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!