作物学报 ›› 2010, Vol. 36 ›› Issue (1): 154-162.doi: 10.3724/SP.J.1006.2010.00154
向言词1, 2,官春云1,黄璜1,严明理2,彭秀花2
XIANG Yan-Ci1,2,GUAN Chun-Yun1,HUANG Huang1,YAN Ming-Li2,PENG Xiu-Hua2
摘要:
在重金属污染土壤中添加化学稳定剂,可降低重金属的生物有效性,阻控重金属进入食物链。设计盆栽试验,在铀尾渣污染土壤中添加不同浓度的磷肥(0、30、60、120、240和480 mg kg-1),调查磷对芥菜型油菜(Brassica juncea)和甘蓝型油菜(B. napus)的生长及植株积累重金属铀、镉、锌和铅含量的状况,分析添加磷肥前后植株内磷含量和土壤重金属DTPA提取态含量的变化。结果表明,添加磷肥前,铀尾渣污染土壤总氮、总磷、总钾和有机质的含量低,铀、镉、锌和铅的含量高,对两种油菜的生长有抑制作用;添加磷肥后,两种油菜体内磷含量增加,污染土壤中的铀、镉、锌和铅的DTPA提取态含量显著降低,其降幅分别为17.1%~70.5%、24.0%~57.6%、8.9%~32.4%和8.6%~55.8%;大幅度降低两种油菜体内的铀、镉、锌和铅含量,其含量与土壤中这些重金属DTPA提取态含量显著正相关;显著增加两种油菜的干重、株高、根长和叶绿素含量,显著降低其体内的SOD活性和MDA含量。因此在铀尾渣污染土壤中添加磷可有效减少重金属在油菜体内积累,降低重金属沿食物链传递的风险。
[1] Pan Y-J(潘英杰). Status of environmental treatment and countermeasures ought to be taken during installations decommissioning of uranium mining and metallurgy in China. Ura Min Metall (铀矿冶), 1997, 16(4): 227-236 (in Chinese with English abstract) [2] Li M S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci Tot Environ, 2006, 357: 38-53 [3] Cui Y-J(崔玉静), Zhao Z-Q(赵中秋), Liu W-J(刘文菊), Chen S-B(陈世宝), Zhu Y-G(朱永官). Transfer of cadmium through soil-plant-human continuum and its affecting factors. Acta Ecol Sin (生态学报), 2003, 23(10): 2133-2143 (in Chinese with English abstract) [4] Ownby D R, Galvan K A, Lydy M J. Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils. Environ Poll, 2005, 136: 315-321 [5] Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments-A review. Waste Manage, 2008, 28: 215-225 [6] Raicevic S, Wright J V, Veljkovic V, Conca J L. Theoretical stability assessment of uranyl phosphates and apatites: Selection of amendments for in situ remediation of uranium. Sci Tot Environ, 2006, 355: 13-24 [7] Chen S B, Xu M G, Ma Y B, Yang J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotox Environ Saf, 2007, 67: 278-285 [8] Miretzky P, Fernandez-Cirelli A. Phosphates for Pb immobilization in soils: A review.Environ Chem Lett, 2008, 6: 121-133 [9] Bolan N S, Naidu R, Khan M A R, Tillman R W, Syers J K. The effects of anion sorption on sorption and leaching of cadmium. Austral J Soil Res, 1999, 37: 445-460 [10] Zhou S-W(周世伟), Xu M-G(徐明岗). The progress in phosphate remediation of heavy metal-contaminated soils. Acta Ecol Sin (生态学报), 2007, 27(7): 3043-3050 (in Chinese with English abstract) [11] Zwonitzer J C, Pierzynsky G M, Hettiarachchi G M. Effects of phosphorus additions on lead, cadmium, and zinc bioavailability in metal-contaminated soil. Water, Air, Soil Poll, 2003, 143: 193-209 [12] Sanding A, Bruno J. The solubility of (UO2)3(PO4)2.4H2O and the formation of U(VI) phosphate complexes: Their influence in uranium speciation in natural waters. Geoch Cosmoch Acta, 1992, 56: 4135-4145 [13] Arey J S, Seaman J C, Bertsch P M. Immobilization of uranium in contaminated sediments by hydroxyapatite addition. Environ Sci Technol, 1999, 33: 337-342 [14] Jerden J L Jr, Sinha A K. Phosphate based immobilization of uranium in an oxidizing bedrock aquifer. Appl Geochem, 2003, 18: 823-843 [15] McGowen S L, Basta N T, Brown G O. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual, 2001, 30: 493-500 [16] Cao R X, Ma L Q, Chen M, Singh S P, Harris W G. Phosphate-induced metal immobilization in a contaminated site. Environ Poll, 2003, 122: 19-28 [17] Wang B-L(王碧玲), Xie Z-M(谢正苗), Sun Y-F(孙叶芳), Li J(李静), Tian Z-J(田兆君), Chen Y-X(陈英旭).Effects of phosphorus fertilizers on remediation of lead toxicity in a soil contaminated by lead and zinc mining. Acta Sci Circum (环境科学学报), 2005, 25(9): 1189-1194 (in Chinese with English abstract) [18] Cao X D, Ma L Q, Singh S P, Zhou Q X. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions. Environ Poll, 2008, 152: 184-192 [19] Xu Y, Schwartz F W, Tralna S J. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ Sci Tech, 1994, 28: 1472-1480 [20] Bolan N S, Adriano D C, Duraisamy P, Mani, P A. Immobilization and phytoavailability of cadmium in variable charge soils: I. Effect of phosphate addition. Plant Soil, 2003, 250: 83-94 [21] Chen X-T(陈晓婷), Wang G(王果), Liang Z-C(梁志超), Hua C-Z(华村章), Fang L(方玲). Effects of calcium magnesium phosphate and silicon fertilizer on the growth and element uptake of pakchoi in cadmium, lead and zinc contaminated soil. J Fujian Agric For Univ (Nat Sci Edn)(福建农林大学学报×自然科学版), 2002, 31(1): 109-112 (in Chinese with English abstract) [22] Wang B-L(王碧玲), Xie Z-M(谢正苗). Effects of phosphorus application on translocation of lead, zinc and cadmium in the soil-plant system. Environ Sci (环境科学), 2008, 29(11): 3225-3229 (in Chinese with English abstract) [23] Soares C R F S, Siqueira J O. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fert Soils, 2008, 44: 833-841 [24] Pigna M, Cozzolino V, Violante A, Meharg A A. Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water, Air, Soil Poll, 2009, 197: 371-380 [25] Paulose B, Datta S P, Rattan R K, Chhonkar P K. Effect of amendments on the extractability, retention and plant uptake of metals on a sewage-irrigated soil. Environ Poll, 2007, 146: 19-24 [26] Liu L(刘亮), Wang G-P(王桂萍), Shen Z-G(沈振国), Chen Y-H(陈亚华). Effects of phosphorus on the plant growth and cadmium absorption of mustard (B. juncea) under cadmium stress. Chin J Soil Sci (土壤通报), 2008, 39(6): 1429-1435 (in Chinese with English abstract) [27] Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui, China. Environ Int, 2004, 30: 351-356 [28]Zhang Z-L(张志良), Qu W-J(瞿伟菁). Experiment Guide for Plant Physiology (植物生理学实验指导) (3rd edn). Beijing: Higher Education Press, 2003 (in Chinese) [29] Ao Z-Q(敖子强), Qu L-Y(瞿丽雅), Lin W-J(林文杰), Xing J(邢军), Xiao T-F(肖唐付). Control of heavy metals in the soil-Chinese cabbage system by using additives in the indigenous zinc smelting area. Earth Environ (地球与环境), 2007, 35(2): 111-116(in Chinese with English abstract) [30] Tang S-R(唐世荣). The Theory and Method of Phytoremediation for Polluted Environment. Bejing: Science Press, 2006(in Chinese) [31]Sun J(孙健), Tie B-Q(铁柏清), Zhou H(周浩), Qian Z(钱湛), Mao X-Q(毛晓茜), Aoyama I, Luo R(罗荣). Effect of different amendments on the growth and heavy metals accumulation of Juncus effuses grown on the soil polluted by lead/zinc mine tailings. J Agro-Environ Sci (农业环境科学学报), 2006, 25(3): 637-643 (in Chinese with English abstract) [32] Basta N T, McGowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Poll, 2004, 127: 73-82 [33] Chen S-B(陈世宝), Zhu Y-G(朱永官). Effects of different phosphorus-compounds on Pb uptake by Brassica Oleracea.Acta Sci Circum(环境科学学报), 2004, 24(4): 707-712 (in Chinese with English abstract) [34] Mkandawire M, Taubert B, Dudel E G. Limitations of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability.Ecotox Environ Saf, 2006, 65: 118-128 [35] Jiang H M, Yang J C, Zhang J F. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress. Environ Poll, 2007, 147: 750-756 [36] Brown S, Chaney R, Hallfrisch J, Ryan J A, Berti W R. In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc and cadmium. J Environ Qual, 2004, 33: 522-531 [37] Kucharski R, Sas-Nowosielska A, Ma?kowski E, Japenga J, Kuperberg J M, Pogrzeba M, Krzy?ak J. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil, 2005, 173: 291-305 [38] Mishra S, Srivastava S, Tripathi R D, Govindarajan R, Kuriakose S V, Prasad M N V. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem,2006, 44: 25-37 [39] Liu H-C(刘厚诚), Kuang Y-H(邝炎华), Chen R-Y(陈日远). Changes of lipid peroxidation and activities of protective enzymes in Asparagus bean seedlings under phosphorus deficiency stress. Acta Hort Sin (园艺学报), 2003, 30(2): 215-217 (in Chinese with English abstract) |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[4] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[5] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[6] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[10] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[11] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[12] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[13] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[14] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[15] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
|