欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (2): 341-346.doi: 10.3724/SP.J.1006.2010.00341

• 研究简报 • 上一篇    下一篇

花生白藜芦醇合成酶基因PNRS1的克隆及其在原核中的表达

韩晶晶1,2,刘炜1,*,毕玉平1,2   

  1. 1 山东省农业科学院高新技术研究中心 / 农业部黄淮海作物遗传改良与生物技术重点开放实验室,山东济南 2501002 山东师范大学生命科学学院,山东济南 250014
  • 收稿日期:2009-11-06 修回日期:2009-10-04 出版日期:2010-02-10 网络出版日期:2009-12-21
  • 基金资助:
    本研究由转基因生物新品种培育科技重大专项(2009ZX08001-010B)和山东省农业科学院博士科研启动基金项目(2007YBS008)资助。

Molecular Cloning of Peanut Resveratrol Synthetic Enzyme 1(PNRS1) and its Expression in Prokaryote

HAN Jing-Jing1,2,LIU Wei1,*, BI Yu-Ping1,2
  

  1. 1 Hi-Tech Research Center, Shandong Academy of Agricultural Sciences / Key Laboratory of Crop Genetic Improvement and Biotechnology, Huanghuaihai, Ministry of Agriculture, Ji’nan 250100 China; 2 College of Life Sciences, Shandong Normal University, Ji’nan 250014, China
  • Received:2009-11-06 Revised:2009-10-04 Published:2010-02-10 Published online:2009-12-21

摘要:

采用RT-PCR克隆花生白藜芦醇合成酶(resveratrol synthetic enzyme, RS)基因全长,命名为PNRS1,GenBank登录号为FM955393。序列分析表明该基因的开放读码框1 170 bp,编码389个氨基酸残基。以花生品种鲁花14基因组DNA为模板经PCR扩增,获得该基因的基因组序列长1 537 bp,包含2个外显子和1个内含子。比较发现,PNRS1与其他已知RS序列的同源性达91%~95%。表达模式分析显示,PNRS1在花生根中特异表达,并可被紫外线UV-B诱导。PNRS1与pET-28a(+)构建原核表达载体,经IPTG诱导后可表达获得相对分子量约为46 kD的外源融合蛋白。以上结果证实PNRS1属花生RS基因家族成员,并为进一步分析该基因的功能奠定了基础。

关键词: 花生, 白藜芦醇合成酶, 表达模式, 原核表达, 融合蛋白

Abstract:

Resveratrol synthetic enzyme (RS) is a key and necessary enzyme that plays important role in resveratrol synthesis pathway. To uncover and characterize the function of the RS in plant development process, we isolated a RS gene PNRS1 (FM955393) by RT-PCR using total RNA of peanut seed as template, and the gene PNRS1 was expressed in E. coli prokaryote for further analysis. The results showed that the PNRS1 had a 1 170 bp open reading frame encoding 389 amino acid polypeptide, and exhibiting high similarities with other members of RS genes family. Expression pattern analysis indicated that the PNRS1 was specially expressed in peanut root, and could be induced by UV-B treatment. The recombinant PNRS1 protein product with the molecular weight about 46 kD could also be detected in E. coli protein expression system. These results suggested that the PNRS1 was a mumber of RS family with peculiar expression patterns compared with other ones. As protein is the functional executor of a gene, the protein product of PNRS1 finally will take effect in the later processes of plant development, and shed light on the stress-resistant breeding and cultivation.

Key words: Peamut, Resveratrol synthetic enzyme(RS), Expression pattern, Prokaryotic expression system, Fusion protein




[1] Zhang L-S(张兰胜), Liu G-M(刘光明). Reviews of reseach on resveratrol. J Da Li Univ (大理学院学报), 2007, 16(4): 72–74 (in Chinese with English abstract)



[2] Jeandet P, Bessis R, Maume B F, Meunier P, Peyron D, Trollat P. Effect of enological practices on the resveratrol isomer content of wine. J Agric Food Chem, 1995, 43: 316–319



[3] Jang M, Pezzuto J. Effect of resveratrol on 12-O-tetradecanoylphorbol-13-acetate induce oxidative evevts and gene expression in mousekin. Cancer Lett, 1998, 134: 81–89



[4] Kimura Y, Ohminami H, Okuda H, Baba K, Kozawa M, Arichi S. Effects of stilbene components of roots of Polygonum ssp. on liver injury in peroxidized oil-fed Rats. J Med Plant Res, 1983, 49: 51–54



[5] Nicholson S K, Tucker G A, Brameld J M. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc, 2008, 67: 42–47



[6] Cohen H Y, Lavu S, Bitterman K J, Hekking B, Imahiyerobo T A, Miller C, Frye R, Ploeqh H, Kessler B M, Sinclair D A. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell, 2004, 13: 627–638



[7] Rolfs C H, Fritzemerier K H, Kind H. Cultured cells of Arachis hypogaea susceptible to induction of stilbebe synthase (Resveratrol-forming). Plant Cell Rep, 1981, 1: 83–85



[8] Lanz T, Schroder G, Schroder J. Differential regulation of genes for resveratrol synthase in cell cultures of Arachis hypogaea L. Planta, 1990, 181: 169–175



[9] Jin X-L(金晓丽), Wei Y-H(尉亚辉), Wei Y-F(魏彦飞). Cloning of resveratrol synthase gene from grape. Acta Bot Boreali-Occident Sin (西北植物学报), 2004, 24(6): 1007–1011 (in Chinese with English abstract)



[10] Wang B-Y(王冰梅), Pan H-F(潘海芳), Ye B-Y(叶冰莹). Cloning and sequence analysis of resveratrol synthase DNA from peanut (Arachis hypogaea L.). J Fujian Norm Univ (Nat Sci Edn)(福建师范大学学报·自然科学版), 2005, 21(3): 56–60 (in Chinese with English abstract)



[11] Chung I M, Park M R, Yun S J. Tissue specific and inducible expression of resveratrol synthase gene in peanut plants. Mol Cells, 2001, 12: 353–359



[12] Chen Y-Q(陈由强), Ye B-Y(叶冰莹), Zhu J-M(朱锦懋). A simple and modified procedure to isolate total DNA from leaves of peanut (Arachis hypogaea L.). Peanut Sci Technol (花生科技), 1999, 3: 1–4 (in Chinese with English abstract)



[13] Zhang J-C(张君诚), Wei Y-F(魏彦飞), Tang R-H(唐荣华). Study on the RNA isolation from young peanut embryos. J Fujian Agric For Univ (Nat Sci Edn)(福建农林大学学报·自然科学版), 2004, 33(1): 1–4 (in Chinese with English abstract)



[14] Jeandet P, Bessis R, Sbaghi M, Meunier P. Production of the Phytoalexin resveratrol by grapes as a response to Botrytis attack under natural condition. J Phytopathol, 1995, 143: 135–139



[15] Holme A L, Pervaiz S. Resveratrol in cell fate decisions. J Bioenergetics Biomembranes, 2007, 39: 59–63



[16] Fulda S, Debatin K M. Extrinsic versus intrinsic cell death induction pathways in anti-cancer chemotherapy. Oncogene, Druck, 2006, 25: 4798–4811



[17] Chun M M. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem Pharmacol, 2002, 63: 99–104



[18] Gehm B D, McAndrews J M, Chien P Y, Jameson J L. Resveratrol, a polyphenolic compound found in and grapes wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA, 1997, 94: 14138–14143



[19] Nicholson S K, Tucker G A, Brameld J M. Effects of dietary polyphenols on gene expression in human vascular endothelial cells. Proc Nutr Soc, 2008, 67: 42–47



[20] Heilbronn L K, de Jonge L, Frisard M I, DeLany J P, Larson-Meyer D E,Rood J, Nguyen T, Martin C K, Volaufova J, Most M M, Greenway F L. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: A randomized controlled trial.Am Med Assoc, 2006, 295: 1539–1548



[21] Zhang X(张烜), Hu J-P(胡君萍), Han M(韩玫). Determination of resveratrol content different in parts of peanut by HPLC. J Xinjiang Med Univ (新疆医科大学学报), 2003, 26(5): 40–41 (in Chinese with English abstract)



[22] Lanz T, Tropf S, Marner F J, Schroder J, Schroder G. The role of cysteines in polyketides synthases, site-directed mutagenesis of resveratrol and chalcone synthase two key enzymes in different plant specific pathways. Biol Chem, 1991, 266: 9971–9976



[23] Zhou Y-Q(周元青), Yang Y-Y(杨艳燕), Huang J-Q(黄家权), Liao B-S(廖伯寿). Cloning and analysis of resveratrol synthase gene family. Chin J Oil Crop Sci (中国油料作物学报), 2008, 30(2): 162–167 (in Chinese with English abstract)



[24] Ma H R, Wan C Z, Wu A G, Zewail A H.DNA folding and melting observed in real time redefine the energy landscape. Proc Natl Acad Sci USA, 2007, 104: 712–716



[25] Lü Z(吕中), Yin C-Q(伊传奇). Resveratrol reacts with peroxynitrite and inhibits peroxynitrite-induced DNA damage. J Wuhan Univ (Nat Sci Edn)(武汉大学学报·理学版), 2006, 52(6): 728–732 (in Chinese with English abstract)
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[9] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[10] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[11] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[12] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[13] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[14] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[15] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!