欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (4): 555-564.doi: 10.3724/SP.J.1006.2010.00555

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

AFLP标记分析生活力影响大豆中黄18种质遗传完整性

王栋,张志娥,陈晓玲,辛霞,辛萍萍,卢新雄*   

  1. 中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程,北京100081
  • 收稿日期:2009-11-02 修回日期:2010-01-05 出版日期:2010-04-12 网络出版日期:2010-01-22
  • 通讯作者: 卢新雄, E-mail: xxlu@caas.net.cn, Tel: 010-62174099
  • 基金资助:

    本研究由国际科技支撑计划项目(2006BAD13B10)和农业部财政专项(2130135)资助。

Analysis of Viability Affecting on Genetic Integrity in Soybean Germplasm Zhong Huang 18 by AFLP Markers

WANG Dong,ZHANG Zhi-E,CHEN Xiao-Ling,XIN Xia,XIN Ping-Ping,LU Xin-Xiong*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081, China
  • Received:2009-11-02 Revised:2010-01-05 Published:2010-04-12 Published online:2010-01-22
  • Contact: LU Xin-Xiong,E-mail: xxlu@caas.net.cn, Tel: 010-62174099

摘要:

以中黄18种子为试验材料,采用不同时间(0112154196 d)老化处理,获得4个群体G0-1G0-2G0-3G0-4,其发芽率分别为98.0%95.0%81.0%79.0%。将这4个群体进行2次田间繁殖,得到4个繁殖一代群体G1-1G1-2G1-3G1-44个繁殖二代群体G2-1G2-2G2-3G2-4。以群体G0-1为对照,选用12AFLP引物组合分析12个群体的遗传完整性。结果显示,所有处理群体与对照群体G0-1的等位基因频率t检验概率值均为1.00,即无显著差异。群体G2-4与对照群体G0-1的遗传相似系数仍高达0.9333,表明发芽率为79.0%群体的繁殖二代群体与对照群体的遗传相似性仍然较高。显著性t检验结果显示,与对照群体G0-1相比,群体G1-1G2-1G1-2G2-2的每位点有效等位基因数(Ae)、遗传多样性指数(H)和香农指数(I)差异不显著;群体G0-3G0-4G1-3G1-4G2-3G2-4的上述遗传多样性参数则显著降低。与对照群体G0-1相比,群体G1-1G2-1G1-2G2-2的稀有等位基因数无显著变化;而群体G0-3G0-4G1-3G1-4G2-3G2-4的稀有等位基因数则大幅下降。以上结果表明,与对照群体相比,由发芽率分别为98.0%95.0%的群体更新的子代群体,其群体遗传多样性和稀有等位基因数无显著变化,而由发芽率分别为81.0%79.0%的群体更新的子代群体,则显著下降。因此,生活力下降比繁殖世代对大豆种质群体的遗传结构影响更大,建议初始发芽率为98.0%的大豆种质更新发芽率标准不应低于81.0%

关键词: 大豆, 生活力, 繁殖世代, AFLP, 遗传完整性, 种质保存

Abstract:

Using low temperature genebank is a main way for conserving crop germplasm resources. However, with the extension of storage time, the viability of seeds stored in the genebank will inevitably decline. Therefore, preserved seeds need to be regenerated periodically. In this study, soybean cultivar Zhonghuang 18 was used as a material and aged for different days (0, 112, 154, and 196 d) to obtain four populations G0-1, G0-2, G0-3, and G0-4. The germination percentages of the four populations were 98.0%, 95.0%, 81.0%, and 79.0%, respectively. These populations were regenerated twice in the field. The first descendant populations were marked as G1-1, G1-2, G1-3, and G1-4, and the second were marked as G2-1, G2-2, G2-3, and G2-4, respectively. Population G0-1 was taken as the control. The genetic variation between the control and treated populations was detected using AFLP marker. Sixty individual seedlings derived from each population were detected by 12 AFLP primer combinations. The result showed that t-test probability values for allele frequencies were 1.00 between the control and treated populations, which indicated that there was no significant difference in the allele frequencies of the treated population compared with the control. The genetic similarity coefficient between population G2-4 and G0-1 was 0.9333, which manifested high genetic similarity between these two populations. The results of t-test showed that there was no significant difference in effective number of alleles per loci (Ae), index of genetic diversity (He), Shannon’s information index (I) between the control G0-1 and G1-1, G2-1, G1-2, and G2-2. The index values of Ae, He,and I for the populations of G0-3, G0-4, G1-3, G1-4, G2-3, and G2-4 declined significantly compared with those of the control G0-1. The number of rare alleles for the populations G1-1, G2-1, G1-2, and G2-2 did not change significantly compared with that for the control G0-1 while that for populations of G0-3, G0-4, G1-3, G1-4, G2-3, and G2-4 declined greatly. Above results showed that the genetic diversity and the number of rare alleles for the descendant population of the populations with 98.0% and 95.0% germination percentages did not change significantly compared with those for the control G0-1, but declined significantly for the populations with 81.0% and 79.0% germination percentages. Therefore, the viability decline had a greater impact on the genetic composition of soybean population than the regeneration times. It was recommended that soybean seeds with initial germination percentage of 98.0% should be regenerated before its germination percentage declined to 81.0%.

Key words: Soybean, Viability, Regeneration, AFLP, Genetic integrity, Germplasm conservation

[1] Lu X-X(卢新雄), Cui C-S(崔聪淑), Chen X-L(陈晓玲), Chen Z(陈贞), Chen S-P(陈叔平). Survey of seed germinability after 10-12 years storage in the national genebank China. Plant Genet Resour Sci(植物遗传资源科学), 2001, 2(2): 1-5(in Chinese with English abstract)

[2] Walters C, Wheeler L M, Grotenhuis J M. Longevity of seeds stored in a genebank: Species characteristics. Seed Sci Res, 2005, 15: 1-20

[3] Qiu L-J(邱丽娟), Chang R-Z(常汝镇), Chen K-M(陈可明), Xie H(谢华), Li X-Y(李向阳), Guan R-X(关荣霞), Sun J-Y(孙建英). Analysis of conservation and regeneration statues for Chinese soybean germplasm. Plant Genet Resour Sci (植物遗传资源科学), 2002, 3(2): 34-39 (in Chinese with English abstract)

[4] Frankel O H, Brown A H D, Burdon J J. The conservation of plant biodiversity. Cambridge: Cambridge University Press, 1995. pp 90-91

[5] van Hintum T J L, van de Wiel C C M, Visser D L, van Treuren B, Vosman B. The distribution of genetic diversity in a Brassica oleracea gene bank collection related to the effects on diversity of regeneration, as measured with AFLPs. Theor Appl Genet, 1984, 114: 777-786

[6] Roos E E. Genetic shifts in mixed bean populations: I. Storage effects. Crop Sci, 1984, 24: 240-244

[7] Roos E E. Report of the storage committee working population on effects of storage on genetic integrity 1980-1983. Seed Sci Technol, 1984, 12: 255-260

[8] Breese E L. Regeneration and multiplication of germplasm resources in seed genebank: The scientific background. Rome: IBPGR, 1989. pp 40-41

[9] Stoyanova S D. Effect of seed ageing and regeneration on the genetic composition of wheat. Seed Sci Technol, 1992, 20: 489-496

[10]van Hintum T J L, Visser D L. Duplication within and between germplasm collections: II. Duplication in four European barley collections. Genet Res Crop Evol, 1995, 42: 135-145

[11]Yonezawa K, Ishii T, Nomura T, Morishima H. Effectiveness of some management procedures for seed regeneration of plant genetic resources accessions. Genetica, 1996, 43: 517-524

[12]Rio A H, Bamberg J B, Huaman Z. Assessing changes in the genetic diversity of potato gene banks: I. Effects of seed increase. Theor Appl Genet, 1997, 95: 191-198

[13]Rao N K
, Bramel P J, Reddy K N, Singh S D, Girish A G, Rao S A, Mahalakshmi V. Optimizing seed quality during germplasm regeneration in pearl millet. Genet Res Crop Evol, 2002, 49: 153-157

[14]Chebotar S, Roder M S, Korzun V, Saal B, Weber W E, Borner A. Molecular studies on genetic integrity of open pollinating species rye (Secale cereale L.) after long term genebank maintenance. Theor Appl Genet, 2003, 107: 1469-1476

[15]Murata M, Tsuchiya T, Roos E E. Chromosome damage induced by artificial seed in barley: 3. Behavior of chromosomal aberrations during plant growth. Theor Appl Genet, 1984, 67: 161-170

[16]Dourado A M, Roberts E H. Chromosome aberrations induced during storage in barley and pea seeds. Ann Bot 1984, 54, 767-779

[17]Roberts E H. Loss of viability: Chromosomal and genetic aspects. Seed Sci Technol, 1973, 1: 515-527

[18]Zhang H(张晗), Lu X-X(卢新雄), Zhang Z-E(张志娥), Chen X-L(陈晓玲), Ren S-J(任守杰), Xin P-P(辛萍萍). Effect of seed aging on change of genetic integrity in maize germplasm. J Plant Genet Resour (植物遗传资源学报), 2005, 6(3): 271-275(in Chinese with English abstract)

[19]Tao K L, Perino P, Pierluigi L, Zeuli S. Rapid and nondestructive method for detecting composition change in wheat germplasm accessions. Crop Sci, 1992, 32: 1039-1042

[20]Soengas P, Cartea E, Lema M, Velasco P. Effect of regeneration procedures on the genetic integrity of Brassica oleracea accessions. Mol Breed, 2009, 23: 389-395

[21]Xia B(夏冰), Lu X-X(卢新雄), Chen X-L(陈晓铃), Ren S-J(任守杰), Lin F(林凤), Zhang Z-E(张志娥). Detection of genetic integrity of soybean germplasm using SSR markers. Soybean Sci (大豆科学), 2007, 26(3): 305-309 (in Chinese with English abstract)

[22]Zhang Y-M(章元明), Gai J-Y(盖钧镒). A studie on suitable sample size in the conservation of landrace of soybeans. Sci Agric Sin (中国农业科学), 1995, 28(suppl): 70-75 (in Chinese with English abstract)

[23]Zheng X-Y(郑先云), Guo Y-P(郭亚平), Ma N-B(马恩波). Development of AFLP molecular markers. Chem Life (生命的化学), 2003, 23(1): 65-67 (in Chinese)

[24]Maughan P J, Saghai-Maroof M A, Buss G R, Huestis G M. Amplified fragment length polymorphism (AFLP) in soybean species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet, 2003, 93: 392-401

[25]Hu X-R(胡小荣), Lu X-X(卢新雄), Zhang Y-L(张云兰), Zhang Z-E(张志娥), Chen X-L(陈晓玲), Xin P-P(辛萍萍). Studies on the genetic integrity ultra dry seed of wheat with AFLP markers. J Plant Genet Resour (植物遗传资源学报), 2003, 4(2): 162-165 (in Chinese with English abstract)

[26]Fang J-H(方嘉禾), Liu X(刘旭), Lu X-X(卢新雄). Technical Regulation on Characterization and Documentation for Crop Germplasm Resources (农作物种质资源整理技术规程). Beijing: China Agriculture Press, 2008. pp 17-58 (in Chinese)

[27]ISTA. International Rules For Seed Testing 1996 (1996国际种子检验规程). Beijing:China Agriculture Press, 1996. pp 187-188 (in Chinese)

[28]Tian Q-Z(田清震), Gai J-Y(盖钧镒), Yu D-Y(喻德跃), Jia J-Z(贾继增). A studies on amplified fragment length polymorphism (AFLP) in soybean.Soybean Sci (大豆科学), 2000, 19(3): 210-217 (in Chinese with English abstract)

[29]Tian Q-Z(田清震), Gai J-Y(盖钧镒), Yu D-Y(喻德跃), Lü H-N(吕慧能), Jia J-Z(贾继增). AFLP fingerprint analysis of G. soja and G. max in China. Sci Agric Sin (中国农业科学), 2001, 34(5): 465-468 (in Chinese with English abstract)

[30]Sanguinetti C J, Dias N E, Simpson A J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17: 914-921

[31]Yeh F C, Yang R C, Boyle T. POPGENE Version 1.31 Quick User Guide. Canada: University of Alberta, and Center for International Forestry Research, 1999

[32]Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1, User Guide. New York: Exeter Publications, 2000

[33]Stoyanova S D. Genetic shifts and variations of gliadins induced by seed aging. Seed Sci Technol, 1991, 19: 363-371

[34]Parzies H K, Spoor W, Ennos R A. Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity, 2000, 84: 476-486

[35]Roos E E. Genetic shifts in mixed bean populations: II. Effects of regeneration. Crop Sci, 1984, 24: 711-715

[36]Börner A, Chebotar S, Korzun V. Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) germplasm after long-term maintenancel. Theor Appl Genet, 2000, 100: 494-497

[37]Marshall D R, Brown A H D. Optimum Sampling Strategies in Genetic Conservation. In: Frankel O H, Hawkes J G, eds. Crop Genetic Resources for Today and Tomorrow. Cambridge: Cambridge University Press, 1975. pp 53-83

[38]Roos E E. Genetic changes in a collection over time. Hort Sci, 1988, 23: 86-90

[39]Chwedorzewska K J, Bednarek P T, Puchalski J, Krajewski P. AFLP-profiling of long-term stored and regenerated rye genebank samples. Cell Mol Biol Lett, 2002, 7: 457-463

[40]Chwedorzewska K J, Bednarek P T, Puchalski J. Studies on changes in specific rye genome regions due to seed aging and regeneration. Cell Mol Biol Lett, 2002, 7: 569-576

[41]Zurek G. Effect of seed storage on germplasm integrity of meadow fescue (Festuca pratensis Huds.). Genet Res Crop Evol, 1999, 46: 485-490

[42]FAO/ IPGRI. Genebank Standards. Rome: FAO/IPGRI, 1994. pp 5-8

[43]Li L-Z(李灵芝), Wang L-N(王丽娜), Geng X-L(耿香利), Yao H(姚华). Seed vigor Influences on some agronomic characteristics of soybean. J Hebei Agri Sci (河北农业科学), 2002, 6(1): 14-19 (in Chinese with English abstract)

[44]Sackville Hamilton N R, Chorlton K H. Regeneration of accessions in seed collection. Rome: IPGRI, 1997. pp 42-44

[45]Schoen D J, David J L, Bataillon T M. Deleterious mutation accumulation and the regeneration of genetic resources. Proc Natl Acad Sci USA, 1998, 95: 394-399
Le Clerc V, Briard M, Granger J, Delettre J. Genebank biodiversity assessments regarding optimal sample size and seed harvesting techniques for the regeneration of carrot accessions. Biodivers Conser, 2003, 12: 2227-2336
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[15] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!