欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (3): 391-400.doi: 10.3724/SP.J.1006.2010.00391

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

云南茶树资源遗传多样性与亲缘关系的ISSR分析

刘本英1, 2,李友勇2,唐一春2,王丽鸳1,成浩1,*,王平盛2   

  1. 1中国农业科学院茶叶研究所茶树资源与改良研究中心/国家茶树改良中心,浙江杭州310008;2云南省农业科学院茶叶研究所,云南勐海666201
  • 收稿日期:2009-09-08 修回日期:2009-12-08 出版日期:2010-03-12 网络出版日期:2010-01-22
  • 通讯作者: 成浩, E-mail: chenghao@mail.tricaas.com
  • 基金资助:

    本研究由国家科技基础条件平台项目建设计划(2005DKA21002)和浙江省重点科技计划项目(2006C22070)资助。

Genetic Diversity and Relationship of Tea Germplasm in Yunnan Revealed by ISSR Analysis

LIU Ben-Ying1,2,LI You-Yong2,TANG Yi-Chun2,WANG Li-Yuan1,CHENG Hao1,*,WANG Ping-Sheng2   

  1. 1 Research Center for Tea Germplasm and Improvement, Tea Research Institute of Chinese Academy of Agricultural Science, National Center for Tea Improvement, Hangzhou 310008, China; 2 Tea Research Institute of Yunnan Academy of Agricultural Science, Menghai 666201, China
  • Received:2009-09-08 Revised:2009-12-08 Published:2010-03-12 Published online:2010-01-22
  • Contact: CHENG Hao, E-mail: chenghao@mail.tricaas.com

摘要:

8个种群134份云南茶树资源为材料,应用ISSR标记方法,进行了遗传多样性与亲缘关系分析。结果表明,18个多态性ISSR引物对全部试验材料进行PCR扩增,共获得475条稳定的谱带,其中多态性谱带470(98.9%),遗传多样性丰富;应用Nei-Li相似系数法估算了134个材料间的相似系数为0.445~0.819,平均为0.512,说明茶树资源间的遗传基础较宽;对134份茶树资源的分子系统聚类分析(UPGMA)将资源分为3大组,聚类结果与地理距离没有明显的相关性;主成分分析(PCA)表明主成分分析的结果与系统聚类基本一致,但是主成分分析更加直观清晰地显示各个材料间的亲缘关系;大厂茶等8个种群间的遗传相似系数于0.850~0.987间,平均为0.92,表明不同种群间的遗传差异较小。

关键词: 云南, 茶树资源, ISSR, 遗传多样性, 亲缘关系

Abstract:

Tea is an important beverage crop in the world. Yunnan region in China is the origin center of tea plants. Our knowledge on genetic diversity and relationship of tea germplasm in Yunnan province is critical to guide tea breeding. In order to provide theoretical information for using tea germplasm in tea breeding, we investigated the relationship and genetic diversity of the tea germplasm in Yunnan province. Eight species, including 134 tea varieties were used to detect the genetic variation by inter-simple sequence repeats (ISSR) analysis. The result showed that 475 DNA fragments among all 134 tea accessions were amplified, using 18 reliable ISSR primers, among which 470 DNA bands were polymorphic (PPB=98.9%). This indicated that a great amount of genetic polymorphism exists among tea germplasm tested. The genetic similarity (GS) among the tested genotypes ranged from 0.445 to 0.819, with an average of 0.512, indicating a wide gene pool among tea varieties in Yunnan. The cluster analysis presented that these resources were divided into three main groups using the unweighted pair-group method with arithmetic average (UPGMA) based on ISSR molecular marker data, but the dendrogram did not indicate clear division among tested varieties based on their geographical origin. Principal Component analysis (PCA) for ISSR data showed that PCA supported UPGMA clustering result, but showed more explicit relationships among the test accessions with different lays, orientationsand positions. The GS among 8 populations ranged from 0.850 to 0.987, with an average of 0.92, indicating that there existed a small variation of genetic diversity among different population. The findings of this research would be favorable for the further practice, such as tea breeding, the molecular genetic linkage mapping and the DNA fingerprint building of tea germplasm.

Key words: Yunnan, Tea Germplasm, ISSR, Genetic diversity, Genetic Relationship


[1] Chen X-Y(陈兴琰). The original locality of tea plant—Yunnan (茶树原产地——云南). Kunming: Yunnan People’s Publishing House, 1994. pp 30-38 (in Chinese)


[2] Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)—anchored polymerase chain reaction amplification. Genomics, 1994, 20: 176-183


[3] Tsumura Y, Ohba K, Strauss S H. Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas fir (Pseudotsuga menziesii) and sugi (Cryptomeriajaponica). Theor Appl Genet, 1996, 92: 40-45


[4] Nagaoka T, 0giham Y. Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and BAPD markers. Theor Appl Genet, 1997, 94: 597-602


[5] Wolfe A, Xiang Q Y, Kephart S R. Assessing hybridisation in natural populations of Penstemon (Scrophulariaceae) using hypervariable inter simple sequence repeat (ISSR) bands. Mol Ecol, 1998, 7: 1107-1125


[6] Kantety R V, Rotal M L, Matthews D E,Sorrells M E. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol, 2002, 48: 501-510


[7] Godwir I D, Aitke R E, Smith L W. Application of inter-simply sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 1997, 18: 1524-1528


[8] Prevost A, Wilkinson M J. A new system of comparing PCR primers applied to ISSR fingerprinting of Potato cultivars. Theor Appl Genet, 1998, 98: 107-112


[9] Joshi S P, Gupta V S, Aggarwal R K, Ranjekar P K, Brar D S. Genetic diversity and Phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) Polymorphism in the genus Oryza. Theor Appl Genet, 2000, 100: 1311-1320


[10] Qian W, Hong D Y, Ge S. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by BAPD and ISSR markers. Theor Appl Genet, 2001, 102: 440-449


[11] Femamdez M E, Figueiras A M, Benito C. The use of ISSR and RAPD markets for detecting DNA polymorphism, genetype identification and diversity among barley cultivars with known origin. Theor Appl Genet, 2002, 104: 845-851


[12] Lin Z-H(林郑和), Chen R-B(陈荣冰), Chen C-S(陈常颂), Lin J-K(林金科), Hao Z-L(郝志龙), Gao S-L(高水练), Chen L-C(陈梁城). Preliminary application of ISSR markers in the genetic relationship analysis of tea plants. Tea Sci (茶叶科学), 2007, 27(1): 45-50 (in Chinese with English abstract)


[13] Yao M-Z(姚明哲), Chen L(陈亮), Wang X-C(王新超), Zhao L-P(赵丽萍), Yang Y-J(杨亚军). Genetic diversity and relationship of conal tea cultivars in china revealed by ISSR markers. Acta Agron Sin (作物学报), 2007, 33(4): 598-604 (in Chinese with English abstract)


[14] Liu B-Y(刘本英), Wang P-S(王平盛), Ji P-Z(季鹏章), Xu M(许玫), Cheng H(成浩). Study on genetic diversity of peculiar sect. Thea (L.) dye in Yunnan by ISSR markers. Yunnan Agric Univ (云南农业大学学报), 2008, 23(5): 302-308 (in Chinese with English abstract)


[15] Liu B-Y(刘本英), Wang P-S(王平盛), Zhou H-J(周红杰), Ji P-Z(季鹏章), Cheng Z-Q(程在全). The ISSR-PCR reaction system’s establishment about Yunnan tea plant. Yunnan Agric Univ (云南农业大学学报), 2006, 21(suppl): 21-25(in Chinese with English abstract)


[16] Liu B-Y(刘本英), Zhou J(周健), Xu M(许玫), Tang Y-C(唐一春), Wang L-Y(王丽鸳), Cheng H(成浩), Zhang X-F(张小飞), Wang P-C(王平盛). Tissue culture of immature embryo and parentage identification of hybrids between Camellia taliensis (W.W. Smish) Melchior and C. sinensis ‘Fuding Dabaicha’. Acta Hort Sin (园艺学报), 2008, 35(5): 735-740 (in Chinese with English abstract)


[17] Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 1973, 70: 3321-3323


[18] Bostein D, White R L, Shlnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polyphormism. Am J Human Genet, 1980, 32: 314-318


[19] Martinez L E, Cavagnaro P F, Masuelli R W, Zuniga M. SSR-based assessment of genetic diversity in South American Vitis vinifera varieties. Plant Sci, 2006, 170: 1036-1044


[20] Yeh F C, Boyle T J B. Population genetic analysis of co-dominant and dominant markers and quantitive traits. Belgian J Bot, 1997: 129-157


[21] Rohlf F J. Statistical power comparisons among alternative morphometric methods. Am J Phys Anthropol, 2000, 111: 463-478


[22] Chen L(陈亮), Yu F-L(虞富莲), Tong Q-Q(童启庆). Discussions on phylogenetic classification and evolution of Sect Thea. Tea Sci (茶叶科学), 2000, 20(2): 89-94 (in Chinese with English abstract)


[23] Wolfe A D, Liston A. Contributions of the polymerase chain reaction to plant systematics. In: Soltis D E, Soltis P S, Doyle J J, eds. Molecular Systematics of Plants: II. DNA Sequencing. New York: KluwerAcademic Publisher, 1998. pp 43-86


[24] Fang D Q, Rocse M L, Krueger R R, Federici C T. Fingerprinting trifoliate orange germplasm accessions with isozymes, RFLPs and inter-simple sequence repeat markers. Theor Appl Genet, 1997, 95: 211-219


[25] Moreno S, Martin J P, Ortiz M. Inter-simple sequence repeats PCR for characterization of closely related grapevine germplasm. Euphytica, l998, 101: 117-125


[26] Wachira F N, Waugh R, Hackett C A, Powell W. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 1995, 38: 201-210


[27] Kaundun S S, Zhyvoloup A, Park Y G. Evaluation of the genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica, 2000, 115: 7-16


[28] Mishra R K, Mandi S S. Genetic diversity estimates for Darjeeling tea clones based on amplified fragment length polymorphism markers. Tea Sci, 2004, 24: 86-92


[29] Chen L(陈亮), Yamaguchi S(山口聪), Wang P-C(王平盛), Xu M(许玫), Song W-X(宋维希), Tong Q-Q(童启庆). Genetic polymorphism and molecular phylogeny analysis of section Thea based on RAPD markers. Tea Sci (茶叶科学), 2002, 22(1): 19-24 (in Chinese with English abstract)


[30] Shao W-F(邵宛芳), Pang R-H(庞瑞华), Wang P-S(王平盛), Xu M(许玫), Duan H-X(段红星), Zhang Y-P(张亚萍), Li J-H(李家华). RAPD analysis of tea relationship in Yunnan. Sci Agric Sin (中国农业科学), 2003, 36(12): 1582-1587 (in Chinese with English abstract)


[31] Yang Y(杨阳), Liu Z(刘振), Zhao Y(赵洋), Liang G-Q(梁国强), Zhao X(赵熙). Genetic diversity and relationship of Huangjincha cultivar based on EST-SSR markers. Tea Sci (茶叶科学), 2009, 29(3): 236-242 (in Chinese with English abstract)


[32] Zhang H-
D(张宏达). A taxonomy of the genus Camellia. Acta Sci Nat Univ Sunyatseni (中山大学学报×自然科学版), 1981, 20(1): 108-127 (in Chinese)


[33] Zhang H-D(张宏达). A revision of the tea resource plants. Acta Sci Nat Univ Sunyatseni (中山大学学报×自然科学版), 1984, 23(1): 1-12 (in Chinese).

[34] Min T-L(闵天禄). A revision of Camellia sect. Thea. Acta Bot Yunnanica (云南植物研究), 1992, 14(2): 115-132 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[4] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[5] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[6] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[7] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[8] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[9] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[10] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
[11] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[12] 刘洪,徐振江,饶得花,鲁清,李少雄,刘海燕,陈小平,梁炫强,洪彦彬. 基于形态学性状和SSR标记的花生品种遗传多样性分析和特异性鉴定[J]. 作物学报, 2019, 45(1): 26-36.
[13] 白冬梅,薛云云,赵姣姣,黄莉,田跃霞,权宝全,姜慧芳. 山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性[J]. 作物学报, 2018, 44(10): 1459-1467.
[14] 魏中艳, 李慧慧, 李骏, YasirA.Gamar, 马岩松, 邱丽娟. 应用SNP精准鉴定大豆种质及构建可扫描身份证[J]. 作物学报, 2018, 44(03): 315-323.
[15] 余斌,杨宏羽,王丽,刘玉汇,白江平,王蒂,张俊莲. 引进马铃薯种质资源在干旱半干旱区的表型性状遗传多样性分析及综合评价[J]. 作物学报, 2018, 44(01): 63-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!